Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Genet ; 56(9): 1903-1913, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39223316

RESUMO

Inhibiting epigenetic modulators can transcriptionally reactivate transposable elements (TEs). These TE transcripts often generate unique peptides that can serve as immunogenic antigens for immunotherapy. Here, we ask whether TEs activated by epigenetic therapy could appreciably increase the antigen repertoire in glioblastoma, an aggressive brain cancer with low mutation and neoantigen burden. We treated patient-derived primary glioblastoma stem cell lines, an astrocyte cell line and primary fibroblast cell lines with epigenetic drugs, and identified treatment-induced, TE-derived transcripts that are preferentially expressed in cancer cells. We verified that these transcripts could produce human leukocyte antigen class I-presented antigens using liquid chromatography with tandem mass spectrometry pulldown experiments. Importantly, many TEs were also transcribed, even in proliferating nontumor cell lines, after epigenetic therapy, which suggests that targeted strategies like CRISPR-mediated activation could minimize potential side effects of activating unwanted genomic regions. The results highlight both the need for caution and the promise of future translational efforts in harnessing treatment-induced TE-derived antigens for targeted immunotherapy.


Assuntos
Antígenos de Neoplasias , Neoplasias Encefálicas , Elementos de DNA Transponíveis , Epigênese Genética , Glioblastoma , Transcrição Gênica , Glioblastoma/genética , Glioblastoma/terapia , Glioblastoma/imunologia , Humanos , Elementos de DNA Transponíveis/genética , Linhagem Celular Tumoral , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/terapia , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/imunologia , Regulação Neoplásica da Expressão Gênica , Imunoterapia/métodos
2.
Cell Rep ; 43(8): 114558, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39088321

RESUMO

Chromatin priming promotes cell-type-specific gene expression, lineage differentiation, and development. The mechanism of chromatin priming has not been fully understood. Here, we report that mouse hematopoietic stem and progenitor cells (HSPCs) lacking the Baf155 subunit of the BAF (BRG1/BRM-associated factor) chromatin remodeling complex produce a significantly reduced number of mature blood cells, leading to a failure of hematopoietic regeneration upon transplantation and 5-fluorouracil (5-FU) injury. Baf155-deficient HSPCs generate particularly fewer neutrophils, B cells, and CD8+ T cells at homeostasis, supporting a more immune-suppressive tumor microenvironment and enhanced tumor growth. Single-nucleus multiomics analysis reveals that Baf155-deficient HSPCs fail to establish accessible chromatin in selected regions that are enriched for putative enhancers and binding motifs of hematopoietic lineage transcription factors. Our study provides a fundamental mechanistic understanding of the role of Baf155 in hematopoietic lineage chromatin priming and the functional consequences of Baf155 deficiency in regeneration and tumor immunity.


Assuntos
Diferenciação Celular , Cromatina , Hematopoese , Células-Tronco Hematopoéticas , Animais , Camundongos , Cromatina/metabolismo , Fluoruracila/farmacologia , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/citologia , Camundongos Endogâmicos C57BL , Regeneração , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
3.
Genomics Proteomics Bioinformatics ; 21(5): 991-1013, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37742993

RESUMO

Epigenetic alterations are widespread in cancer and can complement genetic alterations to influence cancer progression and treatment outcome. To determine the potential contribution of DNAmethylation alterations to tumor phenotype in non-small cell lung cancer (NSCLC) in both smoker and never-smoker patients, we performed genome-wide profiling of DNA methylation in 17 primary NSCLC tumors and 10 matched normal lung samples using the complementary assays, methylated DNA immunoprecipitation sequencing (MeDIP-seq) and methylation sensitive restriction enzyme sequencing (MRE-seq). We reported recurrent methylation changes in the promoters of several genes, many previously implicated in cancer, including FAM83A and SEPT9 (hypomethylation), as well as PCDH7, NKX2-1, and SOX17 (hypermethylation). Although many methylation changes between tumors and their paired normal samples were shared across patients, several were specific to a particular smoking status. For example, never-smokers displayed a greater proportion of hypomethylated differentially methylated regions (hypoDMRs) and a greater number of recurrently hypomethylated promoters, including those of ASPSCR1, TOP2A, DPP9, and USP39, all previously linked to cancer. Changes outside of promoters were also widespread and often recurrent, particularly methylation loss over repetitive elements, highly enriched for ERV1 subfamilies. Recurrent hypoDMRs were enriched for several transcription factor binding motifs, often for genes involved in signaling and cell proliferation. For example, 71% of recurrent promoter hypoDMRs contained a motif for NKX2-1. Finally, the majority of DMRs were located within an active chromatin state in tissues profiled using the Roadmap Epigenomics data, suggesting that methylation changes may contribute to altered regulatory programs through the adaptation of cell type-specific expression programs.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Metilação de DNA , Carcinoma Pulmonar de Células não Pequenas/genética , Fumantes , Epigenoma , Neoplasias Pulmonares/genética , Epigênese Genética , Proteínas de Neoplasias , Proteases Específicas de Ubiquitina/genética
4.
Nat Commun ; 14(1): 3278, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37311757

RESUMO

Environmental factors may alter the fetal genome to cause metabolic diseases. It is unknown whether embryonic immune cell programming impacts the risk of type 2 diabetes in later life. We demonstrate that transplantation of fetal hematopoietic stem cells (HSCs) made vitamin D deficient in utero induce diabetes in vitamin D-sufficient mice. Vitamin D deficiency epigenetically suppresses Jarid2 expression and activates the Mef2/PGC1a pathway in HSCs, which persists in recipient bone marrow, resulting in adipose macrophage infiltration. These macrophages secrete miR106-5p, which promotes adipose insulin resistance by repressing PIK3 catalytic and regulatory subunits and down-regulating AKT signaling. Vitamin D-deficient monocytes from human cord blood have comparable Jarid2/Mef2/PGC1a expression changes and secrete miR-106b-5p, causing adipocyte insulin resistance. These findings suggest that vitamin D deficiency during development has epigenetic consequences impacting the systemic metabolic milieu.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , MicroRNAs , Deficiência de Vitamina D , Humanos , Animais , Camundongos , Diabetes Mellitus Tipo 2/genética , Células-Tronco Hematopoéticas , Deficiência de Vitamina D/complicações , Deficiência de Vitamina D/genética , Vitamina D
5.
Nat Microbiol ; 8(5): 875-888, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37037942

RESUMO

Previous urinary tract infections (UTIs) can predispose one to future infections; however, the underlying mechanisms affecting recurrence are poorly understood. We previously found that UTIs in mice cause differential bladder epithelial (urothelial) remodelling, depending on disease outcome, that impacts susceptibility to recurrent UTI. Here we compared urothelial stem cell (USC) lines isolated from mice with a history of either resolved or chronic uropathogenic Escherichia coli (UPEC) infection, elucidating evidence of molecular imprinting that involved epigenetic changes, including differences in chromatin accessibility, DNA methylation and histone modification. Epigenetic marks in USCs from chronically infected mice enhanced caspase-1-mediated cell death upon UPEC infection, promoting bacterial clearance. Increased Ptgs2os2 expression also occurred, potentially contributing to sustained cyclooxygenase-2 expression, bladder inflammation and mucosal wounding-responses associated with severe recurrent cystitis. Thus, UPEC infection acts as an epi-mutagen reprogramming the urothelial epigenome, leading to urothelial-intrinsic remodelling and training of the innate response to subsequent infection.


Assuntos
Infecções por Escherichia coli , Infecções Urinárias , Escherichia coli Uropatogênica , Camundongos , Animais , Escherichia coli Uropatogênica/genética , Imunidade Treinada , Infecções Urinárias/microbiologia , Bexiga Urinária/microbiologia , Infecções por Escherichia coli/microbiologia
6.
Nat Genet ; 55(4): 631-639, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36973455

RESUMO

Cryptic promoters within transposable elements (TEs) can be transcriptionally reactivated in tumors to create new TE-chimeric transcripts, which can produce immunogenic antigens. We performed a comprehensive screen for these TE exaptation events in 33 TCGA tumor types, 30 GTEx adult tissues and 675 cancer cell lines, and identified 1,068 TE-exapted candidates with the potential to generate shared tumor-specific TE-chimeric antigens (TS-TEAs). Whole-lysate and HLA-pulldown mass spectrometry data confirmed that TS-TEAs are presented on the surface of cancer cells. In addition, we highlight tumor-specific membrane proteins transcribed from TE promoters that constitute aberrant epitopes on the extracellular surface of cancer cells. Altogether, we showcase the high pan-cancer prevalence of TS-TEAs and atypical membrane proteins that could potentially be therapeutically exploited and targeted.


Assuntos
Elementos de DNA Transponíveis , Neoplasias , Adulto , Humanos , Elementos de DNA Transponíveis/genética , Antígenos de Neoplasias/genética , Regiões Promotoras Genéticas/genética , Neoplasias/genética , Linhagem Celular
7.
Elife ; 112022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-36190189

RESUMO

BTB domain And CNC Homolog 2 (Bach2) is a transcription repressor that actively participates in T and B lymphocyte development, but it is unknown if Bach2 is also involved in the development of innate immune cells, such as natural killer (NK) cells. Here, we followed the expression of Bach2 during murine NK cell development, finding that it peaked in immature CD27+CD11b+ cells and decreased upon further maturation. Bach2 showed an organ and tissue-specific expression pattern in NK cells. Bach2 expression positively correlated with the expression of transcription factor TCF1 and negatively correlated with genes encoding NK effector molecules and those involved in the cell cycle. Lack of Bach2 expression caused changes in chromatin accessibility of corresponding genes. In the end, Bach2 deficiency resulted in increased proportions of terminally differentiated NK cells with increased production of granzymes and cytokines. NK cell-mediated control of tumor metastasis was also augmented in the absence of Bach2. Therefore, Bach2 is a key checkpoint protein regulating NK terminal maturation.


Assuntos
Domínio BTB-POZ , Fatores de Transcrição de Zíper de Leucina Básica , Animais , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Diferenciação Celular/genética , Cromatina , Citocinas/genética , Granzimas , Células Matadoras Naturais , Camundongos , Fatores de Transcrição/genética
8.
Cancer Res ; 82(15): 2692-2703, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35706127

RESUMO

Non-small cell lung cancer (NSCLC) is one of the most commonly diagnosed and deadliest cancers worldwide, with roughly half of all patients initially presenting with both primary and metastatic disease. While the major events in the metastatic cascade have been identified, a mechanistic understanding of how NSCLC routinely and successfully colonizes the brain is largely unknown. Recent studies have begun demonstrating the role of epigenetic misregulation during tumorigenesis and metastasis, including widespread changes in DNA methylation and histone modifications. To better understand the role of altered DNA methylation in NSCLC metastasis to the brain, we measured DNA methylation during disease progression for 12 patients, globally profiling the methylation status of normal lung, primary lung tumor, and brain metastasis samples. The variation in methylation was similar during metastatic spread and primary tumorigenesis but less coordinated across genomic features during metastasis. The greatest recurrent changes during metastatic progression were methylation gains in DNA methylation valleys (DMV) harboring the constitutive heterochromatin mark H3K9me3 as well as bivalent marks H3K27me3 and H3K4me1. In a lymph node-derived cancer cell line, EZH2 binding within DMVs was lost, accompanied by an increase in DNA methylation, exemplifying epigenetic switching. The vast majority of the differentially methylated region-associated DMVs harbored developmental genes, suggesting that altered epigenetic regulation of developmentally important genes may confer a selective advantage during metastatic progression. The characterization of epigenetic changes during NSCLC brain metastasis identified recurrent methylation patterns that may be prognostic biomarkers and contributors to disease progression. SIGNIFICANCE: Altered DNA methylation in lung cancer brain metastases corresponds with loss of EZH2 occupancy at developmental genes, which could promote stem-like phenotypes permissive of dissemination and survival in different microenvironments.


Assuntos
Neoplasias Encefálicas , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Neoplasias Encefálicas/genética , Carcinogênese/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Metilação de DNA , Progressão da Doença , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Microambiente Tumoral
9.
Mol Med Rep ; 26(1)2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35582997

RESUMO

IL­17A, the effector cytokine of T helper (Th) 17 cells, plays a crucial role in the pathogenesis of psoriasis. The Notch1 and PI3K/AKT signaling pathways are implicated in Th17 cell differentiation and IL­17A production. The present study aimed to evaluate the regulatory effect of the Notch1/hairy and enhancer of split 1 (Hes1)­PTEN/AKT/IL­17A feedback loop on Th17 cell differentiation via the PI3K/AKT inhibitor LY294002 in a mouse model of psoriasis. Mice were randomly divided into 3 groups: a control group, a model group [5% imiquimod (IMQ)­induced group] and an intervention group (5% IMQ­induced plus LY294002­treated group). Skin structural characteristics were recorded and evaluated by hematoxylin and eosin staining. The weights of the spleens and inguinal lymph nodes were measured. Th17 cell percentage, as well as the mRNA and protein expression levels of Notch1, Notch1 intracellular domain (NICD1), Hes1, PTEN, AKT, phosphorylated (p)­AKT, mTOR complex 1 (mTORC1), p­mTORC1, S6 kinase (S6K)1, S6K2 and IL­17A were detected in skin samples of the three experimental groups. Additionally, splenic mononuclear cells from model mice were treated by 10 and 50 µM LY294002 to further evaluate its regulatory effect on Notch1/Hes1­PTEN/AKT/IL­17A feedback loop. Increased Th17 cell percentage, increased expression of Notch1, NICD1, Hes1, AKT, p­AKT, mTORC1, p­mTORC1, S6K1, S6K2 and IL­17A, and decreased PTEN levels were observed in model mice alongside marked psoriasis­like skin inflammation, splenomegaly and lymphadenopathy. LY294002 treatment significantly alleviated the severity of psoriasis­like skin inflammation in the intervention mice, attenuated the degree of epidermal hyperplasia and dermal inflammatory cell infiltration, and mitigated splenomegaly and lymphadenopathy. In addition, LY294002 treatment reversed the increased Th17 cell percentage, as well as the increased expression of Notch1, NICD1, Hes1, AKT, p­AKT, mTORC1, p­mTORC1, S6K1, S6K2 and IL­17A, and the decreased expression of PTEN. In vitro study from 5% IMQ­induced mouse splenic mononuclear cells presented that high dose of LY294002 exerted more obviously regulatory effect on Notch1/Hes1­PTEN/AKT/IL­17A feedback loop. The current findings suggested that the Notch1/Hes1­PTEN/AKT/IL­17A feedback loop regulates Th17 cell differentiation within the disease environment of psoriasis. Blocking the Notch1/Hes1­PTEN/AKT/IL­17A feedback loop may thus be a potential therapeutic method for management of psoriatic inflammation.


Assuntos
Dermatite , Linfadenopatia , Psoríase , Animais , Diferenciação Celular , Dermatite/metabolismo , Retroalimentação , Imiquimode/efeitos adversos , Inflamação/patologia , Interleucina-17/metabolismo , Linfadenopatia/metabolismo , Linfadenopatia/patologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Psoríase/induzido quimicamente , Psoríase/tratamento farmacológico , Psoríase/genética , Pele/patologia , Esplenomegalia/metabolismo , Esplenomegalia/patologia , Células Th17/metabolismo , Fatores de Transcrição HES-1
10.
Cancer Res ; 81(20): 5176-5189, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34433584

RESUMO

Epithelial ovarian carcinomas are particularly deadly due to intratumoral heterogeneity, resistance to standard-of-care therapies, and poor response to alternative treatments such as immunotherapy. Targeting the ovarian carcinoma epigenome with DNA methyltransferase inhibitors (DNMTi) or histone deacetylase inhibitors (HDACi) increases immune signaling and recruits CD8+ T cells and natural killer cells to fight ovarian carcinoma in murine models. This increased immune activity is caused by increased transcription of repetitive elements (RE) that form double-stranded RNA (dsRNA) and trigger an IFN response. To understand which REs are affected by epigenetic therapies in ovarian carcinoma, we assessed the effect of DNMTi and HDACi on ovarian carcinoma cell lines and patient samples. Subfamily-level (TEtranscripts) and individual locus-level (Telescope) analysis of REs showed that DNMTi treatment upregulated more REs than HDACi treatment. Upregulated REs were predominantly LTR and SINE subfamilies, and SINEs exhibited the greatest loss of DNA methylation upon DNMTi treatment. Cell lines with TP53 mutations exhibited significantly fewer upregulated REs with epigenetic therapy than wild-type TP53 cell lines. This observation was validated using isogenic cell lines; the TP53-mutant cell line had significantly higher baseline expression of REs but upregulated fewer upon epigenetic treatment. In addition, p53 activation increased expression of REs in wild-type but not mutant cell lines. These data give a comprehensive, genome-wide picture of RE chromatin and transcription-related changes in ovarian carcinoma after epigenetic treatment and implicate p53 in RE transcriptional regulation. SIGNIFICANCE: This study identifies the repetitive element targets of epigenetic therapies in ovarian carcinoma and indicates a role for p53 in this process.


Assuntos
Azacitidina/farmacologia , Epigênese Genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Neoplasias Ovarianas/genética , Sequências Repetitivas de Ácido Nucleico , Proteína Supressora de Tumor p53/metabolismo , Antimetabólitos Antineoplásicos/farmacologia , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Proliferação de Células , Feminino , Humanos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Células Tumorais Cultivadas , Proteína Supressora de Tumor p53/genética
11.
Nat Commun ; 12(1): 5123, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34446700

RESUMO

Understanding the molecular underpinnings of pluripotency is a prerequisite for optimal maintenance and application of embryonic stem cells (ESCs). While the protein-protein interactions of core pluripotency factors have been identified in mouse ESCs, their interactome in human ESCs (hESCs) has not to date been explored. Here we mapped the OCT4 interactomes in naïve and primed hESCs, revealing extensive connections to mammalian ATP-dependent nucleosome remodeling complexes. In naïve hESCs, OCT4 is associated with both BRG1 and BRM, the two paralog ATPases of the BAF complex. Genome-wide location analyses and genetic studies reveal that these two enzymes cooperate in a functionally redundant manner in the transcriptional regulation of blastocyst-specific genes. In contrast, in primed hESCs, OCT4 cooperates with BRG1 and SOX2 to promote chromatin accessibility at ectodermal genes. This work reveals how a common transcription factor utilizes differential BAF complexes to control distinct transcriptional programs in naïve and primed hESCs.


Assuntos
Trifosfato de Adenosina/metabolismo , Cromatina/metabolismo , DNA Helicases/metabolismo , Células-Tronco Embrionárias/metabolismo , Proteínas Nucleares/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Fatores de Transcrição/metabolismo , Cromatina/genética , Montagem e Desmontagem da Cromatina , DNA Helicases/genética , Regulação da Expressão Gênica , Humanos , Proteínas Nucleares/genética , Nucleossomos/genética , Nucleossomos/metabolismo , Fator 3 de Transcrição de Octâmero/genética , Ligação Proteica , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição/genética
12.
Commun Biol ; 4(1): 607, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-34021236

RESUMO

Trends in altered DNA methylation have been defined across human cancers, revealing global loss of methylation (hypomethylation) and focal gain of methylation (hypermethylation) as frequent cancer hallmarks. Although many cancers share these trends, little is known about the specific differences in DNA methylation changes across cancer types, particularly outside of promoters. Here, we present a comprehensive comparison of DNA methylation changes between two distinct cancers, endometrioid adenocarcinoma (EAC) and glioblastoma multiforme (GBM), to elucidate common rules of methylation dysregulation and changes unique to cancers derived from specific cells. Both cancers exhibit significant changes in methylation over regulatory elements. Notably, hypermethylated enhancers within EAC samples contain several transcription factor binding site clusters with enriched disease ontology terms highlighting uterine function, while hypermethylated enhancers in GBM are found to overlap active enhancer marks in adult brain. These findings suggest that loss of original cellular identity may be a shared step in tumorigenesis.


Assuntos
Carcinogênese/patologia , Carcinoma Endometrioide/patologia , Metilação de DNA , Neoplasias do Endométrio/patologia , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Glioblastoma/patologia , Sítios de Ligação , Carcinogênese/genética , Carcinogênese/metabolismo , Carcinoma Endometrioide/genética , Carcinoma Endometrioide/metabolismo , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/metabolismo , Epigenômica , Feminino , Perfilação da Expressão Gênica , Glioblastoma/genética , Glioblastoma/metabolismo , Histonas/genética , Humanos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Células Tumorais Cultivadas
13.
Cell Rep ; 33(7): 108395, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33207205

RESUMO

The mammalian SWitch/Sucrose Non-Fermentable (SWI/SNF) chromatin-remodeling BAF (BRG1/BRM-associated factor) complex plays an essential role in developmental and pathological processes. We show that the deletion of Baf155, which encodes a subunit of the BAF complex, in the Tie2(+) lineage (Baf155 (CKO) leads to defects in yolk sac myeloid and definitive erythroid (EryD) lineage differentiation from erythromyeloid progenitors (EMPs). The chromatin of myeloid gene loci in Baf155 CKO EMPs is mostly inaccessible and enriched mainly by the ETS binding motif. BAF155 interacts with PU.1 and is recruited to PU.1 target gene loci together with p300 and KDM6a. Treatment of Baf155 CKO embryos with GSK126, an H3K27me2/3 methyltransferase EZH2 inhibitor, rescues myeloid lineage gene expression. This study uncovers indispensable BAF-mediated chromatin remodeling of myeloid gene loci at the EMP stage. Future studies exploiting epigenetics in the generation and application of EMP derivatives for tissue repair, regeneration, and disease are warranted.


Assuntos
Linhagem da Célula/fisiologia , Montagem e Desmontagem da Cromatina/fisiologia , Fatores de Transcrição/metabolismo , Animais , Diferenciação Celular/fisiologia , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina/genética , Proteínas Cromossômicas não Histona/metabolismo , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Epigênese Genética/genética , Células Eritroides/metabolismo , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Embrionárias Murinas/metabolismo , Células Mieloides/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Transativadores/metabolismo
14.
Nat Genet ; 51(5): 920, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30992544

RESUMO

In the version of this article initially published, grant PF-17-201-01-TBG from the American Cancer Society to author Erica C. Pehrsson was not included in the Acknowledgements. The error has been corrected in the HTML and PDF versions of the article.

15.
Nat Genet ; 51(4): 611-617, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30926969

RESUMO

Transposable elements (TEs) are an abundant and rich genetic resource of regulatory sequences1-3. Cryptic regulatory elements within TEs can be epigenetically reactivated in cancer to influence oncogenesis in a process termed onco-exaptation4. However, the prevalence and impact of TE onco-exaptation events across cancer types are poorly characterized. Here, we analyzed 7,769 tumors and 625 normal datasets from 15 cancer types, identifying 129 TE cryptic promoter-activation events involving 106 oncogenes across 3,864 tumors. Furthermore, we interrogated the AluJb-LIN28B candidate: the genetic deletion of the TE eliminated oncogene expression, while dynamic DNA methylation modulated promoter activity, illustrating the necessity and sufficiency of a TE for oncogene activation. Collectively, our results characterize the global profile of TE onco-exaptation and highlight this prevalent phenomenon as an important mechanism for promiscuous oncogene activation and ultimately tumorigenesis.


Assuntos
Elementos de DNA Transponíveis/genética , Neoplasias/genética , Oncogenes/genética , Linhagem Celular , Linhagem Celular Tumoral , Metilação de DNA/genética , Evolução Molecular , Células HEK293 , Humanos , Células K562 , Regiões Promotoras Genéticas/genética , Sequências Reguladoras de Ácido Nucleico/genética
16.
BMC Genomics ; 18(1): 439, 2017 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-28583088

RESUMO

BACKGROUND: Nicotinic acetylcholine receptors (nAChRs) play an important role in cellular physiology and human nicotine dependence, and are closely associated with many human diseases including cancer. For example, previous studies suggest that nAChRs can re-wire gene regulatory networks in lung cancer cell lines. However, the tissue specificity of nAChRs genes and their regulation remain unexplored. RESULT: In this study, we integrated data from multiple large genomic consortiums, including ENCODE, Roadmap Epigenomics, GTEx, and FANTOM, to define the transcriptomic and epigenomic landscape of all nicotinic receptor genes across many different human tissues and cell types. We found that many important nAChRs, including CHRNA3, CHRNA4, CHRNA5, and CHRNB4, exhibited strong non-neuronal tissue-specific expression patterns. CHRNA3, CHRNA5, and CHRNB4 were highly expressed in human colon and small intestine, and CHRNA4 was highly expressed in human liver. By comparing the epigenetic marks of CHRNA4 in human liver and hippocampus, we identified a novel liver-specific transcription start site (TSS) of CHRNA4. We further demonstrated that CHRNA4 was specifically transcribed in hepatocytes but not transcribed in hepatic sinusoids and stellate cells, and that transcription factors HNF4A and RXRA were likely upstream regulators of CHRNA4. Our findings suggest that CHRNA4 has distinct transcriptional regulatory mechanisms in human liver and brain, and that this tissue-specific expression pattern is evolutionarily conserved in mouse. Finally, we found that liver-specific CHRNA4 transcription was highly correlated with genes involved in the nicotine metabolism, including CYP2A6, UGT2B7, and FMO3. These genes were significantly down-regulated in liver cancer patients, whereas CHRNA4 is also significantly down-regulated in cancer-matched normal livers. CONCLUSIONS: Our results suggest important non-neuronally expressed nicotinic acetylcholine receptors in the human body. These non-neuronal expression patterns are highly tissue-specific, and are epigenetically conserved during evolution in the context of non-conserved DNA sequence.


Assuntos
Epigenômica , Perfilação da Expressão Gênica , Receptores Nicotínicos/genética , Animais , Sequência Conservada , Evolução Molecular , Fator 4 Nuclear de Hepatócito/metabolismo , Humanos , Fígado/metabolismo , Camundongos , Nicotina/metabolismo , Especificidade de Órgãos , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas/genética , Receptor X Retinoide alfa/metabolismo
17.
Neoplasia ; 19(2): 100-111, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28088687

RESUMO

Uterine carcinosarcoma (UCS) is a form of endometrial cancer simultaneously exhibiting carcinomatous and sarcomatous elements, but the underlying molecular and epigenetic basis of this disease is poorly understood. We generated complete DNA methylomes for both the carcinomatous and the sarcomatous components of three UCS samples separated by laser capture microdissection and compared DNA methylomes of UCS with those of normal endometrium as well as methylomes derived from endometrioid carcinoma, serous endometrial carcinoma, and endometrial stromal sarcoma. We identified epigenetic lesions specific to carcinosarcoma and specific to its two components. Hallmarks of DNA methylation abnormalities in UCS included global hypomethylation, especially in repetitive elements, and hypermethylation of tumor suppressor gene promoters. Among these, aberrant DNA methylation of MIR200 genes is a key feature of UCS. The carcinoma component of UCS was characterized by hypermethylation of promoters of EMILIN1, NEFM, and CLEC14A, genes that are associated with tumor vascularization. In contrast, DNA methylation changes of PKP3, FAM83F, and TCP11 were more characteristic of the sarcoma components. Our findings highlight the epigenetic signatures that distinguish the two components of UCS, providing a valuable resource for investigation of this disease.


Assuntos
Carcinossarcoma/genética , Metilação de DNA , Perfilação da Expressão Gênica , Estudo de Associação Genômica Ampla , Neoplasias Uterinas/genética , Carcinossarcoma/patologia , Análise por Conglomerados , Biologia Computacional/métodos , Ilhas de CpG , Expressão Ectópica do Gene , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/patologia , Epigênese Genética , Feminino , Regulação Neoplásica da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , MicroRNAs/genética , Gradação de Tumores , Regiões Promotoras Genéticas , Reprodutibilidade dos Testes , Transcriptoma , Neoplasias Uterinas/patologia
18.
G3 (Bethesda) ; 6(4): 973-86, 2016 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-26888867

RESUMO

DNA methylation is an important epigenetic modification involved in many biological processes and diseases. Many studies have mapped DNA methylation changes associated with embryogenesis, cell differentiation, and cancer at a genome-wide scale. Our understanding of genome-wide DNA methylation changes in a developmental or disease-related context has been steadily growing. However, the investigation of which CpGs are variably methylated in different normal cell or tissue types is still limited. Here, we present an in-depth analysis of 54 single-CpG-resolution DNA methylomes of normal human cell types by integrating high-throughput sequencing-based methylation data. We found that the ratio of methylated to unmethylated CpGs is relatively constant regardless of cell type. However, which CpGs made up the unmethylated complement was cell-type specific. We categorized the 26,000,000 human autosomal CpGs based on their methylation levels across multiple cell types to identify variably methylated CpGs and found that 22.6% exhibited variable DNA methylation. These variably methylated CpGs formed 660,000 variably methylated regions (VMRs), encompassing 11% of the genome. By integrating a multitude of genomic data, we found that VMRs enrich for histone modifications indicative of enhancers, suggesting their role as regulatory elements marking cell type specificity. VMRs enriched for transcription factor binding sites in a tissue-dependent manner. Importantly, they enriched for GWAS variants, suggesting that VMRs could potentially be implicated in disease and complex traits. Taken together, our results highlight the link between CpG methylation variation, genetic variation, and disease risk for many human cell types.


Assuntos
Mapeamento Cromossômico , Metilação de DNA , Regulação da Expressão Gênica , Variação Genética , Genoma Humano , Genômica , Ilhas de CpG , Elementos Facilitadores Genéticos , Epigênese Genética , Perfilação da Expressão Gênica , Estudo de Associação Genômica Ampla , Genômica/métodos , Histonas/metabolismo , Humanos , Metilação , Especificidade de Órgãos/genética
19.
Biomaterials ; 65: 56-65, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26142776

RESUMO

The intracellular behaviors of nanoparticles are fundamentally important for the evaluation of their biosafety and the designs of nano carrier-assisted drug delivery with high therapeutic efficacy. It is still in a great need to discover how functionalized nanoparticles are transported inside the cells, for instance, in a complicated fashion of translocation between different types of cell organelles. Here we report a new understanding of the interactions between nanoparticles and cells by the development of polyoxometalates nanoparticle-peptide conjugates and investigation of their intracellular trafficking behaviors. The as-prepared nanoparticles are featured with a unique combination of fluorescence and high contrast for synchrotron X-ray-based imaging. Functional surface modification with peptides facilitates effective delivery of the nanoparticles onto the target organelle (mitochondria) and subsequent intracellular trafficking in a dynamic mode. Interestingly, our experimental results have revealed that autophagy of mitochondria (mitophagy) can be induced by NP-peptide as a cellular response for recycling the damaged organelles, through molecular mediation associated with the change of mitochondrial membrane potential. The biological effects induced by NP-peptide reciprocally affect the distribution patterns and fates of nanoparticles in the cell metabolism by providing an alternative route of intracellular trafficking. The new understanding of the mutual activities between nanoparticles and cells will enrich our approaches in the development of nanobiotechnology and nano-medicine for disease treatments.


Assuntos
Mitocôndrias/efeitos dos fármacos , Mitofagia/efeitos dos fármacos , Nanopartículas/química , Peptídeos/química , Peptídeos/farmacologia , Compostos de Tungstênio/química , Compostos de Tungstênio/farmacologia , Humanos , Células MCF-7 , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/metabolismo , Modelos Moleculares , Nanopartículas/ultraestrutura , Peptídeos/farmacocinética , Compostos de Tungstênio/farmacocinética
20.
BMC Genomics ; 15: 868, 2014 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-25286960

RESUMO

BACKGROUND: Aberrant DNA methylation is a hallmark of many cancers. Classically there are two types of endometrial cancer, endometrioid adenocarcinoma (EAC), or Type I, and uterine papillary serous carcinoma (UPSC), or Type II. However, the whole genome DNA methylation changes in these two classical types of endometrial cancer is still unknown. RESULTS: Here we described complete genome-wide DNA methylome maps of EAC, UPSC, and normal endometrium by applying a combined strategy of methylated DNA immunoprecipitation sequencing (MeDIP-seq) and methylation-sensitive restriction enzyme digestion sequencing (MRE-seq). We discovered distinct genome-wide DNA methylation patterns in EAC and UPSC: 27,009 and 15,676 recurrent differentially methylated regions (DMRs) were identified respectively, compared with normal endometrium. Over 80% of DMRs were in intergenic and intronic regions. The majority of these DMRs were not interrogated on the commonly used Infinium 450K array platform. Large-scale demethylation of chromosome X was detected in UPSC, accompanied by decreased XIST expression. Importantly, we discovered that the majority of the DMRs harbored promoter or enhancer functions and are specifically associated with genes related to uterine development and disease. Among these, abnormal methylation of transposable elements (TEs) may provide a novel mechanism to deregulate normal endometrium-specific enhancers derived from specific TEs. CONCLUSIONS: DNA methylation changes are an important signature of endometrial cancer and regulate gene expression by affecting not only proximal promoters but also distal enhancers.


Assuntos
Neoplasias do Endométrio/genética , Neoplasias do Endométrio/fisiopatologia , Elementos Facilitadores Genéticos/genética , Regiões Promotoras Genéticas/genética , Neoplasias Uterinas/genética , Neoplasias Uterinas/fisiopatologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Família Aldeído Desidrogenase 1 , Carcinoma Papilar/genética , Carcinoma Papilar/metabolismo , Cromossomos Humanos X , Ilhas de CpG , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA , Elementos de DNA Transponíveis/genética , Feminino , Humanos , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Proteína 1 Homóloga a MutL , Proteínas Nucleares/genética , Polimorfismo de Nucleotídeo Único , RNA Longo não Codificante/genética , Retinal Desidrogenase/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA