Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
CNS Neurosci Ther ; 30(7): e14816, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38948951

RESUMO

AIM: This study aimed to explore the mechanisms of transient receptor potential (TRP) channels on the immune microenvironment and develop a TRP-related signature for predicting prognosis, immunotherapy response, and drug sensitivity in gliomas. METHODS: Based on the unsupervised clustering algorithm, we identified novel TRP channel clusters and investigated their biological function, immune microenvironment, and genomic heterogeneity. In vitro and in vivo experiments revealed the association between TRPV2 and macrophages. Subsequently, based on 96 machine learning algorithms and six independent glioma cohorts, we constructed a machine learning-based TRP channel signature (MLTS). The performance of the MLTS in predicting prognosis, immunotherapy response, and drug sensitivity was evaluated. RESULTS: Patients with high expression levels of TRP channel genes had worse prognoses, higher tumor mutation burden, and more activated immunosuppressive microenvironment. Meanwhile, TRPV2 was identified as the most essential regulator in TRP channels. TRPV2 activation could promote macrophages migration toward malignant cells and alleviate glioma prognosis. Furthermore, MLTS could work independently of common clinical features and present stable and superior prediction performance. CONCLUSION: This study investigated the comprehensive effect of TRP channel genes in gliomas and provided a promising tool for designing effective, precise treatment strategies.


Assuntos
Neoplasias Encefálicas , Glioma , Aprendizado de Máquina , Canais de Potencial de Receptor Transitório , Microambiente Tumoral , Glioma/genética , Glioma/imunologia , Microambiente Tumoral/fisiologia , Humanos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/imunologia , Animais , Canais de Potencial de Receptor Transitório/genética , Canais de Potencial de Receptor Transitório/metabolismo , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo , Camundongos , Masculino , Feminino
2.
J Med Chem ; 67(14): 12428-12438, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38996002

RESUMO

Targeting Ca2+/calmodulin-dependent protein kinase γ (CaMKIIγ) in macrophages using RNAi nanotechnology represents an innovative and promising strategy in the diagnosis and treatment of atherosclerosis. Nevertheless, it remains elusive because of the current challenges associated with the systemic delivery of siRNA nanoparticle (NP) to atheromatous plaques and the complexity of atherosclerotic plaques. Here, we demonstrate the potential of a thienothiadiazole-based near-infrared-II (NIR-II) organic aggregation-induced emission (AIE) platform encapsulated with the Camk2g siRNA to effectively target CaMKIIγ in macrophages for dynamic imaging and image-guided gene therapy of atherosclerosis. The nanoparticles effectively decreased CaMKIIγ expression and increased the expression of the efferocytosis receptor MerTK in plaque macrophages, leading to a reduction in the necrotic core area of the lesion in an aortic plaque model. Our theranostic approach highlights the substantial promise of near-infrared II (NIR-II) AIEgens for imaging and image-guided therapy of atherosclerosis.


Assuntos
Aterosclerose , Imagem Óptica , RNA Interferente Pequeno , Animais , Humanos , Camundongos , Aterosclerose/diagnóstico por imagem , Aterosclerose/terapia , Raios Infravermelhos , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Nanopartículas/química , Placa Aterosclerótica/diagnóstico por imagem , RNA Interferente Pequeno/química , RNA Interferente Pequeno/uso terapêutico , Tiadiazóis/química , Tiadiazóis/farmacologia , Proteínas Quinases Dependentes de Cálcio-Calmodulina/química , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo
3.
Stroke ; 55(8): 2113-2125, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38965653

RESUMO

BACKGROUND: Neuronal apoptosis plays an essential role in the pathogenesis of brain injury after subarachnoid hemorrhage (SAH). BAP1 (BRCA1-associated protein 1) is considered to exert pro-apoptotic effects in multiple diseases. However, evidence supporting the effect of BAP1 on the apoptotic response to SAH is lacking. Therefore, we aimed to confirm the role of BAP1 in SAH-induced apoptosis. METHODS: Enzyme-linked immunosorbent assay (ELISA) was used to detect BAP1 expression in the cerebrospinal fluid. Endovascular perforation was performed in mice to induce SAH. Lentiviral short hairpin RNA targeting BAP1 mRNA was transduced into the ipsilateral cortex of mice with SAH to investigate the role of BAP1 in neuronal damage. Luciferase and coimmunoprecipitation assays were performed to investigate the mechanism through which BAP1 participates in hemin-induced SAH. RESULTS: First, BAP1 expression was upregulated in the cerebrospinal fluid of patients with SAH and positively associated with unfavorable outcomes. ATF2 (activating transcription factor-2) then regulated BAP1 expression by binding to the BAP1 promoter. In addition, BAP1 overexpression enhanced P53 activity and stability by reducing P53 proteasome-mediated degradation. Subsequently, elevated P53 promoted neuronal apoptosis via the P53 pathway. Inhibition of the neuronal BAP1/P53 axis significantly reduced neurological deficits and neuronal apoptosis and improved neurological dysfunction in mice after SAH. CONCLUSIONS: Our results suggest that the neuronal ATF2/BAP1 axis exerts a brain-damaging effect by modulating P53 activity and stability and may be a novel therapeutic target for SAH.


Assuntos
Apoptose , Neurônios , Hemorragia Subaracnóidea , Proteína Supressora de Tumor p53 , Proteínas Supressoras de Tumor , Ubiquitina Tiolesterase , Hemorragia Subaracnóidea/metabolismo , Animais , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Apoptose/fisiologia , Camundongos , Neurônios/metabolismo , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo , Humanos , Masculino , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Fator 2 Ativador da Transcrição/metabolismo , Fator 2 Ativador da Transcrição/genética , Transdução de Sinais/fisiologia , Camundongos Endogâmicos C57BL , Feminino , Pessoa de Meia-Idade
4.
Front Neurol ; 15: 1387743, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38938778

RESUMO

Glioma, the most prevalent primary brain tumor in adults, is characterized by significant invasiveness and resistance. Current glioma treatments include surgery, radiation, chemotherapy, and targeted therapy, but these methods often fail to eliminate the tumor completely, leading to recurrence and poor prognosis. Immune checkpoint inhibitors, a class of commonly used immunotherapeutic drugs, have demonstrated excellent efficacy in treating various solid malignancies. Recent research has indicated that unconventional levels of expression of the MAP2K3 gene closely correlates with glioma malignancy, hinting it could be a potential immunotherapy target. Our study unveiled substantial involvement of MAP2K3 in gliomas, indicating the potential of the enzyme to serve as a prognostic biomarker related to immunity. Through the regulation of the infiltration of immune cells, MAP2K3 can affect the prognosis of patients with glioma. These discoveries establish a theoretical foundation for exploring the biological mechanisms underlying MAP2K3 and its potential applications in glioma treatment.

5.
Cell Signal ; 119: 111168, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38599441

RESUMO

Cell division cycle-associated (CDCA) gene family members are essential cell proliferation regulators and play critical roles in various cancers. However, the function of the CDCA family genes in gliomas remains unclear. This study aims to elucidate the role of CDCA family members in gliomas using in vitro and in vivo experiments and bioinformatic analyses. We included eight glioma cohorts in this study. An unsupervised clustering algorithm was used to identify novel CDCA gene family clusters. Then, we utilized multi-omics data to elucidate the prognostic disparities, biological functionalities, genomic alterations, and immune microenvironment among glioma patients. Subsequently, the scRNA-seq analysis and spatial transcriptomic sequencing analysis were carried out to explore the expression distribution of CDCA2 in glioma samples. In vivo and in vitro experiments were used to investigate the effects of CDCA2 on the viability, migration, and invasion of glioma cells. Finally, based on ten machine-learning algorithms, we constructed an artificial intelligence-driven CDCA gene family signature called the machine learning-based CDCA gene family score (MLCS). Our results suggested that patients with the higher expression levels of CDCA family genes had a worse prognosis, more activated RAS signaling pathways, and more activated immunosuppressive microenvironments. CDCA2 knockdown inhibited the proliferation, migration, and invasion of glioma cells. In addition, the MLCS had robust and favorable prognostic predictive ability and could predict the response to immunotherapy and chemotherapy drug sensitivity.


Assuntos
Proteínas de Ciclo Celular , Glioma , Humanos , Glioma/genética , Glioma/patologia , Glioma/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Prognóstico , Animais , Linhagem Celular Tumoral , Inteligência Artificial , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Camundongos , Movimento Celular/genética , Microambiente Tumoral
6.
Chem Commun (Camb) ; 60(29): 3910-3913, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38333927

RESUMO

A smart and heavy-atom-free photoinactive nano-photosensitizer capable of being activated by cysteine at the tumor site to generate highly photoactive nano-photosensitizers that show strong NIR absorption and fluorescence with a good singlet oxygen quantum yield (16.8%) for photodynamic therapy is reported.


Assuntos
Neoplasias , Fotoquimioterapia , Humanos , Fármacos Fotossensibilizantes/farmacologia , Cisteína , Oxigênio Singlete , Neoplasias/tratamento farmacológico
7.
CNS Neurosci Ther ; 30(2): e14380, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37515314

RESUMO

AIMS: Cell death, except for cuproptosis, in gliomas has been extensively studied, providing novel targets for immunotherapy by reshaping the tumor immune microenvironment through multiple mechanisms. This study aimed to explore the effect of cuproptosis on the immune microenvironment and its predictive power in prognosis and immunotherapy response. METHODS: Eight glioma cohorts were included in this study. We employed the unsupervised clustering algorithm to identify novel cuproptosis clusters and described their immune microenvironmental characteristics, mutation landscape, and altered signaling pathways. We verified the correlation among FDX1, SLC31A1, and macrophage infiltration in 56 glioma tissues. Next, based on multicenter cohorts and 10 machine learning algorithms, we constructed an artificial intelligence-driven cuproptosis-related signature named CuproScore. RESULTS: Our findings suggested that glioma patients with high levels of cuproptosis had a worse prognosis owing to immunosuppression caused by unique immune escape mechanisms. Meanwhile, we experimentally validated the positive association between cuproptosis and macrophages and its tumor-promoting mechanism in vitro. Furthermore, our CuproScore exhibited powerful and robust prognostic predictive ability. It was also capable of predicting response to immunotherapy and chemotherapy drug sensitivity. CONCLUSIONS: Cuproptosis facilitates immune activation but promotes immune escape. The CuproScore could predict prognosis and immunotherapy response in gliomas.


Assuntos
Inteligência Artificial , Glioma , Humanos , Imunoterapia , Glioma/terapia , Aprendizado de Máquina , Prognóstico , Apoptose , Cobre , Microambiente Tumoral
8.
Front Oncol ; 13: 1288383, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38115906

RESUMO

Chimeric antigen receptor (CAR-T) cell therapy has been widely used in hematological malignancies and has achieved remarkable results, but its long-term efficacy in solid tumors is greatly limited by factors such as the tumor microenvironment (TME). In this paper, we discuss the latest research and future views on CAR-T cell cancer immunotherapy, compare the different characteristics of traditional immunotherapy and CAR-T cell therapy, introduce the latest progress in CAR-T cell immunotherapy, and analyze the obstacles that hinder the efficacy of CAR-T cell therapy, including immunosuppressive factors, metabolic energy deficiency, and physical barriers. We then further discuss the latest therapeutic strategies to overcome these barriers, as well as management decisions regarding the possible safety issues of CAR-T cell therapy, to facilitate solutions to the limited use of CAR-T immunotherapy.

9.
BMC Med Genomics ; 16(1): 188, 2023 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-37587505

RESUMO

Hepatocellular carcinoma (HCC) is one of the deadliest malignancies worldwide, with late detection, ineffective treatment and poor overall survival. Immunotherapy, including immune checkpoint inhibitor (ICI) therapy, holds great potential for treatment of HCC. Although some patients respond well to ICIs, many fail to obtain a significant benefit. It is therefore of great interest to find appropriate markers to stratify patient responses to immunotherapy and to explore suitable targets for modulating the TME and immune cell infiltration. ATP6V1F encodes a constituent of vacuolar ATPase (V-ATPase). V-ATPase-mediated acidification of organelles is required for intracellular processes such as zymogen activation, receptor-mediated endocytosis, protein sorting and synaptic vesicle proton gradient generation. In this study, we confirmed for the first time that ATP6V1F is overexpressed in HCC and related to poor prognosis in these patients. We identified that overexpression of ATP6V1F is associated with infiltration of some immune cells and expression of several immune checkpoints. Furthermore, we explored the possible mechanisms of action of ATP6V1F. Finally, we conducted in vitro experiments, including wound healing, Transwell invasion, and apoptosis assays, to verify that ATP6V1F promotes development of HCC by promoting migration and invasion and inhibiting apoptosis of HCC cells. Our findings will contribute to providing precise immunotherapy to patients with HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/terapia , Prognóstico , Neoplasias Hepáticas/terapia , Imunoterapia , Adenosina Trifosfatases , Biomarcadores
10.
Aging Dis ; 14(6): 1981-2002, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37450925

RESUMO

Postoperative cognitive dysfunction (POCD) is a cluster of cognitive problems that may arise after surgery. POCD symptoms include memory loss, focus inattention, and communication difficulties. Inflammasomes, intracellular multiprotein complexes that control inflammation, may have a significant role in the development of POCD. It has been postulated that the NLRP3 inflammasome promotes cognitive impairment by triggering the inflammatory response in the brain. Nevertheless, there are many gaps in the current literature to understand the underlying pathophysiological mechanisms and develop future therapy. This review article underlines the limits of our current knowledge about the NLRP3 (NOD-, LRR- and pyrin domain-containing protein 3) inflammasome and POCD. We first discuss inflammasomes and their types, structures, and functions, then summarize recent evidence of the NLRP3 inflammasome's involvement in POCD. Next, we propose a hypothesis that suggests the involvement of inflammasomes in multiple organs, including local surgical sites, blood circulation, and other peripheral organs, leading to systemic inflammation and subsequent neuronal dysfunction in the brain, resulting in POCD. Research directions are then discussed, including analyses of inflammasomes in more clinical POCD animal models and clinical trials, studies of inflammasome types that are involved in POCD, and investigations into whether inflammasomes occur at the surgical site, in circulating blood, and in peripheral organs. Finally, we discuss the potential benefits of using new technologies and approaches to study inflammasomes in POCD. A thorough investigation of inflammasomes in POCD might substantially affect clinical practice.

11.
Cancers (Basel) ; 15(8)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37190280

RESUMO

Glioblastoma (GBM) is an aggressive primary brain tumor with a poor prognosis following conventional therapeutic interventions. Moreover, the blood-brain barrier (BBB) severely impedes the permeation of chemotherapy drugs, thereby reducing their efficacy. Consequently, it is essential to develop novel GBM treatment methods. A novel kind of pericyte immunotherapy known as chimeric antigen receptor T (CAR-T) cell treatment uses CAR-T cells to target and destroy tumor cells without the aid of the antigen with great specificity and in a manner that is not major histocompatibility complex (MHC)-restricted. It has emerged as one of the most promising therapy techniques with positive clinical outcomes in hematological cancers, particularly leukemia. Due to its efficacy in hematologic cancers, CAR-T cell therapy could potentially treat solid tumors, including GBM. On the other hand, CAR-T cell treatment has not been as therapeutically effective in treating GBM as it has in treating other hematologic malignancies. CAR-T cell treatments for GBM have several challenges. This paper reviewed the use of CAR-T cell therapy in hematologic tumors and the selection of targets, difficulties, and challenges in GBM.

12.
J Mater Chem B ; 11(14): 3038-3053, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-36919487

RESUMO

Recently, newly developed carbon-based nanomaterials known as carbon dots (CDs) have generated significant interest in nanomedicine. However, current knowledge regarding CD research in the biomedical field is still lacking. An overview of the most recent development of CDs in biomedical research is given in this review article. Several crucial CD applications, such as biosensing, bioimaging, cancer therapy, and antibacterial applications, are highlighted. Finally, CD-based biomedicine's challenges and future potential are also highlighted to enrich biomedical researchers' knowledge about the potential of CDs and the need for overcoming various technical obstacles.


Assuntos
Nanoestruturas , Pontos Quânticos , Carbono , Sistemas de Liberação de Medicamentos , Nanomedicina
13.
Front Oncol ; 13: 1033954, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36733306

RESUMO

Introduction: This article aimed to investigate the effects of the endoscopic-assisted microsurgery technique on the resection of large (Koos grade IV) vestibular schwannoma (VS) and provide a prognosis analysis of the patients. Methods: A retrospective analysis of the use of the endoscopic-assisted microsurgery technique in 16 cases of large vestibular schwannoma surgery was carried out. Intraoperative nerve electrophysiological monitoring was conducted to explore the effect of neuroendoscopy on the resection of internal auditory canal tumors, protection of the facial nerve, and minimizing postoperative complications. Results: Tumors were completely removed in all 16 cases, and the facial nerve was anatomically preserved in 14 cases (87.5%). There was no postoperative cerebrospinal fluid leakage and no intracranial infection complications occurred.Following the House-Brackmann (H-B) grading system, post-operative facial nerve function was grade I in 5 cases, grade II in 6 cases, grade III in 3 cases, and grade V in 2 cases. As a result, the preservation rate of facial nerve function (H-B grade I-II) was 68.8%. All 16 patients were followed up for 3 to 24 months, and no tumor recurrence was found on enhanced MRI. Discussion: Using the endoscopic-assisted microsurgery technique in the retrosigmoid approach has many advantages over the microscopic-only approach. When compared to the microscopy-only approach, the endoscope can provide a wide-angle surgical field superior to that of a microscope in areas such as the internal auditory canal in the resection of large VS, minimize iatrogenic injuries, ensure complete removal of internal auditory canal tumors, and well as reducing postoperative complications such as cerebrospinal fluid leakage and the loss of facial and auditory nerve functions.

14.
Angew Chem Int Ed Engl ; 62(15): e202301560, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36786535

RESUMO

Although metallacycle-based supramolecular photosensitizers (PSs) have attracted increasing attention in biomedicine, their clinical translation is still hindered by their inherent dark toxicity. Herein, we report what to our knowledge is the first example of a molecular engineering approach to building blocks of metallacycles for constructing a series of supramolecular PSs (RuA-RuD), with the aim of simultaneously reducing dark toxicity and enhancing phototoxicity, and consequently obtaining high phototoxicity indexes (PI). Detailed in vitro investigations demonstrate that RuA-RuD display high cancer cellular uptake and remarkable antitumor activity even under hypoxic conditions. Notably, RuD exhibited no dark toxicity and displayed the highest PI value (≈406). Theoretical calculations verified that RuD has the largest steric hindrance and the lowest singlet-triplet energy gap (ΔEST , 0.61 eV). Further in vivo studies confirmed that RuD allows safe and effective phototherapy against A549 tumors.


Assuntos
Neoplasias , Fotoquimioterapia , Humanos , Fármacos Fotossensibilizantes/farmacologia , Fototerapia , Neoplasias/tratamento farmacológico
15.
Front Cardiovasc Med ; 9: 1049600, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36505383

RESUMO

The past decade has witnessed unprecedented medical progress, which has translated into cardiac surgery being increasingly common and safe. However, complications such as postoperative delirium remain a major concern. Although the pathophysiological changes of delirium after cardiac surgery remain poorly understood, it is widely thought that inflammation and oxidative stress may be potential triggers of delirium. The development of delirium following cardiac surgery is associated with perioperative risk factors. Multiple interventions are being explored to prevent and treat delirium. Therefore, research on the potential role of biomarkers in delirium as well as identification of perioperative risk factors and pharmacological interventions are necessary to mitigate the development of delirium.

16.
Transl Stroke Res ; 2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36522583

RESUMO

Autophagy has been described to be both protective and pathogenic in cerebral ischemia/reperfusion (I/R) injury. The underlying association between autophagy and ferroptosis in ischemic stroke has not yet been clearly investigated. The purpose of this study was to explore the role of autophagy-related gene 5 (ATG5) in experimental ischemic stroke. After injection of ATG5 shRNA lentivirus, mice underwent surgery for transient middle cerebral artery occlusion (MCAO)-induced focal cerebral ischemia. The infarct volume, neurological function, apoptosis, reactive oxygen species (ROS), autophagy, and ferroptosis levels were evaluated. After MCAO, ATG5-knockdown mice had a smaller infarct size and fewer neurological deficits than wild-type mice. The levels of apoptosis and ROS in ischemic mouse brains were alleviated through ATG5 knockdown. The expression of LC3 I/II was reduced through ATG5 knockdown after MCAO. Additionally, the expression of beclin1 and LC3 II was increased after I/R, but the increase was counteracted by preconditioning with ATG5 knockdown. After ischemic stroke, the levels of Fe2+ and malondialdehyde (MDA) were increased, but they were reduced by ATG5 knockdown. Similarly, the expression of glutathione peroxidase 4 (GPX4) and glutathione (GSH) was decreased by I/R but elevated by ATG5 knockdown. The present study shows that ATG5 knockdown attenuates autophagy-induced ferroptosis, which may offer a novel potential approach for ischemic stroke treatment.

17.
Front Genet ; 13: 1006357, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36246598

RESUMO

Liver hepatocellular carcinoma (LIHC) is a malignancy with a high mortality and morbidity rate worldwide. However, the pathogenesis of LIHC has still not been thoroughly studied. Transmembrane and coiled-coil domains 3 (TMCO3) encodes a monovalent cation, a member of the proton transducer 2 (CPA2) family of transporter proteins. In the present study, TMCO3 expression and its relationship with cancer prognosis, as well as its immunological role in LIHC were studied by bioinformatic analysis. We found the significant overexpression of TMCO3 in LIHC in the TCGA, HCCDB, and GEO databases. In LIHC patients, high TMCO3 expression was related to poorer overall survival (OS) and TMCO3 had good predictive accuracy for prognosis. Moreover, TMCO3 was linked to the infiltrates of certain immune cells in LIHC. The correlation of TMCO3 with immune checkpoints was also revealed. Moreover, patients with LIHC with low TMCO3 expression showed a better response to immune checkpoint blockade (ICB) than those with LIHC with high TMCO3 expression. GO and KEGG enrichment analyses indicated that TMCO3 was probably involved in the microtubule cytoskeleton organization involved in mitosis, small GTPase mediated signal transduction, and TGF-ß pathway. In conclusion, TMCO3 may be a potential biomarker for LIHC prognosis and immunotherapy.

18.
J Clin Med ; 11(19)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36233633

RESUMO

Glioma is the common, most aggressive and poorest prognostic tumor type in the brain. More and more biomarkers associated with glioma treatment, prognosis, and immunity are being discovered. Here, we aimed to explore the underlying biological functions and prognostic predictive value of Apolipoprotein L4 (APOL4) in glioma. We downloaded the expression data of APOL4 and clinical information from several databases and used R software for preprocessing. The clinical significance of APOL4 in a glioma outcome was explored by the Cox regression analysis and Kaplan-Meier survival analysis. In addition, immune infiltrates and microenvironmental indicators were assessed by CIBERSORT and TIMER. GO and KEGG analyses were used to analyze the potential functions of APOL4 in gliomas. APOL4 expression was increased in glioma specimens compared to normal tissues and correlated dramatically with the WHO grade. A survival analysis showed a shorter overall survival (OS) in glioma patients with APOL4 overexpression, and a Cox regression analysis showed that APOL4 was an independent prognostic factor for the OS of glioma patients. GSEA, GO, and KEGG enrichment analyses showed remarkable enrichment in immune-related pathways. APOL4 expression was positively correlated with immune infiltration (including DC cells, neutrophils, CD8+ T cells, B cells, macrophages, CD4+ T cells, etc.) and microenvironmental parameters (including immune, stromal, and ESTIMATE scores) in gliomas. Glioma patients with a higher expression of APOL4 may be more sensitive to immune checkpoint inhibitors (ICI). In conclusion, these findings suggest that APOL4 is associated with the tumor grade and immune infiltrates; APOL4 may be a new and potential biomarker for therapeutic and prognostic evaluations that may further suggest the therapeutic efficacy of immunotherapy.

19.
J Neuroinflammation ; 19(1): 245, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36195899

RESUMO

BACKGROUND AND PURPOSE: Stroke is associated with high disability and mortality rates and increases the incidence of organ-related complications. Research has revealed that the outcomes and prognosis of stroke are regulated by the state of the intestinal microbiota. However, the possibility that the manipulation of the intestinal microbiota can alter sex-related stroke outcomes remain unknown. METHODS: To verify the different effects of microbiota from different sexes on stroke outcomes, we performed mouse fecal microbiota transplantation (FMT) and established a model of ischemic stroke. Male and female mice received either male or female microbiota through FMT. Ischemic stroke was triggered by MCAO (middle cerebral artery occlusion), and sham surgery served as a control. Over the next few weeks, the mice underwent neurological evaluation and metabolite and inflammatory level detection, and we collected fecal samples for 16S ribosomal RNA analysis. RESULTS: We found that when the female mice were not treated with FMT, the microbiota (especially the Firmicutes-to-Bacteroidetes ratio) and the levels of three main metabolites tended to resemble those of male mice after experimental stroke, indicating that stroke can induce an ecological imbalance in the biological community. Through intragastric administration, the gut microbiota of male and female mice was altered to resemble that of the other sex. In general, in female mice after MCAO, the survival rate was increased, the infarct area was reduced, behavioral test performance was improved, the release of beneficial metabolites was promoted and the level of inflammation was mitigated. In contrast, mice that received male microbiota were much more hampered in terms of protection against brain damage and the recovery of neurological function. CONCLUSION: A female-like biological community reduces the level of systemic proinflammatory cytokines after ischemic stroke. Poor stroke outcomes can be positively modulated following supplementation with female gut microbiota.


Assuntos
Microbioma Gastrointestinal , AVC Isquêmico , Acidente Vascular Cerebral , Animais , Citocinas/metabolismo , Feminino , Inflamação/etiologia , Masculino , Camundongos , RNA Ribossômico 16S/genética , Acidente Vascular Cerebral/terapia
20.
Front Oncol ; 12: 967159, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36059638

RESUMO

WHO 2/3 glioma is a common intracranial tumor that seriously affects the quality of life and survival time of patients. Previous studies have shown that the tricarboxylic acid (TCA) cycle is closely related to the occurrence and development of glioma, while recent studies have shown that cuproptosis, a novel programmed death pathway, is closely related to the inhibition of the TCA cycle. In our study, eight of ten cuproptosis-related genes (CRGs) were found to be differentially expressed between normal and WHO 2/3 glioma tissues. Through the LASSO algorithm, the cuproptosis-associated risk signatures (CARSs) were constructed, which can effectively predict the prognosis of WHO 2/3 glioma patients and are closely related to clinicopathological features. We analyzed the relationship between risk score and immune cell infiltration through Xcell, ssGSEA, TIMER database, and immune checkpoint molecules. In addition, the relationship between risk score and chemotherapeutic drug sensitivity was also investigated. The prognosis-related independent risk factors FDX1 and CDKN2A identified from CARSs are considered potential prognostic biomarkers for WHO 2/3 glioma. The clinical prognosis model based on cuproptosis is expected to provide an effective reference for the diagnosis and treatment of clinical WHO 2/3 glioma patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA