Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Future Med Chem ; 16(4): 291-294, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38275153

RESUMO

Tweetable abstract Monotherapy and combination therapy of SHP2 regulator for cancer treatment.


Assuntos
Proteína Tirosina Fosfatase não Receptora Tipo 11
2.
Front Cell Infect Microbiol ; 13: 1123544, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36992683

RESUMO

Increasing evidence has supported dysbiosis in the faecal microbiome along control-adenoma-carcinoma sequence. In contrast, the data is lacking for in situ tumor bacterial community over colorectal cancer (CRC) progression, resulting in the uncertainties of identifying CRC-associated taxa and diagnosing the sequential CRC stages. Through comprehensive collection of benign polyps (BP, N = 45) and the tumors (N = 50) over the four CRC stages, we explored the dynamics of bacterial communities over CRC progression using amplicons sequencing. Canceration was the primarily factor governing the bacterial community, followed by the CRC stages. Besides confirming known CRC-associated taxa using differential abundance, we identified new CRC driver species based on their keystone features in NetShift, including Porphyromonas endodontalis, Ruminococcus torques and Odoribacter splanchnicus. Tumor environments were less selective for stable core community, resulting in heterogeneity in bacterial communities over CRC progression, as supported by higher average variation degree, lower occupancy and specificity compared with BP. Intriguingly, tumors could recruit beneficial taxa antagonizing CRC-associated pathogens at CRC initiation, a pattern known as "cry-for-help". By distinguishing age- from CRC stage-associated taxa, the top 15 CRC stage-discriminatory taxa contributed an overall 87.4% accuracy in diagnosing BP and each CRC stage, in which no CRC patients were falsely diagnosed as BP. The accuracy of diagnosis model was unbiased by human age and gender. Collectively, our findings provide new CRC-associated taxa and updated interpretations for CRC carcinogenesis from an ecological perspective. Moving beyond stratifying case-control, the CRC-stage discriminatory taxa could add the diagnosis of BP and the four CRC stages, especially the patients with poor pathological feature and un-reproducibility between two observers.


Assuntos
Neoplasias Colorretais , Microbioma Gastrointestinal , Humanos , Biomarcadores Tumorais , Reprodutibilidade dos Testes , Neoplasias Colorretais/microbiologia , Bactérias/genética
3.
Fish Shellfish Immunol ; 69: 211-217, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28860073

RESUMO

miR-92a, a well-documented oncogene, was previously found to be differentially expressed in diseased sea cucumber Apostichopus japonicus by high-throughput sequencing. In this study, we identified Aj14-3-3ζ as a novel target of miR-92a in this species and investigated their regulatory roles in vivo. The negative expression profiles between miR-92a and Aj14-3-3ζ protein were detected in both LPS-exposed primary coelomocytes and Vibrio splendidus-challenged sea cucumbers. Over-expression of miR-92a by injection of miR-92a agomir significantly depressed the mRNA and protein expression of Aj14-3-3ζ and promoted coelomocytes apoptosis with 5.04-fold increase in vivo, which was consistent with those from siRNA-mediated Aj14-3-3ζ knockdown assay. In contrast, miR-92a antagomir significantly elevated the mRNA and protein expression of Aj14-3-3ζ and decreased coelomocytes apoptosis. Taken together, our result confirmed that miR-92a is involved in apoptotic signaling pathway regulation perhaps via targeting Aj14-3-3ζ in sea cucumbers, which will enhance our understanding of miR-92a regulatory roles in sea cucumber pathogenesis.


Assuntos
Proteínas 14-3-3/genética , Apoptose/genética , Regulação da Expressão Gênica , Imunidade Inata , MicroRNAs/genética , Stichopus/genética , Stichopus/imunologia , Animais , Transdução de Sinais , Transcriptoma
4.
Mol Immunol ; 91: 114-122, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28892748

RESUMO

Microsomal glutathione transferase 2 (mGST2) is an integral membrane protein involved in detoxication of xenobiotics, and has also been suggested to catalyze the biosynthesis of pro-inflammatory mediator leukotriene C4 (LTC4) as homologous to LTC4 synthase (LTC4S) in mammals. In the present study, a novel mGST2 homology was identified from Apostichopus japonicus (designated as AjmGST2) by RACE approaches. The full-length cDNA of AjmGST2 was of 1917bp encoding a polypeptide of 161 amino acids residues. Multiple sequences alignment and phylogenetic analysis together supported that AjmGST2 belonged to a new member in invertebrate mGSTs family and close to mammalian LTC4S. Spatial expression analysis revealed that AjmGST2 was ubiquitously expressed in all examined tissues with the larger magnitude in intestine. AjmGST2 transcripts in coelomocytes were slightly induced post 6h challenge of pathogenic Vibrio splendidus and reached the peak expression at 48h. The increased expression profiles of AjmGST2 were also detected in lipopolysaccharide (LPS) exposed primary coelomocytes. Consistently, LTC4 contents were also induced by a 1.56-fold increase in the same condition. Functional assay further revealed that AjmGST2 might be functioned as LTC4S to promote LTC4 synthesis. AjmGST2 knock-down by specific siRNA significantly depressed LTC4 contents with 27.0% decrease at 24h. Meantime, ROS levels were elevated by 40.1% in vitro. All of these results indicated that AjmGST2 performed dual functions roles as LTC4S and ROS eliminator in sea cucumber immune response.


Assuntos
Glutationa Transferase/imunologia , Leucotrieno C4/imunologia , Microssomos/imunologia , Espécies Reativas de Oxigênio/imunologia , Pepinos-do-Mar/imunologia , Animais , Glutationa Transferase/genética , Leucotrieno C4/genética , Pepinos-do-Mar/genética
5.
Fish Shellfish Immunol ; 55: 203-11, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27245866

RESUMO

The caspase family representing aspartate-specific cysteine proteases have been demonstrated to possess key roles in apoptosis and immune response. We previously demonstrated that LPS challenged Apostichopus japonicus coelomocyte could significantly induced apoptosis in vitro. However, apoptosis related molecules were scarcely investigated in this economic species. In the present work, we cloned and characterized four members caspase family from A. japonicus (designated as Ajcaspase-2, Ajcaspase-3, Ajcaspase-6, and Ajcaspase-8, respectively) by RACE. Multiple sequence alignment and structural analysis revealed that all Ajcaspases contained the conservative CASC domain at C terminal, in which some unique features for each Ajcaspase made them different from each other. These specific domains together with phylogenetic analysis supported that all these four identified proteins belonged to novel members of apoptotic signaling pathway in sea cucumber. Tissue distribution analysis revealed that four Ajcaspase genes were constitutively expressed in all examined tissues. The expression of Ajcaspase-2 was tightly correlated with that of Ajcaspase-8 in each detected tissues. Ajcaspase-3 and Ajcaspase-6 transcripts were both highly expressed in immune tissue of coelomocytes. Furthermore, the Vibrio splendidus challenged sea cucumber coelomocytes could significantly up-regulate the mRNA expressions of four genes. The expression levels of Ajcaspase-2 and Ajcaspase-8 were relative earlier than those of Ajcaspase-6 and Ajcaspase-3, respectively, which could be inferred that Ajcapase-2 might directly modulate Ajcaspase-6, and Ajcaspase-8 initiate the expression of Ajcaspase-3. The induce expressions differed among each Ajcaspase depending upon their roles such as initiator or effector caspase. All our results demonstrated that four Ajcaspases present diversified functions in apoptotic cascade signaling pathway of sea cucumber under immune response.


Assuntos
Caspases/genética , Caspases/metabolismo , Imunidade Inata/genética , Transdução de Sinais , Stichopus/enzimologia , Stichopus/genética , Sequência de Aminoácidos , Animais , Apoptose , Caspases/química , Clonagem Molecular , DNA Complementar/genética , DNA Complementar/metabolismo , Estrutura Terciária de Proteína , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Alinhamento de Sequência/veterinária , Stichopus/imunologia , Stichopus/microbiologia , Regulação para Cima , Vibrio/fisiologia
6.
Appl Environ Microbiol ; 81(1): 231-40, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25326310

RESUMO

Multiple anthropogenic disturbances to bacterial diversity have been investigated in coastal ecosystems, in which temporal variability in the bacterioplankton community has been considered a ubiquitous process. However, far less is known about the temporal dynamics of a bacterioplankton community responding to pollution disturbances such as toxic metals. We used coastal water microcosms perturbed with 0, 10, 100, and 1,000 µg liter(-1) of cadmium (Cd) for 2 weeks to investigate temporal variability, Cd-induced patterns, and their interaction in the coastal bacterioplankton community and to reveal whether the bacterial community structure would reflect the Cd gradient in a temporally varying system. Our results showed that the bacterioplankton community structure shifted along the Cd gradient consistently after a 4-day incubation, although it exhibited some resistance to Cd at low concentration (10 µg liter(-1)). A process akin to an arms race between temporal variability and Cd exposure was observed, and the temporal variability overwhelmed Cd-induced patterns in the bacterial community. The temporal succession of the bacterial community was correlated with pH, dissolved oxygen, NO3 (-)-N, NO2 (-)-N, PO4 (3-)-P, dissolved organic carbon, and chlorophyll a, and each of these parameters contributed more to community variance than Cd did. However, elevated Cd levels did decrease the temporal turnover rate of community. Furthermore, key taxa, affiliated to the families Flavobacteriaceae, Rhodobacteraceae, Erythrobacteraceae, Piscirickettsiaceae, and Alteromonadaceae, showed a high frequency of being associated with Cd levels during 2 weeks. This study provides direct evidence that specific Cd-induced patterns in bacterioplankton communities exist in highly varying manipulated coastal systems. Future investigations on an ecosystem scale across longer temporal scales are needed to validate the observed pattern.


Assuntos
Bactérias/classificação , Bactérias/efeitos dos fármacos , Biota/efeitos dos fármacos , Cádmio/toxicidade , Água do Mar/química , Água do Mar/microbiologia , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Dados de Sequência Molecular , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
7.
New Phytol ; 193(3): 665-672, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22098145

RESUMO

• Inorganic arsenic (iAs) is a ubiquitous human carcinogen, and rice (Oryza sativa) is the main contributor to iAs in the diet. Methylated pentavalent As species are less toxic and are routinely found in plants; however, it is currently unknown whether plants are able to methylate As. • Rice, tomato (Solanum lycopersicum) and red clover (Trifolium pratense) were exposed to iAs, monomethylarsonic acid (MMA(V)), or dimethylarsinic acid (DMA(V)), under axenic conditions. Rice seedlings were also grown in two soils under nonsterile flooded conditions, and rice plants exposed to arsenite or DMA(V) were grown to maturity in nonsterile hydroponic culture. Arsenic speciation in samples was determined by HPLC-ICP-MS. • Methylated arsenicals were not found in the three plant species exposed to iAs under axenic conditions. Axenically grown rice was able to take up MMA(V) or DMA(V), and reduce MMA(V) to MMA(III) but not convert it to DMA(V). Methylated As was detected in the shoots of soil-grown rice, and in rice grain from nonsterile hydroponic culture. GeoChip analysis of microbial genes in a Bangladeshi paddy soil showed the presence of the microbial As methyltransferase gene arsM. • Our results suggest that plants are unable to methylate iAs, and instead take up methylated As produced by microorganisms.


Assuntos
Arsênio/metabolismo , Arsenicais/metabolismo , Bactérias/metabolismo , Ácido Cacodílico/metabolismo , Plantas/metabolismo , Microbiologia do Solo , Arsenitos/toxicidade , Cultura Axênica , Bactérias/efeitos dos fármacos , Bactérias/genética , Ácido Cacodílico/toxicidade , Genes Bacterianos/genética , Humanos , Hidroponia , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/crescimento & desenvolvimento , Metilação/efeitos dos fármacos , Análise de Sequência com Séries de Oligonucleotídeos , Oryza/efeitos dos fármacos , Oryza/crescimento & desenvolvimento , Desenvolvimento Vegetal , Plantas/efeitos dos fármacos , Sementes/efeitos dos fármacos , Sementes/metabolismo , Solo , Trifolium/efeitos dos fármacos , Trifolium/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA