Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
J Am Chem Soc ; 145(26): 14354-14364, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37348117

RESUMO

Deep SO2 removal and recovery as industrial feedstock are of importance in flue-gas desulfurization and natural-gas purification, yet developing low-cost and scalable physisorbents with high efficiency and recyclability remains a challenge. Herein, we develop a viable synthetic protocol to produce DUT-67 with a controllable MOF structure, excellent crystallinity, adjustable shape/size, milli-to-kilogram scale, and consecutive production by recycling the solvent/modulator. Furthermore, simple HCl post-treatment affords depurated DUT-67-HCl featuring ultrahigh purity, excellent chemical stability, fully reversible SO2 uptake, high separation selectivity (SO2/CO2 and SO2/N2), greatly enhanced SO2 capture capacity, and good reusability. The SO2 binding mechanism has been elucidated by in situ X-ray diffraction/infrared spectroscopy and DFT/GCMC calculations. The single-step SO2 separation from a real quaternary N2/CO2/O2/SO2 flue gas containing trace SO2 is implementable under dry and 50% humid conditions, thus recovering 96% purity. This work may pave the way for future SO2 capture-and-recovery technology by pushing MOF syntheses toward economic cost, scale-up production, and improved physiochemical properties.

3.
ACS Appl Mater Interfaces ; 14(40): 45444-45450, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36178410

RESUMO

Adsorptive separation based on porous solid adsorbents has emerged as an excellent effective alternative to energy-intensive conventional separation methods in a low energy cost and high working capacity manner. However, there are few stable mesoporous metal-organic frameworks (MOFs) for efficient purification of methane from other light hydrocarbons in natural gas. Herein, we report a series of stable mesoporous MOFs, MIL-101-Cr/Fe/Fe-NH2, for efficient separation of CH4 and C3H8 from a ternary mixture CH4/C2H6/C3H8. Experimental results show that all three MOFs possess excellent thermal, acid/basic, and hydrothermal stability. Single-component adsorption suggested that they have high C3H8 adsorption capacity and commendable selectivity for C3H8 and C2H6 over CH4. Transient breakthrough experiments further certified the ability of direct separation of CH4 from simulated natural gas and indirect recovery of C3H8 from the packing column. Theoretical calculations illustrated that the van der Waals force proportional to the molecular weight is the key factor and that the structural integrity and defect can impact separation performances.

4.
Angew Chem Int Ed Engl ; 61(26): e202201766, 2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35313055

RESUMO

The design and creation of soft porous crystals combining regularity and flexibility may promote potential applications for gas storage and separation due to their deformable framework's responsiveness to external stimuli. The flexibility of metal-organic frameworks (MOFs) relies on alterable degrees of freedom that are mainly provided by organic linkers or the junctions linking organic and inorganic building units. Herein, we report a new dynamic MOF whose flexibility originates from an unprecedented tailorable Mn8 O38 -cluster and shows simultaneous coordination geometry changes and ligand migration that are reversibly driven by guest exchange. This provides an extra degree of freedom to the framework's deformation, resulting in three-dimensional variations in the framework that subtly respond to varied aromatic molecules. The gas adsorption behavior of this flexible MOF was evaluated, and the selective separation of light hydrocarbons and Freon gases is achieved.

5.
Inorg Chem ; 60(12): 8456-8460, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34085808

RESUMO

A flexible and robust microporous copper(II) metal-organic framework (MOF) based on a methyl-functionalized ligand, namely, [Cu3(µ3-OH)2(L)2(DMF)] (LIFM-ZZ-1; L = 2,2'-dimethyl-4,4'-biphenyldicarboxylic acid and DMF = N,N-dimethylformamide), was constructed. Its sorption performance for the separation of CH4, C2H6, and C3H8 was investigated. LIFM-ZZ-1 showed a breathing behavior that led to a transition between large- and narrow-pore states. The sample also showed outstanding water stability. Gas adsorption experiments revealed that desolvated LIFM-ZZ-1 exhibited higher adsorption capacities for C2H6 and C3H8 (2.80 and 4.06 mmol·g-1) than for CH4 (0.39 mmol·g-1) at 298 K and 1 bar. Breakthrough experiments showed that a CH4/C2H6/C3H8 mixture was completely separated at 298 K, demonstrating the promising potential applications of this material for separating low contents of C2/C3 hydrocarbons from natural gas.

6.
Rapid Commun Mass Spectrom ; 30 Suppl 1: 44-50, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27539414

RESUMO

RATIONALE: The microwave plasma torch (MPT) is a low power-consumption and easily operated plasma generator. As an ambient ion source, the MPT can be coupled with various mass spectrometers and applied in real-time analysis of metal elements in water for the demands of environmental control and water quality inspection. METHODS: We constructed a quadrupole mass spectrometer with an MPT as the ion source to detect directly trace levels of lead and cadmium in water. Without any pretreatments,water samples were first pneumatically nebulized with a desolvation unit, then flowed through the central tube of the MPT and finally entered the plasma. After that, the metal ions produced were introduced into the mass spectrometer to be analyzed via an atmospheric inlet of a stainless steel capillary tube. RESULTS: The MPT mass spectra of lead and cadmium ions were characterized with clear unit isotopic resolution. The sensitivity reached levels of 20 ng/L for lead and 72.7 ng/L for cadmium in water, respectively. The linear response range covered at least 2 orders of magnitude. Moreover, a single aqueous sample could be completely analyzed within 3 minutes, providing reasonably relative standard deviation values. CONCLUSIONS: Our results demonstrated that this MPT mass spectrometer is a useful tool for the monitoring of lead and cadmium ions in water, which makes it a potential alternative to ICP-MS, to be used in the fields of environmental control and water quality and foodstuff safety inspection. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Cádmio/análise , Chumbo/análise , Espectrometria de Massas/métodos , Desenho de Equipamento , Espectrometria de Massas/instrumentação , Micro-Ondas , Poluentes Químicos da Água/análise
7.
Pharm Biol ; 54(10): 2168-75, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26983455

RESUMO

Context Oxymatrine (OMT) is beneficial to human health by exerting various biological effects. Objective To investigate the absorption mechanism of OMT and discover absorption enhancers using Madin-Darby canine kidney (MDCK) cell monolayers. Materials and methods Concentration effects on the transport of OMT were measured in the range of 1.0 × 10(-5)-1.0 × 10(-3) M in 2 h. Then, the effect of time, direction, temperature and pH on the transport of OMT at 10(-4) M was studied. Moreover, Papp of OMT was determined in the absence/presence of cyclosporine and surfactants at 100 µM to further confirm the relative transport mechanism. Results The Papp AP→BL ranged from (3.040 ± 0.23) × 10(-6) to (3.697 ± 0.19) × 10(-6 )cm/s as the concentration varied from 10(-5) to 10(-3) M. OMT showed similar Papp at 4 and 37 °C (p > 0.05). Increasing the apical pH 7.4 and 8.0 resulted in Papp versus pH 5.0 (p < 0.01). Furthermore, in the presence of cyclosporine and surfactants including sodium citrate, sodium dodecyl sulphate (SDS) and deoxysodium cholate, Papp was (0.318 ± 0.033) × 10(-5), (0.464 ± 0.048) × 10(-5), (0.897 ± 0.115) × 10(-5) and (1.341 ± 0.122) × 10(-5 )cm/s, respectively. In the presence of surfactants, Papp significantly increased up to 1.5-4.3-fold (p < 0.05). Discussion and conclusion OMT transport across MDCK cell monolayers was by passive diffusion. Sodium citrate, SDS and deoxysodium cholate serve as excellent absorption enhancers which are useful for the related research improving the oral bioavailability of OMT.


Assuntos
Alcaloides/metabolismo , Células Epiteliais/metabolismo , Rim/metabolismo , Quinolizinas/metabolismo , Reabsorção Renal , Animais , Citratos/farmacologia , Ciclosporina/farmacologia , Ácido Desoxicólico/farmacologia , Difusão , Cães , Relação Dose-Resposta a Droga , Células Epiteliais/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Rim/efeitos dos fármacos , Cinética , Modelos Lineares , Células Madin Darby de Rim Canino , Permeabilidade , Reabsorção Renal/efeitos dos fármacos , Citrato de Sódio , Dodecilsulfato de Sódio/farmacologia , Tensoativos/farmacologia , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA