Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
J Am Chem Soc ; 146(11): 7640-7648, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38466380

RESUMO

The cell membrane exhibits a remarkable complexity of lipids and proteins that dynamically segregate into distinct domains to coordinate various cellular functions. The ability to manipulate the partitioning of specific membrane proteins without involving genetic modification is essential for decoding various cellular processes but highly challenging. In this work, by conjugating cholesterols or tocopherols at the three bottom vertices of the DNA tetrahedron, we develop two sets of nanodevices for the selective targeting of lipid-order (Lo) and lipid-disorder (Ld) domains on the live cell membrane. By incorporation of protein-recognition ligands, such as aptamers or antibodies, through toehold-mediated strand displacement, these DNA nanodevices enable dynamic translocation of target proteins between these two domains. We first used PTK7 as a protein model and demonstrated, for the first time, that the accumulation of PTK7 to the Lo domains could promote tumor cell migration, while sequestering it in the Ld domains would inhibit the movement of the cells. Next, based on their modular nature, these DNA nanodevices were extended to regulate the process of T cell activation through manipulating the translocation of CD45 between the Lo and the Ld domains. Thus, our work is expected to provide deep insight into the study of membrane structure and molecular interactions within diverse cell signaling processes.


Assuntos
DNA , Proteínas de Membrana , Membrana Celular/química , DNA/química , Proteínas de Membrana/análise , Lipídeos/química , Bicamadas Lipídicas/química , Microdomínios da Membrana/química
2.
Chem Sci ; 15(1): 134-145, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38131089

RESUMO

Nucleocytoplasmic shuttling proteins (NSPs) have emerged as a promising class of therapeutic targets for many diseases. However, most NSPs-based therapies largely rely on small-molecule inhibitors with limited efficacy and off-target effects. Inspired by proteolysis targeting chimera (PROTAC) technology, we report a new archetype of PROTAC (PS-ApTCs) by introducing a phosphorothioate-modified aptamer to a CRBN ligand, realizing tumor-targeting and spatioselective degradation of NSPs with improved efficacy. Using nucleolin as a model, we demonstrate that PS-ApTCs is capable of effectively degrading nucleolin in the target cell membrane and cytoplasm but not in the nucleus, through the disruption of nucleocytoplasmic shuttling. Moreover, PS-ApTCs exhibits superior antiproliferation, pro-apoptotic, and cell cycle arrest potencies. Importantly, we demonstrate that a combination of PS-ApTCs-mediated nucleolin degradation with aptamer-drug conjugate-based chemotherapy enables a synergistic effect on tumor inhibition. Collectively, PS-ApTCs could expand the PROTAC toolbox to more targets in subcellular localization and accelerate the discovery of new combinational therapeutic approaches.

3.
JTCVS Open ; 15: 242-251, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37808045

RESUMO

Objective: Protein kinase C (PKC) influences myocardial contractility and susceptibility to long-term cardiac dysfunction after ischemia-reperfusion injury. In diabetes, PKC inhibition has a protective effect in terms of microvascular dysfunction. SK-channel dysfunction also influences endothelial dysfunction in cardioplegic hypoxia-reoxygenation (CP-H/R). Here, we examine whether acute inhibition of PKC beta protects against CP-H/R-induced coronary endothelial and SK channel dysfunction. Methods: Isolated mouse coronary arterioles, half pretreated with selective PKC inhibitor ruboxistaurin (RBX), were subjected to hyperkalemic, cardioplegic hypoxia (1 hour), and reoxygenation (1 hour) with Krebs buffer. Sham control vessels were continuously perfused with oxygenated Krebs buffer without CP-H/R. After 1 hour of reoxygenation, responses to the endothelium-dependent vasodilator adenosine-diphosphate (ADP) and the SK-channel activator NS309 were examined. Endothelial SK-specific potassium currents from mouse heart endothelial cells were examined using whole-cell path clamp configurations in response to NS309 and SK channel blockers apamin and TRAM34. Results: CP-H/R significantly decreased coronary relaxation responses to ADP (P = .006) and NS309 (P = .0001) compared with the sham control group. Treatment with selective PKC beta inhibitor RBX significantly increased recovery of coronary relaxation responses to ADP (P = .031) and NS309 (P = .004) after CP-H/R. Treatment with RBX significantly increased NS309-mediated potassium currents following CP-H/R (P = .0415). Apamin and TRAM34 sensitive currents were significantly greater in CP-H/R + RBX versus CP-H/R mouse heart endothelial cells (P = .0027). Conclusions: Acute inhibition of PKC beta significantly protected mouse coronary endothelial function after CP-H/R injury. This suggests that acute PKC beta inhibition may be a novel approach for preventing microvascular dysfunction during CP-H/R.

4.
Nat Commun ; 14(1): 5598, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37699870

RESUMO

Synthetic polypeptides have emerged as versatile tools in both materials science and biomedical engineering due to their tunable properties and biodegradability. While the advancements of N-carboxyanhydride (NCA) ring-opening polymerization (ROP) techniques have aimed to expedite polymerization and reduce environment sensitivity, the broader implications of such methods remain underexplored, and the integration of ROP products with other materials remains a challenge. Here, we show an approach inspired by the success of many heterogeneous catalysts, using nanoscale metal-organic frameworks (MOFs) as co-catalysts for NCA-ROP accelerated also by peptide helices in proximity. This heterogeneous approach offers multiple advantages, including fast kinetics, low environment sensitivity, catalyst recyclability, and seamless integration with hybrid materials preparation. The catalytic system not only streamlines the preparation of polypeptides and polypeptide-coated MOF complexes (MOF@polypeptide hybrids) but also preserves and enhances their homogeneity, processibility, and overall functionalities inherited from the constituting MOFs and polypeptides.

5.
J Thorac Cardiovasc Surg ; 166(6): e535-e550, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37604273

RESUMO

OBJECTIVES: Sodium-glucose cotransporter-2 inhibitor, canagliflozin, improves myocardial perfusion to ischemic territory without accompanying changes in vascular density. We aimed to (1) characterize effects on angiogenic pathways, (2) use multiomics to identify gene expression and metabolite profiles relevant to regulation of myocardial blood flow, and (3) investigate drug effect on coronary microvascular reactivity. METHODS: A nondiabetic swine model of chronic myocardial ischemia and nondiabetic rat model were used to study functional and molecular effects of canagliflozin on myocardium and in vitro microvascular reactivity. RESULTS: Canagliflozin resulted in increased coronary microvascular vasodilation and decreased vasoconstriction (P < .05) without changes in microvascular density (P > .3). Expression of the angiogenic modulator, endostatin, increased (P = .008), along with its precursor, collagen 18 (P < .001), and factors that increase its production, including cathepsin L (P = .004). Endostatin and collagen 18 levels trended toward an inverse correlation with blood flow to ischemic territory at rest. Proangiogenic fibroblast growth factor receptor was increased (P = .03) and matrix metalloproteinase-9 was decreased (P < .001) with canagliflozin treatment. Proangiogenic vascular endothelial growth factor A (P = .13), Tie-2 (P = .10), and Ras (P = .18) were not significantly altered. Gene expression related to the cardiac renin-angiotensin system was significantly decreased. CONCLUSIONS: In chronic myocardial ischemia, canagliflozin increased absolute blood flow to the myocardium without robustly increasing vascular density or proangiogenic signaling. Canagliflozin resulted in altered coronary microvascular reactivity to favor vasodilation, likely through direct effect on vascular smooth muscle. Downregulation of cardiac renin-angiotensin system demonstrated local regulation of perfusion. VIDEO ABSTRACT.


Assuntos
Isquemia Miocárdica , Inibidores do Transportador 2 de Sódio-Glicose , Suínos , Animais , Ratos , Vasodilatação , Canagliflozina/farmacologia , Canagliflozina/metabolismo , Canagliflozina/uso terapêutico , Fator A de Crescimento do Endotélio Vascular/farmacologia , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Endostatinas/metabolismo , Endostatinas/farmacologia , Endostatinas/uso terapêutico , Miocárdio/metabolismo
6.
Angew Chem Int Ed Engl ; 62(34): e202303280, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37040089

RESUMO

Dispersing metal-organic framework (MOF) solids in stable colloids is crucial for their availability and processibility. Herein, we report a crown ether surface coordination approach for functionalizing the surface-exposed metal sites of MOF particles with amphiphilic carboxylated crown ether (CEC ). The surface-bound crown ethers significantly improve MOF solvation without compromising the accessible voids. We demonstrate that CEC -coated MOFs exhibit exceptional colloidal dispersibility and stability in 11 distinct solvents and six polymer matrices with a wide range of polarities. The MOF-CEC can be instantaneously suspended in immiscible two-phase solvents as an effective phase-transfer catalyst and can form various uniform membranes with enhanced adsorption and separation performance, which highlights the effectiveness of crown ether coating.

7.
Front Chem ; 10: 984916, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36147254

RESUMO

Natural products and their derivatives have made great contributions to chemotherapy, especially for the treatment of tumors and infections. Despite the achievements, natural product-based small molecule drugs usually suffer from side effects, short circulation time, and solubility issue. To overcome these drawbacks, a common approach is to integrate another bio-functional motif into a natural product compound, enabling targeted or synergistic therapy. One of the most promising strategies is to form a DNA-natural product conjugate to improve therapeutic purposes. The incorporated DNA molecules can serve as an aptamer, a nucleic-acid-based congener of antibody, to specifically bind to the disease target of interest, or function as a gene therapy agent, such as immuno-adjuvant or antisense, to enable synergistic chemo-gene therapy. DNA-natural product conjugate can also be incorporated into other DNA nanostructures to improve the administration and delivery of drugs. This minireview aims to provide the chemistry community with a brief overview on this emerging topic of DNA-natural product conjugates for advanced therapeutics. The basic concepts to use the conjugation, the commonly used robust conjugation chemistries, as well as applications in targeted therapy and synergistic therapy of using DNA-natural product conjugates, are highlighted in this minireview. Future perspectives and challenges of this field are also discussed in the discussion and perspective section.

9.
J Thorac Cardiovasc Surg ; 164(5): e207-e226, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-34274141

RESUMO

OBJECTIVE: Cardioplegic ischemia-reperfusion and diabetes mellitus are correlated with coronary endothelial dysfunction and inactivation of small conductance calcium-activated potassium channels. Increased reactive oxidative species, such as mitochondrial reactive oxidative species, may contribute to oxidative injury. Thus, we hypothesized that inhibition of mitochondrial reactive oxidative species may protect coronary small conductance calcium-activated potassium channels and endothelial function against cardioplegic ischemia-reperfusion-induced injury. METHODS: Small coronary arteries and endothelial cells from the hearts of mice with and without diabetes mellitus were isolated and examined by using a cardioplegic hypoxia and reoxygenation model to determine whether the mitochondria-targeted antioxidant Mito-Tempo could protect against coronary endothelial and small conductance calcium-activated potassium channel dysfunction. The microvessels or mouse heart endothelial cells were treated with or without Mito-Tempo (0-10 µM) 5 minutes before and during cardioplegic hypoxia and reoxygenation. Microvascular function was assessed in vitro by vessel myography. K+ currents of mouse heart endothelial cells were measured by whole-cell patch clamp. The levels of intracellular cytosolic free calcium (Ca2+) concentration, mitochondrial reactive oxidative species, and small conductance calcium-activated potassium protein expression of mouse heart endothelial cells were measured by Rhod-2 fluorescence staining, MitoSox, and Western blotting, respectively. RESULTS: Cardioplegic hypoxia and reoxygenation significantly attenuated endothelial small conductance calcium-activated potassium channel activity, caused calcium overload, and increased mitochondrial reactive oxidative species of mouse heart endothelial cells in both the nondiabetic and diabetes mellitus groups. In addition, treating mouse heart endothelial cells with Mito-Tempo (10 µM) reduced cardioplegic hypoxia and reoxygenation-induced Ca2+ and mitochondrial reactive oxidative species overload in both the nondiabetic and diabetes mellitus groups, respectively (P < .05). Treatment with Mito-Tempo (10 µM) significantly enhanced coronary relaxation responses to adenosine 5'-diphosphate and NS309 (P < .05), and endothelial small conductance calcium-activated potassium channel currents in both the nondiabetic and diabetes mellitus groups (P < .05). CONCLUSIONS: Administration of Mito-Tempo improves endothelial function and small conductance calcium-activated potassium channel activity, which may contribute to its enhancement of endothelium-dependent vasorelaxation after cardioplegic hypoxia and reoxygenation.


Assuntos
Diabetes Mellitus , Células Endoteliais , Adenosina/metabolismo , Animais , Antioxidantes/metabolismo , Cálcio/metabolismo , Diabetes Mellitus/metabolismo , Difosfatos/metabolismo , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Hipóxia , Camundongos , Mitocôndrias , Oxirredução , Potássio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo
10.
J Mol Neurosci ; 71(9): 1815-1824, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33791912

RESUMO

Epilepsy-associated brain tumors (EATs) are usually slow-growing, with seizures as the primary and most dominant symptom. BRAF (v-raf murine sarcoma viral oncogene homolog B1) gene mutations have been found in several subsets of EATs; the V600E mutation is currently believed to contribute to the intrinsic epileptogenicity and tumor growth. However, the relationship between BRAF V600E gene mutation and clinical characteristics in EAT patients is not clear. In this study, we aimed to systematically review the frequency of BRAF V600E gene mutation, as well as the relationship between BRAF V600E gene mutation and clinical characteristics, which may help with the diagnosis and treatment of EATs. Cochrane Library, PubMed, Embase, CNKI, WanFang Data, CQVIP, and SinoMed databases were searched up to October 2020 to identify peer-reviewed human studies on assessing the relationship between BRAF V600E gene mutations and clinical characteristics in EATs. The following data were calculated: the frequency of BRAF V600E mutation and clinical feature comparison between BRAF V600E mutations and wild type in EATs, such as gender, age of seizure onset, duration of epilepsy, location of tumors, and Engel outcome. A total of 12 articles were included in the analysis. Five hundred and nine patients with epilepsy-associated brain tumors were screened for the BRAF V600E gene mutation. Among them, 193 patients had the BRAF V600E mutation (34.06%, 95% CI = 0.25 to 0.43). The subgroup analyses of BRAF V600E mutation showed positive frequency of 44.76% (95% CI = 0.36 to 0.54) in ganglioglioma, 24.75% (95% CI = 0.14 to 0.37) in gysembryoplastic neuroepithelial tumor, 2.15% (95% CI = 0 to 0.19) in angiocentric glioma, and 50.16% (95% CI = 0.33 to 0.68) in pleomorphic xanthoastrocytoma. Compared with the overall frequency, the BRAF V600E positive frequency in ganglioglioma was significantly higher (P = 0.0283). We also found that BRAF V600E gene mutation was significantly associated with age at seizure onset (MD = -2.37; 95% CI = -4.33 to -0.41; P = 0.02). There was no statistical difference between BRAF V600E mutations and wild type in gender, duration of epilepsy, tumor site, and Engel outcome comparison. In conclusion, our updated and comprehensive meta-analysis based on a large number of clinical data demonstrated that BRAF V600E mutation is a specific biomarker and could be a pharmacological target for ganglioglioma patients and an exclusion diagnostic criterion for angiocentric glioma. This meta-analysis suggested the critical role of BRAF V600E mutation in the occurrence and development of EATs. Our findings help to elucidate the progression mechanisms in EATs and develop future therapeutic strategies for EATs.


Assuntos
Neoplasias Encefálicas/genética , Epilepsia/genética , Fenótipo , Proteínas Proto-Oncogênicas B-raf/genética , Neoplasias Encefálicas/complicações , Neoplasias Encefálicas/patologia , Epilepsia/etiologia , Epilepsia/patologia , Frequência do Gene , Humanos , Mutação de Sentido Incorreto
11.
Int J Pharm ; 590: 119948, 2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-33031876

RESUMO

Molybdenum disulfide (MoS2), one representative 2D nanomaterial, has recently emerged as a unique platform in the biomedical field. However, its application in drug delivery systems should be further exploited. Here, we report a novel tumor cell targeting and lysosomal acidic environment/NIR laser dual responsive drug delivery system for synergetic chemo-photothermal treatment of cancer cells. The MoS2 nanosheets were loaded with chemotherapy drug doxorubicin (DOX) and coated with polydopamine (PDA) layer. Then, thiolated aptamer AS1411 and polyethylene glycol (PEG) were modified onto MoS2 nanosheets through Michael addition reaction to construct DOX@Apt-PEG-PDA-MoS2 nanosheets. The aptamer modification endowed the nanoplatform with targeting ability to breast cancer MCF-7 cells. MoS2 and PDA converted 808 nm NIR laser into heat and played the role of photothermal therapy (PTT). Tumor lysosomal acidic environment and NIR laser irradiation accelerated the release of DOX from the nanosheets. The nanocarrier Apt-PEG-PDA-MoS2 showed good biocompatibility, and DOX@Apt-PEG-PDA-MoS2 showed synergetic chemo-photothermal therapy effects with significantly enhanced anti-tumor efficacy, suggesting that this MoS2-based drug delivery platform is promising for targeted and synergetic treatment of cancer.


Assuntos
Hipertermia Induzida , Nanopartículas , Preparações Farmacêuticas , Linhagem Celular Tumoral , Sobrevivência Celular , Dissulfetos , Doxorrubicina , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Humanos , Lasers , Lisossomos , Molibdênio , Fototerapia
12.
J Thorac Cardiovasc Surg ; 160(6): e263-e280, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32199659

RESUMO

OBJECTIVE: To investigate coronary endothelial protection of a small-conductance calcium-activated potassium (SK) channel activator against a period of cardioplegic-hypoxia and reoxygenation (CP-H/R) injury in mice and patients with diabetes (DM) and those without diabetes (nondiabetic [ND]). METHODS: Mouse small coronary arteries/heart endothelial cells (MHECs) and human coronary arterial endothelial cells (HCAECs) were dissected from the harvested hearts of mice (n = 16/group) and from discarded right atrial tissue samples of patients with DM and without DM (n = 8/group). The SK current density of MHECs was measured. The in vitro small arteries/arterioles, MHECs, and HCAECs were subjected to 60 minutes of CP hypoxia, followed by 60 minutes of oxygenation. Vessels were treated with or without the selective SK activator NS309 for 5 minutes before and during CP hypoxia. RESULTS: DM and/or CP-H/R significantly inhibited the total SK currents of MHECs and HCAECs and significantly diminished the mouse coronary relaxation response to NS309. Administration of NS309 immediately before and during CP hypoxia significantly improved the recovery of coronary endothelial function, as demonstrated by increased relaxation responses to adenosine 5'-diphosphate and substance P compared with those seen in controls (P < .05). This protective effect was more pronounced in vessels from ND mice and patients compared with DM mice and patients (P < .05). Cell surface membrane SK3 expression was significantly reduced after hypoxia, whereas cytosolic SK3 expression was greater than that of the sham control group (P < .05). CONCLUSIONS: Application of NS309 immediately before and during CP hypoxia protects mouse and human coronary microvasculature against CP-H/R injury, but this effect is diminished in the diabetic coronary microvasculature. SK inhibition/inactivation and/or internalization/redistribution may contribute to CP-H/R-induced coronary endothelial and vascular relaxation dysfunction.


Assuntos
Doença da Artéria Coronariana/etiologia , Vasos Coronários/patologia , Diabetes Mellitus Tipo 2/complicações , Endotélio Vascular/metabolismo , Indóis/farmacologia , Oximas/farmacologia , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo , Vasodilatação/efeitos dos fármacos , Idoso , Animais , Células Cultivadas , Doença da Artéria Coronariana/diagnóstico , Doença da Artéria Coronariana/metabolismo , Vasos Coronários/efeitos dos fármacos , Vasos Coronários/metabolismo , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/patologia , Feminino , Humanos , Masculino , Camundongos , Transdução de Sinais , Canais de Potássio Ativados por Cálcio de Condutância Baixa/efeitos dos fármacos
13.
Anal Chem ; 91(20): 13143-13151, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31507159

RESUMO

Human telomerase has been considered as a promising tumor marker for early cancer diagnosis and tumor progression monitoring. Current methods for detection of telomerase mainly rely on in vitro assays using cell lysate, which cannot provide information on telomerase activities in living systems. Only the few reported intracellular probes possess high telomerase selectivity but involve no signal amplification process, which potentially limits their use in application scenarios requiring high sensitivity. The development of an ultrasensitive intracellular telomerase probe is of high demand but challenging, because of the difficulty in designing a robust amplification process in living cells. Inspired by the mechanism of telomerase primer binding and extension, we introduce a cascade amplification reaction-based nanoprobe for intracellular telomerase detection by incorporating DNAzyme and catalytic hairpin assembly onto MnO2 nanosheets. The MnO2 nanosheets can deliver and release multicomponent signal amplification motifs with designed ratio at the same intracellular position, thereby enabling the cascade process in cells to occur. The released Mn2+ ions from degraded MnO2 nanosheets can activate DNAzyme as a metal cofactor and facilitate endosomal escape, because of the ion sponge effect. We used the nanoprobe to successfully monitor the dynamic change of telomerase activity in the HeLa cell, as well as in three other types of cells. This cascade amplification nanoprobe provides ultrasensitive detection of telomerase activity, indicating its use as a promising bioassay for early cancer diagnosis.


Assuntos
Biomarcadores Tumorais/análise , DNA Catalítico/química , Compostos de Manganês/química , Nanoestruturas/química , Óxidos/química , Telomerase/análise , Linhagem Celular Tumoral , DNA Catalítico/genética , Corantes Fluorescentes/química , Humanos , Sequências Repetidas Invertidas , Limite de Detecção , Técnicas de Amplificação de Ácido Nucleico/métodos , Hibridização de Ácido Nucleico , Espectrometria de Fluorescência
14.
Acc Chem Res ; 52(9): 2415-2426, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31411853

RESUMO

Nanoparticles (NPs) have enormous potential to improve disease diagnosis and treatment due to their intrinsic electronic, optical, magnetic, mechanical, and physiological properties. To realize their full potential for nanomedicine, NPs must be biocompatible and targetable toward specific biomolecules to ensure selective sensing, imaging, and drug delivery in complex environments such as living cells, tissues, animals, and human bodies. In this Account, we summarize our efforts to impart specific biocompatibility and biorecognition functionality to NPs by developing strategies to integrate inorganic and organic NPs with functional DNA (fDNA), including aptamers, DNAzymes, and aptazymes to create fDNA-NPs. These hybrid NPs take advantage of fDNA's ability to either bind targets or catalyze reactions in the presence of targets selectively and utilize their unique physicochemical properties including small size, low immunogenicity, and ease of synthesis and chemical modification in comparison with other molecules such as antibodies. By integrating inorganic NPs such as gold NPs, quantum dots, and iron oxide nanoparticles with fDNA, we designed stimuli-responsive fDNA-NPs that exhibit target induced assembly and disassembly of NPs, resulting in a variety of colorimetric, fluorescent, and magnetic resonance imaging (MRI)-based sensors for diagnostic of a broad range of analytes. To impart both biocompatibility and selectivity on inorganic NPs for targeted bioimaging, we have demonstrated DNA-mediated surface functionalization, shape-controlled synthesis, and coordinative assembly of such NPs as specific bioprobes. A highlight is provided on the construction of fDNA-based nanoprobes with light-activatable sensing and imaging functions, which provides precise control of recognition properties of fDNA with high spatiotemporal resolution. To explore the potential of organic NPs for biosensing applications, we have developed an enzyme-responsive fDNA-liposome as a universal sensing platform compatible with diverse biological targets as well as different detection methods including fluorescence, MRI, or temperature, making possible point-of-care diagnostics. To expand the application regime of organic NPs, we collaborated with the Zimmerman group to prepare single-chain block copolymer-based NPs and incorporated it with a variety of functions, including monovalent DNA for assembly, tunable surface chemistry for cellular imaging, and coordinative Cu(II) sites for catalyzing intracellular click reactions, demonstrating the potential of using organic NPs to create promising fDNA-NP systems with programmable functionalities. Furthermore, we survey our recent endeavor in integration of cell-specific aptamers with different NPs for targeted drug delivery, showing that introducing stimuli-responsive properties into NPs that target tumor microenvironments would enable safer and more effective therapy for cancers. Finally, current challenges and future perspectives in fDNA-mediated engineering of NPs for biomedical applications are discussed.


Assuntos
Pesquisa Biomédica , DNA/química , Nanopartículas/química , Animais , Técnicas Biossensoriais , Colorimetria , Humanos , Imageamento por Ressonância Magnética , Microscopia de Fluorescência
15.
Nanoscale ; 11(17): 8133-8137, 2019 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-30994698

RESUMO

We report here a two-photon nanoprobe for the detection of RNase H activity in living cells and ex vivo tissues by combining a two-photon dye with a spherical nucleic acid (SNA) featuring a DNA/RNA duplex corona and a gold nanoparticle core.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Ribonuclease H/metabolismo , Animais , DNA/química , DNA/metabolismo , Difusão Dinâmica da Luz , Corantes Fluorescentes/química , Células Hep G2 , Humanos , Fígado/enzimologia , Microscopia Confocal , Fótons , RNA/química , RNA/metabolismo , Ratos
16.
J Am Chem Soc ; 140(50): 17656-17665, 2018 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-30427666

RESUMO

Spatial and temporal distributions of metal ions in vitro and in vivo are crucial in our understanding of the roles of metal ions in biological systems, and yet there is a very limited number of methods to probe metal ions with high space and time resolution, especially in vivo. To overcome this limitation, we report a Zn2+-specific near-infrared (NIR) DNAzyme nanoprobe for real-time metal ion tracking with spatiotemporal control in early embryos and larvae of zebrafish. By conjugating photocaged DNAzymes onto lanthanide-doped upconversion nanoparticles (UCNPs), we have achieved upconversion of a deep tissue penetrating NIR 980 nm light into 365 nm emission. The UV photon then efficiently photodecages a substrate strand containing a nitrobenzyl group at the 2'-OH of adenosine ribonucleotide, allowing enzymatic cleavage by a complementary DNA strand containing a Zn2+-selective DNAzyme. The product containing a visible FAM fluorophore that is initially quenched by BHQ1 and Dabcyl quenchers is released after cleavage, resulting in higher fluorescent signals. The DNAzyme-UCNP probe enables Zn2+ sensing by exciting in the NIR biological imaging window in both living cells and zebrafish embryos and detecting in the visible region. In this study, we introduce a platform that can be used to understand the Zn2+ distribution with spatiotemporal control, thereby giving insights into the dynamical Zn2+ ion distribution in intracellular and in vivo models.


Assuntos
DNA Catalítico/química , Corantes Fluorescentes/química , Nanopartículas/química , Zinco/análise , Alcanossulfonatos/química , Alcanossulfonatos/toxicidade , Animais , Compostos Azo/química , Compostos Azo/toxicidade , Sequência de Bases , DNA Catalítico/síntese química , DNA Catalítico/toxicidade , Fluoresceínas/química , Fluoresceínas/toxicidade , Fluorescência , Corantes Fluorescentes/toxicidade , Fluoretos/química , Fluoretos/toxicidade , Células HeLa , Humanos , Raios Infravermelhos , Microscopia Confocal , Microscopia de Fluorescência , Nanopartículas/efeitos da radiação , Nanopartículas/toxicidade , Túlio/química , Túlio/toxicidade , Itérbio/química , Itérbio/toxicidade , Ítrio/química , Ítrio/toxicidade , Peixe-Zebra
17.
J Am Chem Soc ; 140(2): 578-581, 2018 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-29281270

RESUMO

Designer DNA nanodevices have attracted extensive interest for detection of specific targets in living cells. However, it still remains a great challenge to construct DNA sensing devices that can be activated at desired time with a remotely applied stimulus. Here we report a rationally designed, synthetic DNA nanodevice that can detect ATP in living cells in an upconversion luminescence-activatable manner. The nanodevice consists of a UV light-activatable aptamer probe and lanthanide-doped upconversion nanoparticles which acts as the nanotransducers to operate the device in response to NIR light. We demonstrate that the nanodevice not only enables efficient cellular delivery of the aptamer probe into live cells, but also allows the temporal control over its fluorescent sensing activity for ATP by NIR light irradiation in vitro and in vivo. Ultimately, with the availability of diverse aptamers selected in vitro, the DNA nanodevice platform will allow NIR-triggered sensing of various targets as well as modulation of biological functions in living systems.


Assuntos
Trifosfato de Adenosina/química , DNA/química , Nanopartículas/química , Raios Ultravioleta , Carbocianinas/química , Células HeLa , Humanos , Luminescência , Microscopia Eletrônica de Transmissão
18.
Asian J Pharm Sci ; 12(2): 202-208, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32104331

RESUMO

The present study was designed to investigate the influence of the pretreatment of piperazine ferulate on pharmacokinetic parameters of methotrexate in methotrexate-induced renal injury rats. A simple and efficient high performance liquid chromatography coupled with mass spectrometry (HPLC-MS) method was developed to determine methotrexate in rat plasma. Methotrexate and syringic acid (internal standard) were extracted from rat plasma samples by protein precipitation with acetonitrile. The analysis was performed on a CAPCELL PAK C18 column (150 mm × 4.6 mm, 5 µm) with acetonitrile and 5 mmol/l ammonium acetate aqueous (10:90, v/v). The linear range was 5.0 × 10-2 to 100.0 µg/ml for methotrexate. Other parameters were all within the acceptance criteria. The validated method was successfully applied the pharmacokinetic study of methotrexate between two methotrexate treated groups (with and without the pretreatment of piperazine ferulate). Compared with the methotrexate treated alone group, the pharmacokinetic parameters in the methotrexate with the pretreatment of piperazine ferulate group showed significantly lower MRT(0-t), MRT(0-∞) and T 1/2. Results suggested that methotrexate can be rapidly eliminated, cleared or metabolized in rat blood, which might be related to the pretreatment of piperazine ferulate. The method provided deeper insights into rational clinical use of methotrexate with the pretreatment of piperazine ferulate on cancer patients with renal dysfunction.

19.
J Am Chem Soc ; 138(35): 11077-80, 2016 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-27529791

RESUMO

We show that copper-containing metal-organic nanoparticles (MONPs) are readily synthesized via Cu(II)-mediated intramolecular cross-linking of aspartate-containing polyolefins in water. In situ reduction with sodium ascorbate yields Cu(I)-containing MONPs that serve as highly efficient supramolecular catalysts for alkyne-azide "click chemistry" reactions, yielding the desired 1,4-adducts at low parts per million catalyst levels. The nanoparticles have low toxicity and low metal loadings, making them convenient, green catalysts for alkyne-azide "click" reactions in water. The Cu-MONPs enter cells and perform efficient, biocompatible click chemistry, thus acting as intracellular nanoscale molecular synthesizers.


Assuntos
Alcinos/química , Azidas/química , Nanopartículas/química , Compostos Organometálicos/química , Catálise , Linhagem Celular Tumoral , Química Click , Cobre/química , Humanos , Modelos Moleculares , Conformação Molecular
20.
Theranostics ; 6(9): 1336-52, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27375783

RESUMO

Liposomes are nanocarriers comprised of lipid bilayers encapsulating an aqueous core. The ability of liposomes to encapsulate a wide variety of diagnostic and therapeutic agents has led to significant interest in utilizing liposomes as nanocarriers for theranostic applications. In this review, we highlight recent progress in developing liposomes as nanocarriers for a) diagnostic applications to detect proteins, DNA, and small molecule targets using fluorescence, magnetic resonance, ultrasound, and nuclear imaging; b) therapeutic applications based on small molecule-based therapy, gene therapy and immunotherapy; and c) theranostic applications for simultaneous detection and treatment of heavy metal toxicity and cancers. In addition, we summarize recent studies towards understanding of interactions between liposomes and biological components. Finally, perspectives on future directions in advancing the field for clinical translations are also discussed.


Assuntos
Portadores de Fármacos/administração & dosagem , Lipossomos/administração & dosagem , Nanomedicina Teranóstica/métodos , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA