Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 14(3)2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36985016

RESUMO

Aimed at the problems of a large equipment size, long time and high price of environmental VOC gas detection, the FAIMS-VOC gas sensor was designed and prepared according to the principle that the ionization energy of the common VOC gas is less than 10.6 eV. The sensor is small in size, fast in detection, low in power consumption, and can work continuously. The sensor was fabricated through the MEMS process, a specific process which included photolithography, etching, anodic bonding, etc. The sensor is 5160 µm long, 5300 µm wide and 800 µm high. We built a test system to detect two typical VOC gases: isobutylene and acetone. The results show that in the detection of isobutylene gas and acetone gas, the sensor voltage value changes with the change of gas concentration. The linearity of testing isobutylene is 0.961, and the linearity of testing acetone is 0.987. When the isobutylene gas concentration is 50 ppm, the response time is 8 s and the recovery time is 6 s; when the acetone gas concentration is 50 ppm, the response time is 9 s and the recovery time is 10 s. In addition, the sensor demonstrates good repeatability and stability, which are conducive to the detection of VOCs in the environment.

2.
Immunopharmacol Immunotoxicol ; 44(4): 574-585, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35485905

RESUMO

OBJECTIVE: This study aimed to explore the effect and mechanism of remifentanil on cardiopulmonary bypass (CPB)-induced cerebral nerve injury. METHODS: After pretreating with remifentanil, or dexmedetomidine (DEX), SD rats were subjected to the CPB for 2 h. The data of body temperature, blood gas and mean arterial pressure (MAP) and hematocrit (HCT) were recorded at different time points. The cerebral tissue water content of rats was determined and immunohistochemical (IHC) and H&E assays on the hippocampal CA1 region of rats was performed. The levels of interleukin (IL)-6, IL-10, soluble protein-100ß (S100ß) and neuron-specific enolase (NSE) were analyzed by ELISA, and those of the indexes for oxidative stress (malondialdehyde (MDA) and superoxide dismutase (SOD)) were detected by the commercial kits. Morris water maze was used to evaluate the learning and memory abilities. Western blot/qRT-PCR were used to detect the protein/mRNA expressions in hippocampus. RESULTS: CPB increased the levels/expressions of IL-6, IL-10, S100ß, NSE, MDA, cleaved caspase-3, Bax and decreased those of Bcl-2, SOD, p-AKT, HO-1, in serum and parietal cortex tissue, with increased brain water content, lesions in the hippocampal CA1 area, swimming distance, brain nerve injury and decreased escape latency, retention time on platform and times of crossing the platform of rats. The preconditioning of remifentanil or DEX partially attenuated CPB-induced injury and -decreased expressions on p-AKT and HO-1, while further promoting CPB-induced expression of nuclear Nrf2 expression and inhibiting that of cytoplasm Nrf2. CONCLUSION: This paper demonstrates that remifentanil preconditioning could partially attenuate CPB-induced brain nerve injury of rats.


Assuntos
Lesões Encefálicas , Fator 2 Relacionado a NF-E2 , Animais , Apoptose , Encéfalo/metabolismo , Ponte Cardiopulmonar/efeitos adversos , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Remifentanil/farmacologia , Transdução de Sinais , Superóxido Dismutase/metabolismo
3.
ACS Sens ; 5(11): 3420-3431, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-32929960

RESUMO

In this work, a surface-enhanced Raman scattering (SERS)-active droplet with three-dimensional (3D) hot spots prepared from a superhydrophobic SERS substrate, which is inspired by the nut wizard strategy, was developed for ultrasensitive detection in complex liquid environments. The SERS substrate was composed of silver-capped parylene C-coated carbon nanoparticles (Ag-PC@CNPs). Such a SERS substrate was prepared by candle-soot deposition to provide a porous carbon nanoparticle layer followed by deposition of a parylene C film to protect the CNPs and then sputtering of silver nanoparticles. Similar to a nut wizard, a droplet rolling on the Ag-PC@CNP-coated substrate picked up the Ag-PC@CNPs. In this way, a self-concentrated and extremely sensitive SERS-active droplet sensor with 3D hot spots was formed. The sensor did not require precise laser focusing and showed relatively high repeatability and much higher sensitivity than those of a corresponding SERS substrate with two-dimensional hot spots. The sensor also achieved high sensitivity and specificity in complex liquid environments; in addition, bovine serum albumin with a concentration as low as 1 pM can be achieved. Consequently, an extremely simple, flexible, and highly sensitive SERS detection technique applicable to liquid biopsy analysis is anticipated.


Assuntos
Nanopartículas Metálicas , Análise Espectral Raman , Carbono , Luz , Prata
4.
BMC Anesthesiol ; 20(1): 52, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-32111162

RESUMO

BACKGROUND: This review and meta-analysis aims to evaluate the analgesic efficacy of continuous transversus abdominis plane (TAP) block compared with epidural analgesia (EA) in adults after abdominal surgery. METHODS: The databases PubMed, Embase and Cochrane Central Register were searched from inception to June 2019 for all available randomized controlled trials (RCTs) that evaluated the analgesic efficacy of continuous TAP block compared with EA after abdominal surgery. The weighted mean differences (WMDs) were estimates for continuous variables with a 95% confidence interval (CI) and risk ratio (RR) for dichotomous data. The pre-specified primary outcome was the dynamic pain scores 24 h postoperatively. RESULTS: Eight trials including 453 patients (TAP block:224 patients; EA: 229 patients) ultimately met the inclusion criteria and seven trials were included in the meta-analysis. Dynamic pain scores after 24 h were equivalent between TAP block and EA groups (WMD:0.44; 95% CI: 0.1 to 0.99; I2 = 91%; p = 0.11). The analysis showed a significant difference between the subgroups according to regularly administering (4 trials; WMD:-0.11; 95% CI: - 0.32 to 0.09; I2 = 0%; p = 0.28) non-steroidal anti-inflammatory drugs (NSAIDs) or not (3 trials; WMD:1.02; 95% CI: 0.09 to 1.96; I2 = 94%; p = 0.03) for adjuvant analgesics postoperatively. The measured time of the urinary catheter removal in the TAP group was significantly shorter (3 trials, WMD:-18.95, 95% CI:-25.22 to - 12.71; I2 = 0%; p < 0.01), as was time to first ambulation postoperatively (4 trials, WMD:-6.61, 95% CI: - 13.03 to - 0.19; I2 = 67%; p < 0.05). CONCLUSION: Continuous TAP block, combined with NSAIDs, can provide non-inferior dynamic analgesia efficacy compared with EA in postoperative pain management after abdominal surgery. In addition, continuous TAP block is associated with fewer postoperative side effects.


Assuntos
Abdome/cirurgia , Músculos Abdominais/inervação , Analgesia Epidural/métodos , Analgésicos/uso terapêutico , Bloqueio Nervoso/métodos , Dor Pós-Operatória/tratamento farmacológico , Ultrassonografia de Intervenção/métodos , Músculos Abdominais/diagnóstico por imagem , Humanos , Ensaios Clínicos Controlados Aleatórios como Assunto , Resultado do Tratamento
5.
Sensors (Basel) ; 18(10)2018 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-30347729

RESUMO

A carbon nanotube/Fe3O4 thin film-based wireless passive gas sensor with better performance is proposed. The sensitive test mechanism of LC (Inductance and capacitance resonant) wireless sensors is analyzed and the reason for choosing Fe3O4 as a gas sensing material is explained. The design and fabrication process of the sensor and the testing method are introduced. Experimental results reveal that the proposed carbon nanotube (CNT)/Fe3O4 based sensor performs well on sensing ammonia (NH3) at room temperature. The sensor exhibits not only an excellent response, good selectivity, and fast response and recovery times at room temperature, but is also characterized by good repeatability and low cost. The results for the wireless gas sensor's performance for different NH3 gas concentrations are presented. The developed device is promising for the establishment of wireless gas sensors in harsh environments.

6.
Sensors (Basel) ; 18(9)2018 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-30201885

RESUMO

This paper proposes a wireless passive gas sensor based on the principle of LC mutual coupling. After the acidification of the carbon nanotube (CNT), the in-situ polymerization of the aminobenzene monomers was conducted on the surface of the acidified CNT to form a sensitive material composed of a polyaniline/carbon nanotube (PANI/CNT) composite. The Advanced Design System (ADS) software was used for simulating and analyzing the designed structure, which obtained the various parameters of the structure. A lead-free aluminum paste was printed on an alumina ceramic substrate via the screen printing technique to form an inductor coil, before the gas sensitive material was applied to prepare a wireless passive gas sensor, consisting of a single-turn inductor and interdigitated electrodes on the base structure. Finally, an experimental platform was built to test the performance of the sensor. The sensitivity of the gas sensor is about 0.04 MHz/ppm in an atmosphere with a NH3 concentration of 300 ppm. The sensor was shown to have good repeatability and high stability over a long time period.

7.
Sensors (Basel) ; 18(4)2018 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-29597325

RESUMO

A diaphragm-free fiber-optic Fabry-Perot (FP) interferometric gas pressure sensor is designed and experimentally verified in this paper. The FP cavity was fabricated by inserting a well-cut fiber Bragg grating (FBG) and hollow silica tube (HST) from both sides into a silica casing. The FP cavity length between the ends of the SMF and HST changes with the gas density. Using temperature decoupling method to improve the accuracy of the pressure sensor in high temperature environments. An experimental system for measuring the pressure under different temperatures was established to verify the performance of the sensor. The pressure sensitivity of the FP gas pressure sensor is 4.28 nm/MPa with a high linear pressure response over the range of 0.1-0.7 MPa, and the temperature sensitivity is 14.8 pm/°C under the range of 20-800 °C. The sensor has less than 1.5% non-linearity at different temperatures by using temperature decoupling method. The simple fabrication and low-cost will help sensor to maintain the excellent features required by pressure measurement in high temperature applications.

8.
Sensors (Basel) ; 18(1)2018 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-29337879

RESUMO

A wireless and passive temperature sensor operating up to 800 °C is proposed. The sensor is based on microwave backscatter RFID (radio frequency identification) technology. A thin-film planar structure and simple working principle make the sensor easy to operate under high temperature. In this paper, the proposed high temperature sensor was designed, fabricated, and characterized. Here the 99% alumina ceramic with a dimension of 40 mm × 40 mm × 1 mm was prepared in micromechanics for fabrication of the sensor substrate. The metallization of the Au slot patch was realized in magnetron sputtering with a slot width of 2 mm and a slot length of 32 mm. The measured resonant frequency of the sensor at 25 °C is 2.31 GHz. It was concluded that the resonant frequency decreases with the increase in the temperature in range of 25-800 °C. It was shown that the average sensor sensitivity is 101.94 kHz/°C.

9.
Biomed Eng Online ; 16(1): 41, 2017 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-28376803

RESUMO

BACKGROUND: Cytoskeleton is a highly dynamic network that helps to maintain the rigidity of a cell, and the mechanical properties of a cell are closely related to many cellular functions. This paper presents a new method to probe and characterize cell mechanical properties through dielectrophoresis (DEP)-based cell stretching manipulation and actin cytoskeleton modeling. METHODS: Leukemia NB4 cells were used as cell line, and changes in their biological properties were examined after chemotherapy treatment with doxorubicin (DOX). DEP-integrated microfluidic chip was utilized as a low-cost and efficient tool to study the deformability of cells. DEP forces used in cell stretching were first evaluated through computer simulation, and the results were compared with modeling equations and with the results of optical stretching (OT) experiments. Structural parameters were then extracted by fitting the experimental data into the actin cytoskeleton model, and the underlying mechanical properties of the cells were subsequently characterized. RESULTS: The DEP forces generated under different voltage inputs were calculated and the results from different approaches demonstrate good approximations to the force estimation. Both DEP and OT stretching experiments confirmed that DOX-treated NB4 cells were stiffer than the untreated cells. The structural parameters extracted from the model and the confocal images indicated significant change in actin network after DOX treatment. CONCLUSION: The proposed DEP method combined with actin cytoskeleton modeling is a simple engineering tool to characterize the mechanical properties of cells.


Assuntos
Citoesqueleto de Actina/metabolismo , Eletroforese/métodos , Fenômenos Mecânicos , Modelos Biológicos , Fenômenos Biomecânicos , Linhagem Celular Tumoral , Análise Custo-Benefício , Eletroforese/economia , Eletroforese/instrumentação , Humanos , Mecanotransdução Celular , Estresse Mecânico
10.
Sensors (Basel) ; 15(11): 28502-12, 2015 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-26569253

RESUMO

Iron oxide (Fe2O3) nanopowder was prepared by a precipitation method and then mixed with different proportions of carbon nanotubes. The composite materials were characterized by X-ray powder diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy. A fabricated heater-type gas sensor was compared with a pure Fe2O3 gas sensor under the influence of acetone. The effects of the amount of doping, the sintering temperature, and the operating temperature on the response of the sensor and the response recovery time were analyzed. Experiments show that doping of carbon nanotubes with iron oxide effectively improves the response of the resulting gas sensors to acetone gas. It also reduces the operating temperature and shortens the response recovery time of the sensor. The response of the sensor in an acetone gas concentration of 80 ppm was enhanced, with good repeatability.

11.
Sensors (Basel) ; 15(9): 22660-71, 2015 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-26370999

RESUMO

The accurate characterization of the temperature-dependent permittivity of aluminum nitride (AlN) ceramic is quite critical to the application of wireless passive sensors for harsh environments. Since the change of the temperature-dependent permittivity will vary the ceramic-based capacitance, which can be converted into the change of the resonant frequency, an LC resonator, based on AlN ceramic, is prepared by the thick film technology. The dielectric properties of AlN ceramic are measured by the wireless coupling method, and discussed within the temperature range of 12 °C (room temperature) to 600 °C. The results show that the extracted relative permittivity of ceramic at room temperature is 2.3% higher than the nominal value of 9, and increases from 9.21 to 10.79, and the quality factor Q is decreased from 29.77 at room temperature to 3.61 at 600 °C within the temperature range.

12.
Sensors (Basel) ; 13(4): 4157-69, 2013 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-23539025

RESUMO

In this paper, we present an approach to develop an optical gas leak sensor that can be used to measure ethylene, dimethyl ether, and methane. The sensor is designed based on the principles of IR absorption spectrum detection, and comprises two crossed elliptical surfaces with a folded reflection-type optical path. We first analyze the optical path and the use of this structure to design a miniature gas sensor. The proposed sensor includes two detectors (one to acquire the reference signal and the other for the response signal), the light source, and the filter, all of which are integrated in a miniature gold-plated chamber. We also designed a signal detection device to extract the sensor signal and a microprocessor to calculate and control the entire process. The produced sensor prototype had an accuracy of ±0.05%. Experiments which simulate the transportation of hazardous chemicals demonstrated that the developed sensor exhibited a good dynamic response and adequately met technical requirements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA