Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
eNeuro ; 10(9)2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37669858

RESUMO

Obesity affects more than a third adult population in the United States; the prevalence is even higher in patients with major depression disorders. GWAS studies identify the receptor tyrosine kinase ErbB4 as a risk gene for obesity and for major depression disorders. We found that ErbB4 was enriched in the paraventricular nucleus of the hypothalamus (PVH). To investigate its role in metabolism, we deleted ErbB4 by injecting a Cre-expressing virus into the PVH of ErbB4-floxed male mice and found that PVH ErbB4 deletion increased weight gain without altering food intake. ErbB4 PVH deletion also reduced nighttime activity and decreased intrascapular brown adipose tissue (iBAT) thermogenesis. Analysis of covariance (ANCOVA) revealed that ErbB4 PVH deletion reduced O2 consumption, CO2 production and heat generation in a manner independent of body weight. Immunostaining experiments show that ErbB4+ neurons in the PVH were positive for oxytocin (OXT); ErbB4 PVH deletion reduces serum levels of OXT. We characterized mice where ErbB4 was specifically mutated in OXT+ neurons and found reduction in energy expenditure, phenotypes similar to PVH ErbB4 deletion. Taken together, our data indicate that ErbB4 in the PVH regulates metabolism likely through regulation of OXT expressing neurons, reveal a novel function of ErbB4 and provide insight into pathophysiological mechanisms of depression-associated obesity.


Assuntos
Obesidade , Núcleo Hipotalâmico Paraventricular , Receptor ErbB-4 , Adulto , Animais , Humanos , Masculino , Camundongos , Peso Corporal , Metabolismo Energético , Homeostase , Obesidade/genética , Ocitocina , Receptor ErbB-4/genética
2.
Mol Psychiatry ; 28(3): 1027-1045, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-33990773

RESUMO

Dopamine (DA) neurons in the ventral tegmental area (VTA) are critical to coping with stress. However, molecular mechanisms regulating their activity and stress-induced depression were not well understood. We found that the receptor tyrosine kinase ErbB4 in VTA was activated in stress-susceptible mice. Deleting ErbB4 in VTA or in DA neurons, or chemical genetic inhibition of ErbB4 kinase activity in VTA suppressed the development of chronic social defeat stress (CSDS)-induced depression-like behaviors. ErbB4 activation required the expression of NRG1 in the laterodorsal tegmentum (LDTg); LDTg-specific deletion of NRG1 inhibited depression-like behaviors. NRG1 and ErbB4 suppressed potassium currents of VTA DA neurons and increased their firing activity. Finally, we showed that acute inhibition of ErbB4 after stress attenuated DA neuron hyperactivity and expression of depression-like behaviors. Together, these observations demonstrate a critical role of NRG1-ErbB4 signaling in regulating depression-like behaviors and identify an unexpected mechanism by which the LDTg-VTA circuit regulates the activity of DA neurons.


Assuntos
Depressão , Área Tegmentar Ventral , Camundongos , Animais , Área Tegmentar Ventral/metabolismo , Neurônios Dopaminérgicos/metabolismo , Transdução de Sinais , Fosforilação , Receptor ErbB-4/genética , Receptor ErbB-4/metabolismo
3.
Mol Neurobiol ; 60(3): 1453-1464, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36464749

RESUMO

Motor function recovery from injury requires the regeneration of not only muscle fibers, but also the neuromuscular junction-the synapse between motor nerve terminals and muscle fibers. However, unlike muscle regeneration which has been extensively studied, little is known about the molecular mechanisms of NMJ regeneration. Recognizing the critical role of agrin-LRP4-MuSK signaling in NMJ formation and maintenance, we investigated whether increasing MuSK activity promotes NMJ regeneration. To this end, we evaluated the effect of DOK7, a protein that stimulates MuSK, on NMJ regeneration. Reinnervation, AChR cluster density, and endplate area were improved, and fragmentation was reduced in the AAV9-DOK7-GFP-injected muscles compared with muscles injected with AAV9-GFP. These results demonstrated expedited NMJ regeneration associated with increased DOK7 expression and support the hypothesis that increasing agrin signaling benefits motor function recovery after injury. Our findings propose a potentially new therapeutic strategy for functional recovery after muscle and nerve injury, i.e., promoting NMJ regeneration by increasing agrin signaling.


Assuntos
Proteínas Musculares , Junção Neuromuscular , Agrina/metabolismo , Junção Neuromuscular/lesões , Junção Neuromuscular/fisiologia , Receptores Colinérgicos/metabolismo , Sinapses/metabolismo , Proteínas Musculares/metabolismo , Animais , Camundongos , Regeneração
5.
Neuron ; 110(14): 2315-2333.e6, 2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35561677

RESUMO

Heat perception enables acute avoidance responses to prevent tissue damage and maintain body thermal homeostasis. Unlike other modalities, how heat signals are processed in the spinal cord remains unclear. By single-cell gene profiling, we identified ErbB4, a transmembrane tyrosine kinase, as a novel marker of heat-sensitive spinal neurons in mice. Ablating spinal ErbB4+ neurons attenuates heat sensation. These neurons receive monosynaptic inputs from TRPV1+ nociceptors and form excitatory synapses onto target neurons. Activation of ErbB4+ neurons enhances the heat response, while inhibition reduces the heat response. We showed that heat sensation is regulated by NRG1, an activator of ErbB4, and it involves dynamic activity of the tyrosine kinase that promotes glutamatergic transmission. Evidence indicates that the NRG1-ErbB4 signaling is also engaged in hypersensitivity of pathological pain. Together, these results identify a spinal neuron connection consisting of ErbB4+ neurons for heat sensation and reveal a regulatory mechanism by the NRG1-ErbB4 signaling.


Assuntos
Temperatura Alta , Neuregulina-1 , Neurônios , Sensação Térmica , Animais , Camundongos , Neuregulina-1/farmacologia , Neurônios/fisiologia , Receptor ErbB-4/genética
6.
J Neurosci ; 42(3): 390-404, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-34844988

RESUMO

Sharp wave ripples (SW-Rs) in the hippocampus are synchronized bursts of hippocampal pyramidal neurons (PyNs), critical for spatial working memory. However, the molecular underpinnings of SW-Rs remain poorly understood. We show that SW-Rs in hippocampal slices from both male and female mice were suppressed by neuregulin 1 (NRG1), an epidermal growth factor whose expression is enhanced by neuronal activity. Pharmacological inhibition of ErbB4, a receptor tyrosine kinase for NRG1, increases SW-R occurrence rate in hippocampal slices. These results suggest an important role of NRG1-ErbB4 signaling in regulating SW-Rs. To further test this notion, we characterized SW-Rs in freely moving male mice, chemical genetic mutant mice, where ErbB4 can be specifically inhibited by the bulky inhibitor 1NMPP1. Remarkably, SW-R occurrence was increased by 1NMPP1. We found that 1NMPP1 increased the firing rate of PyN neurons, yet disrupted PyN neuron dynamics during SW-R events. Furthermore, 1NMPP1 increased SW-R occurrence during both nonrapid eye movement (NREM) sleep states and wake states with a greater impact on SW-Rs during wake states. In accord, spatial working memory was attenuated in male mice. Together these results indicate that dynamic activity of ErbB4 kinase is critical to SW-Rs and spatial working memory. This study reveals a novel regulatory mechanism of SW-Rs and a novel function of the NRG1-ErbB4 signaling.SIGNIFICANCE STATEMENT Sharp wave ripples (SW-Rs) are a hippocampal event, important for memory functioning. Yet the molecular pathways that regulate SW-Rs remain unclear. Neuregulin 1 (NRG1), previously known to be increased in pyramidal neuron's (PyNs) in an activity dependent manner, signals to its receptor, ErbB4 kinase, that is in important regulator of GABAergic transmission and long-term potentiation in the hippocampus. Our findings demonstrate that SW-Rs are regulated by this signaling pathway in a dynamic manner. Not only so, we show that this signaling pathway is dynamically needed for spatial working memory. These data suggest a molecular signaling pathway, NRG1-ErbB4, that regulates an important network event of the hippocampus, SW-Rs, that underlies memory functioning.


Assuntos
Ondas Encefálicas/fisiologia , Hipocampo/metabolismo , Neuregulina-1/metabolismo , Neurônios/metabolismo , Receptor ErbB-4/metabolismo , Potenciais de Ação/fisiologia , Animais , Feminino , Masculino , Memória de Curto Prazo/fisiologia , Camundongos , Memória Espacial/fisiologia
7.
Neurobiol Dis ; 154: 105339, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33775822

RESUMO

Moyamoya-like vasculopathy, the "puff of smoke"-like small vessels in the brain, is initially identified in patients with Moyamoya disease (MMD), a rare cerebrovascular disease, and later found in patients with various types of neurological conditions, including Down syndrome, Stroke, and vascular dementia. It is thus of interest to understand how this vasculopathy is developed. Here, we provided evidence for cortical astrocytic neogenin (NEO1) deficiency to be a risk factor for its development. NEO1, a member of deleted in colorectal cancer (DCC) family netrin receptors, was reduced in brain samples of patients with MMD. Astrocytic Neo1-loss resulted in an increase of small blood vessels (BVs) selectively in the cortex. These BVs were dysfunctional, with leaky blood-brain barrier (BBB), thin arteries, and accelerated hyperplasia in veins and capillaries, resembled to the features of moyamoya-like vasculopathy. Additionally, we found that both MMD patient and Neo1 mutant mice exhibited altered gene expression in their cortex in proteins critical for not only angiogenesis [e.g., an increase in vascular endothelial growth factor (VEGFa)], but also axon guidance (e.g., netrin family proteins) and inflammation. In aggregates, these results suggest a critical role of astrocytic NEO1-loss in the development of Moyamoya-like vasculopathy, providing a mouse model for investigating mechanisms of Moyamoya-like vasculopathy.


Assuntos
Astrócitos/metabolismo , Barreira Hematoencefálica/metabolismo , Proteínas de Membrana/deficiência , Doença de Moyamoya/metabolismo , Córtex Pré-Frontal/metabolismo , Adulto , Animais , Astrócitos/patologia , Barreira Hematoencefálica/patologia , Feminino , Perfilação da Expressão Gênica/métodos , Humanos , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Doença de Moyamoya/genética , Doença de Moyamoya/patologia , Córtex Pré-Frontal/patologia
8.
J Neurosci ; 40(48): 9169-9185, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33097641

RESUMO

Myosin X (Myo X) transports cargos to the tips of filopodia for cell adhesion, migration, and neuronal axon guidance. Deleted in Colorectal Cancer (DCC) is one of the Myo X cargos that is essential for Netrin-1-regulated axon pathfinding. The function of Myo X in axon development in vivo and the underlying mechanisms remain elusive. Here, we provide evidence for the role of Myo X in Netrin-1-DCC-regulated axon development in developing mouse neocortex. The knockout (KO) or knockdown (KD) of Myo X in cortical neurons of embryonic mouse brain impairs axon initiation and contralateral branching/targeting. Similar axon deficits are detected in Netrin-1-KO or DCC-KD cortical neurons. Further proteomic analysis of Myo X binding proteins identifies KIF13B (a kinesin family motor protein). The Myo X interaction with KIF13B is induced by Netrin-1. Netrin-1 promotes anterograde transportation of Myo X into axons in a KIF13B-dependent manner. KIF13B-KD cortical neurons exhibit similar axon deficits. Together, these results reveal Myo X-KIF13B as a critical pathway for Netrin-1-promoted axon initiation and branching/targeting.SIGNIFICANCE STATEMENT Netrin-1 increases Myosin X (Myo X) interaction with KIF13B, and thus promotes axonal delivery of Myo X and axon initiation and contralateral branching in developing cerebral neurons, revealing unrecognized functions and mechanisms underlying Netrin-1 regulation of axon development.


Assuntos
Axônios/fisiologia , Cinesinas/fisiologia , Proteínas de Membrana/fisiologia , Miosinas/fisiologia , Netrina-1/fisiologia , Animais , Células Cultivadas , Córtex Cerebral/citologia , Córtex Cerebral/crescimento & desenvolvimento , Receptor DCC/genética , Receptor DCC/fisiologia , Feminino , Cinesinas/genética , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miosinas/genética , Neocórtex/citologia , Neocórtex/crescimento & desenvolvimento , Netrina-1/genética , Gravidez
9.
J Clin Invest ; 130(12): 6490-6509, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32853179

RESUMO

Astrocytes have multiple functions in the brain, including affecting blood vessel (BV) homeostasis and function. However, the underlying mechanisms remain elusive. Here, we provide evidence that astrocytic neogenin (NEO1), a member of deleted in colorectal cancer (DCC) family netrin receptors, is involved in blood vessel homeostasis and function. Mice with Neo1 depletion in astrocytes exhibited clustered astrocyte distribution and increased BVs in their cortices. These BVs were leaky, with reduced blood flow, disrupted vascular basement membranes (vBMs), decreased pericytes, impaired endothelial cell (EC) barrier, and elevated tip EC proliferation. Increased proliferation was also detected in cultured ECs exposed to the conditioned medium (CM) of NEO1-depleted astrocytes. Further screening for angiogenetic factors in the CM identified netrin-1 (NTN1), whose expression was decreased in NEO1-depleted cortical astrocytes. Adding NTN1 into the CM of NEO1-depleted astrocytes attenuated EC proliferation. Expressing NTN1 in NEO1 mutant cortical astrocytes ameliorated phenotypes in blood-brain barrier (BBB), EC, and astrocyte distribution. NTN1 depletion in astrocytes resulted in BV/BBB deficits in the cortex similar to those in Neo1 mutant mice. In aggregate, these results uncovered an unrecognized pathway, astrocytic NEO1 to NTN1, not only regulating astrocyte distribution, but also promoting cortical BV homeostasis and function.


Assuntos
Astrócitos/metabolismo , Córtex Cerebral/irrigação sanguínea , Córtex Cerebral/metabolismo , Homeostase , Proteínas de Membrana/metabolismo , Neovascularização Fisiológica , Netrina-1/metabolismo , Animais , Barreira Hematoencefálica/metabolismo , Proteínas de Membrana/genética , Camundongos , Camundongos Transgênicos , Netrina-1/genética
10.
PLoS Biol ; 18(6): e3000731, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32479501

RESUMO

The nuclear lamina protein lamin A/C is a key component of the nuclear envelope. Mutations in the lamin A/C gene (LMNA) are identified in patients with various types of laminopathy-containing diseases, which have features of accelerated aging and osteoporosis. However, the underlying mechanisms for laminopathy-associated osteoporosis remain largely unclear. Here, we provide evidence that loss of lamin A/C in skeletal muscles, but not osteoblast (OB)-lineage cells, results in not only muscle aging-like deficit but also trabecular bone loss, a feature of osteoporosis. The latter is due in large part to elevated bone resorption. Further cellular studies show an increase of osteoclast (OC) differentiation in cocultures of bone marrow macrophages/monocytes (BMMs) and OBs after treatment with the conditioned medium (CM) from lamin A/C-deficient muscle cells. Antibody array screening analysis of the CM proteins identifies interleukin (IL)-6, whose expression is markedly increased in lamin A/C-deficient muscles. Inhibition of IL-6 by its blocking antibody in BMM-OB cocultures diminishes the increase of osteoclastogenesis. Knockout (KO) of IL-6 in muscle lamin A/C-KO mice diminishes the deficits in trabecular bone mass but not muscle. Further mechanistic studies reveal an elevation of cellular senescence marked by senescence-associated beta-galactosidase (SA-ß-gal), p16Ink4a, and p53 in lamin A/C-deficient muscles and C2C12 muscle cells, and the p16Ink4a may induce senescence-associated secretory phenotype (SASP) and IL-6 expression. Taken together, these results suggest a critical role for skeletal muscle lamin A/C to prevent cellular senescence, IL-6 expression, hyperosteoclastogenesis, and trabecular bone loss, uncovering a pathological mechanism underlying the link between muscle aging/senescence and osteoporosis.


Assuntos
Envelhecimento/patologia , Lamina Tipo A/deficiência , Músculo Esquelético/patologia , Osteoporose/patologia , Animais , Anticorpos Bloqueadores/farmacologia , Fenômenos Biomecânicos , Reabsorção Óssea/complicações , Reabsorção Óssea/patologia , Osso Esponjoso/efeitos dos fármacos , Osso Esponjoso/patologia , Diferenciação Celular/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Interleucina-6/metabolismo , Camundongos Knockout , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/efeitos dos fármacos , Tamanho do Órgão/efeitos dos fármacos , Osteoclastos/efeitos dos fármacos , Osteoclastos/patologia , Osteogênese/efeitos dos fármacos , Osteoporose/sangue , Fenótipo
11.
Development ; 147(6)2020 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-32098764

RESUMO

Neocortex development during embryonic stages requires the precise control of mRNA metabolism. Human antigen R (HuR) is a well-studied mRNA-binding protein that regulates mRNA metabolism, and it is highly expressed in the neocortex during developmental stages. Deletion of HuR does not impair neural progenitor cell proliferation or differentiation, but it disturbs the laminar structure of the neocortex. We report that HuR is expressed in postmitotic projection neurons during mouse brain development. Specifically, depletion of HuR in these neurons led to a mislocalization of CDP+ neurons in deeper layers of the cortex. Time-lapse microscopy showed that HuR was required for the promotion of cell motility in migrating neurons. PCR array identified profilin 1 (Pfn1) mRNA as a major binding partner of HuR in neurons. HuR positively mediated the stability of Pfn1 mRNA and influenced actin polymerization. Overexpression of Pfn1 successfully rescued the migration defects of HuR-deleted neurons. Our data reveal a post-transcriptional mechanism that maintains actin dynamics during neuronal migration.


Assuntos
Movimento Celular , Proteína Semelhante a ELAV 1/fisiologia , Neurônios/fisiologia , RNA Mensageiro/metabolismo , Animais , Padronização Corporal/genética , Movimento Celular/genética , Células Cultivadas , Embrião de Mamíferos , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células-Tronco Neurais/fisiologia , Neurogênese/genética , Gravidez , Profilinas/fisiologia , Processamento Pós-Transcricional do RNA/genética
12.
Cells ; 8(5)2019 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-31108937

RESUMO

ß-site APP-cleaving enzyme 1 (BACE1) initiates amyloid precursor protein (APP) cleavage and ß-amyloid (Aß) production, a critical step in the pathogenesis of Alzheimer's disease (AD). It is thus of considerable interest to investigate how BACE1 activity is regulated. BACE1 has its maximal activity at acidic pH and GFP variant-pHluorin-displays pH dependence. In light of these observations, we generated three tandem fluorescence-tagged BACE1 fusion proteins, named pHluorin-BACE1-mCherry, BACE1-mCherry-pHluorin and BACE1-mCherry-EGFP. Comparing the fluorescence characteristics of these proteins in response to intracellular pH changes induced by chloroquine or bafilomycin A1, we found that pHluorin-BACE1-mCherry is a better pH sensor for BACE1 because its fluorescence intensity responds to pH changes more dramatically and more quickly. Additionally, we found that (pro)renin receptor (PRR), a subunit of the v-ATPase complex, which is critical for maintaining vesicular pH, regulates pHluorin's fluorescence and BACE1 activity in pHluorin-BACE1-mCherry expressing cells. Finally, we found that the expression of Swedish mutant APP (APPswe) suppresses pHluorin fluorescence in pHluorin-BACE1-mCherry expressing cells in culture and in vivo, implicating APPswe not only as a substrate but also as an activator of BACE1. Taken together, these results suggest that the pHluorin-BACE1-mCherry fusion protein may serve as a useful tool for visualizing active/inactive BACE1 in culture and in vivo.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Proteínas Luminescentes/metabolismo , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Linhagem Celular Tumoral , Cloroquina/farmacologia , Feminino , Fluorescência , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Macrolídeos/farmacologia , Masculino , Camundongos , Receptores de Superfície Celular/metabolismo , Transfecção , ATPases Vacuolares Próton-Translocadoras/metabolismo , Proteína Vermelha Fluorescente
13.
J Bone Miner Res ; 34(5): 939-954, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30645777

RESUMO

Normal bone mass is maintained by balanced bone formation and resorption. Myosin X (Myo10), an unconventional "myosin tail homology 4-band 4.1, ezrin, radixin, moesin" (MyTH4-FERM) domain containing myosin, is implicated in regulating osteoclast (OC) adhesion, podosome positioning, and differentiation in vitro. However, evidence is lacking for Myo10 in vivo function. Here we show that mice with Myo10 loss of function, Myo10m/m , exhibit osteoporotic deficits, which are likely due to the increased OC genesis and bone resorption because bone formation is unchanged. Similar deficits are detected in OC-selective Myo10 conditional knockout (cko) mice, indicating a cell autonomous function of Myo10. Further mechanistic studies suggest that Unc-5 Netrin receptor B (Unc5b) protein levels, in particular its cell surface level, are higher in the mutant OCs, but lower in RAW264.7 cells or HEK293 cells expressing Myo10. Suppressing Unc5b expression in bone marrow macrophages (BMMs) from Myo10m/m mice by infection with lentivirus of Unc5b shRNA markedly impaired RANKL-induced OC genesis. Netrin-1, a ligand of Unc5b, increased RANKL-induced OC formation in BMMs from both wild-type and Myo10m/m mice. Taken together, these results suggest that Myo10 plays a negative role in OC formation, likely by inhibiting Unc5b cell-surface targeting, and suppressing Netrin-1 promoted OC genesis. © 2019 American Society for Bone and Mineral Research.


Assuntos
Miosinas/metabolismo , Receptores de Netrina/metabolismo , Osteoclastos/metabolismo , Osteoporose/metabolismo , Acebutolol , Animais , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Miosinas/deficiência , Receptores de Netrina/genética , Netrina-1/genética , Netrina-1/metabolismo , Osteoclastos/patologia , Osteoporose/genética , Osteoporose/patologia , Ligante RANK/genética , Ligante RANK/metabolismo , Células RAW 264.7
14.
Proc Natl Acad Sci U S A ; 115(51): 13105-13110, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30498032

RESUMO

Neurotrophic factor NRG1 and its receptor ErbB4 play a role in GABAergic circuit assembly during development. ErbB4 null mice possess fewer interneurons, have decreased GABA release, and show impaired behavior in various paradigms. In addition, NRG1 and ErbB4 have also been implicated in regulating GABAergic transmission and plasticity in matured brains. However, current ErbB4 mutant strains are unable to determine whether phenotypes in adult mutant mice result from abnormal neural development. This important question, a glaring gap in understanding NRG1-ErbB4 function, was addressed by using two strains of mice with temporal control of ErbB4 deletion and expression, respectively. We found that ErbB4 deletion in adult mice impaired behavior and GABA release but had no effect on neuron numbers and morphology. On the other hand, some deficits due to the ErbB4 null mutation during development were alleviated by restoring ErbB4 expression at the adult stage. Together, our results indicate a critical role of NRG1-ErbB4 signaling in GABAergic transmission and behavior in adulthood and suggest that restoring NRG1-ErbB4 signaling at the postdevelopmental stage might benefit relevant brain disorders.


Assuntos
Comportamento Animal , Encéfalo/patologia , Interneurônios/patologia , Neuregulina-1/metabolismo , Receptor ErbB-4/fisiologia , Sinapses/fisiologia , Transmissão Sináptica , Animais , Encéfalo/metabolismo , Interneurônios/metabolismo , Camundongos , Camundongos Knockout , Neuregulina-1/genética , Transdução de Sinais , Ácido gama-Aminobutírico/metabolismo
15.
Cell Death Dis ; 9(11): 1077, 2018 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-30349052

RESUMO

Amyloid precursor protein (APP) is ubiquitously expressed in various types of cells including bone cells. Mutations in App gene result in early-onset Alzheimer's disease (AD). However, little is known about its physiological function in bone homeostasis. Here, we provide evidence for APP's role in promoting bone formation. Mice that knocked out App gene (APP-/-) exhibit osteoporotic-like deficit, including reduced trabecular and cortical bone mass. Such a deficit is likely due in large to a decrease in osteoblast (OB)-mediated bone formation, as little change in bone resorption was detected in the mutant mice. Further mechanical studies of APP-/- OBs showed an impairment in mitochondrial function, accompanied with increased reactive oxygen species (ROS) and apoptosis. Intriguingly, these deficits, resemble to those in Tg2576 animal model of AD that expresses Swedish mutant APP (APPswe), were diminished by treatment with an anti-oxidant NAC (n-acetyl-l-cysteine), uncovering ROS as a critical underlying mechanism. Taken together, these results identify an unrecognized physiological function of APP in promoting OB survival and bone formation, implicate APPswe acting as a dominant negative factor, and reveal a potential clinical value of NAC in treatment of AD-associated osteoporotic deficits.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/fisiologia , Osteoblastos/metabolismo , Osteoblastos/fisiologia , Osteogênese/fisiologia , Estresse Oxidativo/fisiologia , Acetilcisteína/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/fisiopatologia , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Antioxidantes/metabolismo , Apoptose/fisiologia , Reabsorção Óssea/metabolismo , Reabsorção Óssea/fisiopatologia , Osso e Ossos/metabolismo , Osso e Ossos/fisiopatologia , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Células Cultivadas , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Espécies Reativas de Oxigênio/metabolismo
16.
J Neurosci ; 38(44): 9600-9613, 2018 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-30228230

RESUMO

Fear learning and memory are vital for livings to survive, dysfunctions in which have been implicated in various neuropsychiatric disorders. Appropriate neuronal activation in amygdala is critical for fear memory. However, the underlying regulatory mechanisms are not well understood. Here we report that Neogenin, a DCC (deleted in colorectal cancer) family receptor, which plays important roles in axon navigation and adult neurogenesis, is enriched in excitatory neurons in BLA (Basolateral amygdala). Fear memory is impaired in male Neogenin mutant mice. The number of cFos+ neurons in response to tone-cued fear training was reduced in mutant mice, indicating aberrant neuronal activation in the absence of Neogenin. Electrophysiological studies show that Neogenin mutation reduced the cortical afferent input to BLA pyramidal neurons and compromised both induction and maintenance of Long-Term Potentiation evoked by stimulating cortical afferent, suggesting a role of Neogenin in synaptic plasticity. Concomitantly, there was a reduction in spine density and in frequency of miniature excitatory postsynaptic currents (mEPSCs), but not miniature inhibitory postsynaptic currents, suggesting a role of Neogenin in forming excitatory synapses. Finally, ablating Neogenin in the BLA in adult male mice impaired fear memory likely by reducing mEPSC frequency in BLA excitatory neurons. These results reveal an unrecognized function of Neogenin in amygdala for information processing by promoting and maintaining neurotransmission and synaptic plasticity and provide insight into molecular mechanisms of neuronal activation in amygdala.SIGNIFICANCE STATEMENT Appropriate neuronal activation in amygdala is critical for information processing. However, the underlying regulatory mechanisms are not well understood. Neogenin is known to regulate axon navigation and adult neurogenesis. Here we show that it is critical for neurotransmission and synaptic plasticity in the amygdala and thus fear memory by using a combination of genetic, electrophysiological, behavioral techniques. Our studies identify a novel function of Neogenin and provide insight into molecular mechanisms of neuronal activation in amygdala for fear processing.


Assuntos
Complexo Nuclear Basolateral da Amígdala/metabolismo , Medo/fisiologia , Aprendizagem/fisiologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Neurônios/metabolismo , Animais , Potenciais Pós-Sinápticos Excitadores/fisiologia , Medo/psicologia , Masculino , Camundongos , Camundongos Transgênicos , Técnicas de Cultura de Órgãos
17.
Elife ; 72018 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-30113308

RESUMO

The neuromuscular junction (NMJ) is a synapse between motoneurons and skeletal muscles to control motor behavior. Unlike extensively investigated postsynaptic differentiation, less is known about mechanisms of presynaptic assembly. Genetic evidence of Wnt in mammalian NMJ development was missing due to the existence of multiple Wnts and their receptors. We show when Wnt secretion is abolished from motoneurons by mutating the Wnt ligand secretion mediator (Wls) gene, mutant mice showed muscle weakness and neurotransmission impairment. NMJs were unstable with reduced synaptic junctional folds and fragmented AChR clusters. Nerve terminals were swollen; synaptic vesicles were fewer and mislocated. The presynaptic deficits occurred earlier than postsynaptic deficits. Intriguingly, these phenotypes were not observed when deleting Wls in muscles or Schwann cells. We identified Wnt7A and Wnt7B as major Wnts for nerve terminal development in rescue experiments. These observations demonstrate a necessary role of motoneuron Wnts in NMJ development, in particular presynaptic differentiation.


Assuntos
Neurônios Motores/metabolismo , Junção Neuromuscular/crescimento & desenvolvimento , Proteínas Proto-Oncogênicas/genética , Proteínas Wnt/genética , Animais , Diferenciação Celular/genética , Camundongos , Neurônios Motores/fisiologia , Músculo Esquelético/crescimento & desenvolvimento , Mutação , Junção Neuromuscular/genética , Neurônios Eferentes/metabolismo , Receptores Colinérgicos/genética , Células de Schwann/citologia , Células de Schwann/metabolismo , Sinapses/genética , Via de Sinalização Wnt
18.
Neuron ; 98(2): 380-393.e4, 2018 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-29628188

RESUMO

Top-down attention is crucial for meaningful behaviors and impaired in various mental disorders. However, its underpinning regulatory mechanisms are poorly understood. We demonstrate that the hippocampal-prefrontal synchrony associates with levels of top-down attention. Both attention and synchrony are reduced in mutant mice of ErbB4, a receptor of neuregulin-1. We used chemical genetic and optogenetic approaches to inactivate ErbB4 kinase and ErbB4+ interneurons, respectively, both of which reduce gamma-aminobutyric acid (GABA) activity. Such inhibitions in the hippocampus impair both hippocampal-prefrontal synchrony and top-down attention, whereas those in the prefrontal cortex alter attention, but not synchrony. These observations identify a role of ErbB4-dependent GABA activity in the hippocampus in synchronizing the hippocampal-prefrontal pathway and demonstrate that acute, dynamic ErbB4 signaling is required to command top-down attention. Because both neuregulin-1 and ErbB4 are susceptibility genes of schizophrenia and major depression, our study contributes to a better understanding of these disorders. VIDEO ABSTRACT.


Assuntos
Atenção/fisiologia , Hipocampo/metabolismo , Córtex Pré-Frontal/metabolismo , Tempo de Reação/fisiologia , Receptor ErbB-4/metabolismo , Animais , Células Cultivadas , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Técnicas de Cultura de Órgãos , Distribuição Aleatória , Receptor ErbB-4/genética , Roedores , Ácido gama-Aminobutírico/genética , Ácido gama-Aminobutírico/metabolismo
19.
Cell Rep ; 22(13): 3598-3611, 2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29590626

RESUMO

Newborn neurons undergo inside-out migration to their final destinations during neocortical development. Reelin-induced tyrosine phosphorylation of disabled 1 (Dab1) is a critical mechanism controlling cortical neuron migration. However, the roles of Reelin-independent phosphorylation of Dab1 remain unclear. Here, we report that deleted in colorectal carcinoma (DCC) interacts with Dab1 via its P3 domain. Netrin 1, a DCC ligand, induces Dab1 phosphorylation at Y220 and Y232. Interestingly, knockdown of DCC or truncation of its P3 domain dramatically delays neuronal migration and impairs the multipolar-to-bipolar transition of migrating neurons. Notably, the migration delay and morphological transition defects are rescued by the expression of a phospho-mimetic Dab1 or a constitutively active form of Fyn proto-oncogene (Fyn), a member of the Src-family tyrosine kinases that effectively induces Dab1 phosphorylation. Collectively, these findings illustrate a DCC-Dab1 interaction that ensures proper neuronal migration during neocortical development.


Assuntos
Receptor DCC/metabolismo , Neocórtex/crescimento & desenvolvimento , Proteínas do Tecido Nervoso/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Animais , Animais Recém-Nascidos , Movimento Celular/fisiologia , Feminino , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Neocórtex/citologia , Neocórtex/metabolismo , Netrina-1/metabolismo , Fosforilação , Domínios Proteicos , Proto-Oncogene Mas , Proteína Reelina
20.
J Neurosci ; 38(10): 2533-2550, 2018 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-29431653

RESUMO

GABA signaling has been implicated in neural development; however, in vivo genetic evidence is missing because mutant mice lacking GABA activity die prematurely. Here, we studied synapse development by ablating vesicular GABA transporter (Vgat) in ErbB4+ interneurons. We show that inhibitory axo-somatic synapses onto pyramidal neurons vary from one cortical layer to another; however, inhibitory synapses on axon initial segments (AISs) were similar across layers. Conversely, parvalbumin-positive (PV+)/ErbB4+ interneurons and PV-only interneurons receive a higher number of inhibitory synapses from PV+ErbB4+ interneurons compared with ErbB4-only interneurons. Vgat deletion from ErbB4+ interneurons reduced axo-somatic or axo-axonic synapses from PV+ErbB4+ interneurons onto excitatory neurons. This effect was associated with corresponding changes in neurotransmission. However, the Vgat mutation seemed to have little effect on inhibitory synapses onto PV+ and/or ErbB4+ interneurons. Interestingly, perineuronal nets, extracellular matrix structures implicated in maturation, survival, protection, and plasticity of PV+ interneurons, were increased in the cortex of ErbB4-Vgat-/- mice. No apparent difference was observed between males and females. These results demonstrate that Vgat of ErbB4+ interneurons is essential for the development of inhibitory synapses onto excitatory neurons and suggest a role of GABA in circuit assembly.SIGNIFICANCE STATEMENT GABA has been implicated in neural development, but in vivo genetic evidence is missing because mutant mice lacking GABA die prematurely. Here, we ablated Vgat in ErbB4+ interneurons in an inducible manner. We provide evidence that the formation of inhibitory and excitatory synapses onto excitatory neurons requires Vgat in interneurons. In particular, inhibitory axo-somatic and axo-axonic synapses are more vulnerable. Our results suggest a role of GABA in circuit assembly.


Assuntos
Interneurônios/fisiologia , Receptor ErbB-4/fisiologia , Sinapses , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/genética , Animais , Axônios/fisiologia , Sobrevivência Celular/genética , Sobrevivência Celular/fisiologia , Córtex Cerebral/citologia , Córtex Cerebral/fisiologia , Eletroencefalografia/efeitos dos fármacos , Antagonistas de Estrogênios/farmacologia , Matriz Extracelular/fisiologia , Feminino , Masculino , Camundongos , Camundongos Knockout , Plasticidade Neuronal/fisiologia , Células Piramidais/fisiologia , Tamoxifeno/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA