Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Clin Chim Acta ; 553: 117699, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38072300

RESUMO

BACKGROUND: It is difficult to distinguish between malignant pleural effusion (MPE) and benign pleural effusion (BPE). The purpose of this study was to determine the best specimen type by evaluating the DNA methylation status of SHOX2 and RASSF1A in 3 matched PE components. METHODS: In total, 94 patients were enrolled, including 45 MPE, 35 BPE, and 14 undefined PE (UPE) with malignancies. PE samples were processed into supernatants, fresh-cell pellets, and formalin-fixed and paraffin-embedded (FFPE) cell blocks, respectively. A quantitative real-time PCR was used to detect the methylation status of SHOX2 and RASSF1A. RESULTS: SHOX2 and RASSF1A methylation levels were significantly higher in the 3 MPE sample types than those of BPE (P < 0.05). The area under the curve using cell-free DNA (cf-DNA) was the highest. The detection sensitivity of SHOX2 and RASSF1A in fresh-cell DNA, cf-DNA and FFPE cell-block were 71.1% (32/45), 97.8% (44/45) and 66.7% (28/42), respectively, with specificities of 97.1% (34/35), 94.3% (33/35), and 96.9% (31/32). Notably, a combination of the cytological analysis and cf-DNA methylation assay showed an increase in positivity rate from 75.6% to 100%. CONCLUSIONS: The SHOX2 and RASSF1A methylation assay using cf-DNA, the primary recommended specimen type, can excellently increase the diagnostic sensitivity of MPE. A combination of methylation assay with cytological analysis can be used for auxiliary diagnosis of PE.


Assuntos
Ácidos Nucleicos Livres , Derrame Pleural Maligno , Derrame Pleural , Humanos , Derrame Pleural Maligno/diagnóstico , Derrame Pleural Maligno/genética , Proteínas de Homeodomínio/genética , Biomarcadores Tumorais/genética , Metilação de DNA , Derrame Pleural/diagnóstico , Derrame Pleural/genética , DNA
2.
J Transl Med ; 21(1): 680, 2023 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-37777783

RESUMO

BACKGROUND: Metagenomic next-generation sequencing (mNGS) has become a powerful tool for pathogen detection, but the value of human sequencing reads generated from it is underestimated. METHODS: A total of 138 patients with pleural effusion (PE) were diagnosed with tuberculous pleurisy (TBP, N = 82), malignant pleural effusion (MPE, N = 35), or non-TB infection (N = 21), whose PE samples all underwent mNGS analysis. Clinical TB tests including culture, Acid-Fast Bacillus (AFB) test, Xpert, and T-SPOT, were performed. To utilize mNGS for MPE identification, 25 non-MPE samples (20 TBP and 5 non-TB infection) were randomly selected to set human chromosome copy number baseline and generalized linear modeling was performed using copy number variant (CNV) features of the rest 113 samples (35 MPE and 78 non-MPE). RESULTS: The performance of TB detection was compared among five methods. T-SPOT demonstrated the highest sensitivity (61% vs. culture 32%, AFB 12%, Xpert 35%, and mNGS 49%) but with the highest false-positive rate (10%) as well. In contrast, mNGS was able to detect TB-genome in nearly half (40/82) of the PE samples from TBP subgroup, with 100% specificity. To evaluate the performance of using CNV features of the human genome for MPE prediction, we performed the leave-one-out cross-validation (LOOCV) in the subcohort excluding the 25 non-MPE samples for setting copy number standards, which demonstrated 54.1% sensitivity, 80.8% specificity, 71.7% accuracy, and an AUC of 0.851. CONCLUSION: In summary, we exploited the value of human and non-human sequencing reads generated from mNGS, which showed promising ability in simultaneously detecting TBP and MPE.


Assuntos
Derrame Pleural Maligno , Derrame Pleural , Tuberculose Pleural , Humanos , Tuberculose Pleural/diagnóstico , Derrame Pleural Maligno/diagnóstico , Derrame Pleural Maligno/genética , Sequenciamento de Nucleotídeos em Larga Escala , Metagenômica , Sensibilidade e Especificidade
3.
J Oncol ; 2023: 5888844, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36691467

RESUMO

Objectives: The differential diagnosis of pleural effusion (PE) is a common but major challenge in clinical practice. This study aimed to establish a strategy based on a PE-cell-free DNA (cfDNA) methylation detection system for the differential diagnosis of malignant pleural effusion (MPE) and benign pleural effusion (BPE). Methods: A total of 104 patients with PE were enrolled in this study, among which 50 patients had MPE, 9 malignant tumor patients had PE of indefinite causes, and the other 45 patients were classified as benign controls. The methylation status of short stature homeobox 2 (SHOX2) and RAS association domain family 1, isoform A (RASSF1A) was detected using PE-cfDNA specimens by real-time fluorescence quantitative PCR. Total methylation (TM) was defined as the combination of the methylation levels of SHOX2 and RASSF1A. The electrochemiluminescence immunoassay was applied to evaluate the levels of multiple serum tumor markers. Results: The PE-cfDNA methylation status of either SHOX2 or RASSF1A was much higher in MPE samples than in benign controls. The combination of SHOX2 and RASSF1A methylation in PE yielded a diagnostic sensitivity of 96% and a specificity of 100%, respectively. When compared with the corresponding serum tumor marker detection results, TM showed the highest diagnostic efficiency (AUC = 0.985). Furthermore, the combination of the SHOX2 and RASSF1A methylation panels using PE-cfDNA could apparently improve the differential diagnostic efficacy of BPE and MPE and could help compensate for the deficiency of cytology. Conclusions: Our results indicated that SHOX2 and RASSF1A methylation panel detection could accurately classify BPE and MPE diseases and showed better diagnostic performance than traditional serum parameters. The SHOX2 and RASSF1A methylation detection of PE-cfDNA could be a potentially effective complementary tool for cytology in the process of differential diagnosis. In summary, PE-cfDNA could be used as a promising non-invasive analyte for the auxiliary diagnosis of MPE.

4.
Cancer Med ; 12(7): 7982-7991, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36621813

RESUMO

BACKGROUND: The plasma sample has emerged as a promising surrogate sample for EGFR mutation detection in advanced non-small cell lung cancer (NSCLC). In clinical practice, whether EGFR variants in baseline plasma ctDNA of advanced NSCLC can predict prognosis in addition to guiding targeted therapy remains to be further explored. MATERIAL AND METHODS: In total, 315 NSCLC patients were retrospectively enrolled. EGFR mutation data from tissue detected by ARMS-PCR and paired plasma samples within 1 month of admission detected by SuperARMS or ARMS-PCR were collected. The correlation between baseline plasma ctDNA EGFR mutation status and survival was compared. RESULTS: EGFR mutation detection rates in tumor samples and plasma samples were 65.1% (205/315) and 43.8% (138/315). Referred to tissue results, the consistent rate of test ctDNA EGFR alteration by SuperARMS was higher than that detected by ARMS (79.5% vs. 69.0%, p = 0.04), either in stage I-IIIA patients (85.7% vs. 50.0%, p = 0.4) or stage IIIB-IV patients (79.1% vs. 69.4%, p = 0.04). Patients' treatment status and pathological subtype were the two factors that affected plasma ctDNA EGFR alteration detection accuracy. The concordance in non-adenocarcinoma patients was obviously higher than that in adenocarcinoma (p = 0.02), and the concordance in treatment naïve patients was significantly higher than that in relapse patients (p = 0.047). In treatment naïve patients, the median PFS (mPFS) in plasma ctDNA EGFR-positive patients was shorter than that in plasma ctDNA EGFR negative patients (7.0 vs. 10.0 months, p = 0.01). In relapsed patients, the mPFS in plasma ctDNA EGFR-positive patients was 9.0 months versus 11.0 months in plasma ctDNA EGFR negative patients (p = 0.1). CONCLUSIONS: A plasma sample could be an alternative for a molecular test when tissue samples was unavailable. The SuperARMS-PCR detection method has high sensitivity in real-world clinical practice. Furthermore, in patients with stage IIIB-IV, baseline plasma ctDNA EGFR mutation positivity not only guides targeted therapy but also predicts a worse prognosis.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Prognóstico , Estudos Retrospectivos , Receptores ErbB/genética , Recidiva Local de Neoplasia/tratamento farmacológico , Mutação , Inibidores de Proteínas Quinases/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA