Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(3): 199-206, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38512029

RESUMO

Objective To investigate the regulatory role of natural plant compound prunetin (PRU) on the intestinal epithelial inflammation and the barrier structure in Crohn's disease-like colitis. Methods A lipopolysaccharide (LPS)-induced inflammatory injury model of colonic organoids and a 2, 4, 6-trinitrobenzene sulfonic acid (TNBS)-induced mouse colitis model were established to evaluate the effects of PRU on the intestinal epithelial inflammation and intestinal barrier. In addition, network pharmacological predictions, combined with in vitro and in vivo studies, were used to analyze the molecular mechanisms by which PRU modulates intestinal epithelial inflammation and intestinal barrier in CD-like colitis. Results PRU inhibited the release of pro-inflammatory factors such as tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and IL-1ß in LPS-induced colonic organoids, and ameliorated the colitis symptoms in TNBS-induced mice, including body mass loss, elevated disease activity index and increased inflammation scores. Meanwhile, PRU promoted the expression of tight junction proteins (ZO-1 and claudin-1) and improved their translocation restoration in LPS-induced colonic organoids and TNBS-induced intestinal epithelial cells, while maintaining the intestinal barrier structure. Mechanistically, PRU targeted the Toll-like receptor 4 (TLR4) and inhibited the activation of the TLR4/myeloid differentiation primary response gene 88 (MyD88) signaling pathway. Conclusion PRU can antagonize TLR4/MyD88 signaling, thereby inhibiting intestinal epithelial inflammation and protecting against intestinal barrier damage, which helps ameliorate Crohn's disease-like colitis.


Assuntos
Colite , Doença de Crohn , Isoflavonas , Animais , Camundongos , Doença de Crohn/induzido quimicamente , Doença de Crohn/tratamento farmacológico , Receptor 4 Toll-Like/genética , Fator 88 de Diferenciação Mieloide , Lipopolissacarídeos , Colite/induzido quimicamente , Colite/tratamento farmacológico , Proteínas Adaptadoras de Transdução de Sinal , Inflamação/tratamento farmacológico , Modelos Animais de Doenças
2.
Phytomedicine ; 126: 155283, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38422652

RESUMO

BACKGROUND: Portulacae Herba and Granati Pericarpium pair (PGP) is a traditional Chinese herbal medicine treatment for colitis, clinically demonstrating a relatively favorable effect on relieving diarrhea and abnormal stools. However, the underlying mechanism remain uncertain. PURPOSE: The present study intends to evaluate the efficacy of PGP in treating colitis in mice and investigate its underlying mechanism. METHODS: The protective effect of PGP against colitis was determined by monitoring body weight, colon length, colon weight, and survival rate in mice. Colonic inflammation was assessed by serum cytokine levels, colonic H&E staining, and local neutrophil infiltration. The reversal of intestinal epithelial barrier damage by PGP was subsequently analyzed with Western blot and histological staining. Furthermore, RNA-seq analysis and molecular docking were performed to identify potential pathways recruited by PGP. Following the hints of the transcriptomic results, the role of PGP through the IL-6/STAT3/SOCS3 pathway in DSS-induced colitis mice was verified by Western blot. RESULTS: DSS-induced colitis in mice was significantly curbed by PGP treatment. PGP treatment significantly mitigated DSS-induced colitis in mice, as evidenced by improvements in body weight, DAI severity, survival rate, and inflammatory cytokines levels in serum and colon. Moreover, PGP treatment up-regulated the level of Slc26a3, thereby increasing the expressions of the tight junction/adherens junction proteins ZO-1, occludin and E-cadherin in the colon. RNA-seq analysis revealed that PGP inhibits the IL-6/STAT3/SOCS3 pathway at the transcriptional level. Molecular docking indicated that the major components of PGP could bind tightly to the proteins of IL-6 and SOCS3. Meanwhile, the result of Western blot revealed that the IL-6/STAT3/SOCS3 pathway was inhibited at the protein level after PGP administration. CONCLUSION: PGP could alleviate colonic inflammation and reverse damage to the intestinal epithelial barrier in DSS-induced colitis mice. The underlying mechanism involves the inhibition of the IL-6/STAT3/SOCS3 pathway.


Assuntos
Colite Ulcerativa , Colite , Extratos Vegetais , Punica granatum , Animais , Camundongos , Interleucina-6/metabolismo , Simulação de Acoplamento Molecular , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Inflamação/metabolismo , Colo/patologia , Citocinas/metabolismo , Peso Corporal , Sulfato de Dextrana/efeitos adversos , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Colite Ulcerativa/tratamento farmacológico , Transportadores de Sulfato/metabolismo , Transportadores de Sulfato/farmacologia , Transportadores de Sulfato/uso terapêutico , Antiporters/efeitos adversos , Antiporters/metabolismo
3.
Environ Sci Pollut Res Int ; 30(25): 67174-67186, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37103693

RESUMO

Over recent years, much attention has been paid to aging problem of microplastics and adsorption behavior of antibiotic on microplastics. In this study, four microplastics, including polystyrene (PS), polypropylene (PP), polyamide (PA) and polyethylene (PE), were photoaged by UV light in anoxic environment. The surface characteristics of microplastics and adsorption behavior of norfloxacin (NOR) on microplastics were investigated. Results indicated that the specific surface area and crystallinity increased, and hydrophobicity weakened of microplastics after UV aging. The content of C element decreased and the content of O barely changed in the aged microplastics. In addition, the adsorption of NOR on microplastics yielded a better fitness for the pseudo-second-order kinetics, Langmuir and Freundlich models. The adsorption capacities of NOR on PS, PA, PP, and PE at 288 K were 16.01, 15.12, 14.03, and 13.26 mg·g-1, respectively, while the adsorption capacities of NOR on aged microplastics were reduced to 14.20, 14.19, 11.50, and 10.36 mg·g-1, respectively, due to decrease of hydrophobicity and increase of crystallinity of microplastics after UV aging. The adsorption of NOR on microplastics decreased with the increase of temperature, implying the adsorption process was exothermic. Adsorption mechanism analysis showed that Van der Waals force was the main influential mechanism of the adsorption of NOR on PP and PE, and hydrogen bond was the main factor affecting the adsorption of NOR on PA, while the π-π interaction was the main mechanism impacting the adsorption of NOR on PS. Aging time and salinity significantly affect the adsorption of NOR on microplastics. With the increase of humic acid concentration and pH, the adsorption of NOR on microplastics first reduced and then rose. This study provides a basis for further clarifying the mechanism of UV aging microplastics and a reference for the study of combined pollution behavior of microplastics and antibiotics.


Assuntos
Microplásticos , Plásticos , Microplásticos/química , Plásticos/química , Norfloxacino , Adsorção , Raios Ultravioleta , Poliestirenos/química , Polipropilenos/química , Polietileno/química
4.
Front Bioeng Biotechnol ; 10: 972837, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36091444

RESUMO

Phototherapy and multimodal synergistic phototherapy (including synergistic photothermal and photodynamic therapy as well as combined phototherapy and other therapies) are promising to achieve accurate diagnosis and efficient treatment for tumor, providing a novel opportunity to overcome cancer. Notably, various nanomaterials have made significant contributions to phototherapy through both improving therapeutic efficiency and reducing side effects. The most key factor affecting the performance of phototherapeutic nanomaterials is their microstructure which in principle determines their physicochemical properties and the resulting phototherapeutic efficiency. Vacancy defects ubiquitously existing in phototherapeutic nanomaterials have a great influence on their microstructure, and constructing and regulating vacancy defect in phototherapeutic nanomaterials is an essential and effective strategy for modulating their microstructure and improving their phototherapeutic efficacy. Thus, this inspires growing research interest in vacancy engineering strategies and vacancy-engineered nanomaterials for phototherapy. In this review, we summarize the understanding, construction, and application of vacancy defects in phototherapeutic nanomaterials. Starting from the perspective of defect chemistry and engineering, we also review the types, structural features, and properties of vacancy defects in phototherapeutic nanomaterials. Finally, we focus on the representative vacancy defective nanomaterials recently developed through vacancy engineering for phototherapy, and discuss the significant influence and role of vacancy defects on phototherapy and multimodal synergistic phototherapy. Therefore, we sincerely hope that this review can provide a profound understanding and inspiration for the design of advanced phototherapeutic nanomaterials, and significantly promote the development of the efficient therapies against tumor.

5.
J Ethnopharmacol ; 298: 115655, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-35988837

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: HuanglianGanjiang Tang (HGT) is a classic prescription of traditional Chinese medicine (TCM) recorded in Dan Xi Xin Fa, which was used to alleviate manifestations like diarrhea, abdominal pain and hemafecia. In current clinical practices, HGT is adopted for the treatment of ulcerative colitis (UC) and affords good curative effect. However, the underlying mechanism deserves further elucidation. AIM OF THE STUDY: UC is a hard-to-curable and easy-to-recurrent inflammatory disease. This study is to evaluate the potential therapeutics and explore the molecular mechanism of HGT on UC in the mouse model. MATERIALS AND METHODS: The components of HGT extracts were identified by HPLC. The colitis of mice was induced by 3% (w./v.) dextran sulfate sodium (DSS). The HGT decoction was prepared through boiling and centrifuging. The mice were given HGT decoction via oral gavage (0.34 g/ml & 0.68 g/ml; 5 ml/kg b.w.). The protective role of HGT on colitis mice was evaluated by body weight change, colon length, disease activity index (DAI) and histological scores. The expressions of necroptosis-related and vitamin D receptor (VDR)-related proteins were measured by Western blot, RT-qPCR and immunofluorescence. RESULTS: HGT could significantly reduce the loss of body weight and colon length in colitis mice, and alleviated the DAI and histological scores. Mechanically, HGT also promoted the expression of E-cadherin, Occludin, ZO-1 and VDR, and reduced the level of intestinal inflammatory cytokines, such as, IL-6, IL-1ß and TNF-α. Besides, HGT downregulated the protein level of p-RIPK3, p-RIPK1 and p-MLKL while upregulated the protein level of Caspase-8 in colon tissue compared to the model group. CONCLUSION: Our study addressed that HGT can alleviate DSS-induced colitis of mice through inhibiting colonic necroptosis by upregulating the level of VDR.


Assuntos
Colite Ulcerativa , Colite , Animais , Peso Corporal , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/patologia , Colo , Sulfato de Dextrana , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Necroptose , Receptores de Calcitriol/metabolismo , Receptores de Calcitriol/uso terapêutico
6.
Mol Pharmacol ; 100(6): 568-579, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34561298

RESUMO

ß 1 adrenergic receptors (ß 1ARs) are central regulators of cardiac function and a drug target for cardiac disease. As a member of the G protein-coupled receptor family, ß 1ARs activate cellular signaling by primarily coupling to Gs proteins to activate adenylyl cyclase, cAMP-dependent pathways, and the multifunctional adaptor-transducer protein ß-arrestin. Carvedilol, a traditional ß-blocker widely used in treating high blood pressure and heart failure by blocking ß adrenergic receptor-mediated G protein activation, can selectively stimulate Gs-independent ß-arrestin signaling of ß adrenergic receptors, a process known as ß-arrestin-biased agonism. Recently, a DNA-encoded small-molecule library screen against agonist-occupied ß 2 adrenergic receptors (ß 2ARs) identified Compound-6 (Cmpd-6) to be a positive allosteric modulator for agonists on ß 2ARs. Intriguingly, it was further discovered that Cmpd-6 is positively cooperative with the ß-arrestin-biased ligand carvedilol at ß 2ARs. Here we describe the surprising finding that at ß 1ARs unlike ß 2ARs, Cmpd-6 is cooperative only with carvedilol and not agonists. Cmpd-6 increases the binding affinity of carvedilol for ß 1ARs and potentiates carvedilol-stimulated, ß-arrestin-dependent ß 1AR signaling, such as epidermal growth factor receptor transactivation and extracellular signal-regulated kinase activation, whereas it does not have an effect on Gs-mediated cAMP generation. In vivo, Cmpd-6 enhances the antiapoptotic, cardioprotective effect of carvedilol in response to myocardial ischemia/reperfusion injury. This antiapoptotic role of carvedilol is dependent on ß-arrestins since it is lost in mice with myocyte-specific deletion of ß-arrestins. Our findings demonstrate that Cmpd-6 is a selective ß-arrestin-biased allosteric modulator of ß 1ARs and highlight its potential clinical utility in enhancing carvedilol-mediated cardioprotection against ischemic injury. SIGNIFICANCE STATEMENT: This study demonstrates the positive cooperativity of Cmpd-6 on ß1ARs as a ß-arrestin-biased positive allosteric modulator. Cmpd-6 selectively enhances the affinity and cellular signaling of carvedilol, a known ß-arrestin-biased ß-blocker for ß1ARs, whereas it has minimal effect on other ligands tested. Importantly, Cmpd-6 enhances the ß-arrestin-dependent in vivo cardioprotective effect of carvedilol during ischemia/reperfusion injury-induced apoptosis. The data support the potential therapeutic application of Cmpd-6 to enhance the clinical benefits of carvedilol in the treatment of cardiac disease.


Assuntos
Cardiotônicos/farmacologia , Carvedilol/farmacologia , Miócitos Cardíacos/metabolismo , Receptores Adrenérgicos beta/metabolismo , beta-Arrestinas/metabolismo , Agonistas Adrenérgicos beta/farmacologia , Antagonistas Adrenérgicos beta/farmacologia , Regulação Alostérica , Animais , Receptores ErbB/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/efeitos dos fármacos , Transdução de Sinais
7.
Sci Rep ; 10(1): 7385, 2020 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-32355256

RESUMO

Hyperpolarized 129Xe magnetic resonance imaging (MRI) is capable of regional mapping of pulmonary gas-exchange and has found application in a wide range of pulmonary disorders in humans and animal model analogs. This study is the first application of 129Xe MRI to the monocrotaline rat model of pulmonary hypertension. Such models of preclinical pulmonary hypertension, a disease of the pulmonary vasculature that results in right heart failure and death, are usually assessed with invasive procedures such as right heart catheterization and histopathology. The work here adapted from protocols from clinical 129Xe MRI to enable preclinical imaging of rat models of pulmonary hypertension on a Bruker 7 T scanner. 129Xe spectroscopy and gas-exchange imaging showed reduced 129Xe uptake by red blood cells early in the progression of the disease, and at a later time point was accompanied by increased uptake by barrier tissues, edema, and ventilation defects-all of which are salient characteristics of the monocrotaline model. Imaging results were validated by H&E histology, which showed evidence of remodeling of arterioles. This proof-of-concept study has demonstrated that hyperpolarized 129Xe MRI has strong potential to be used to non-invasively monitor the progression of pulmonary hypertension in preclinical models and potentially to also assess response to therapy.


Assuntos
Hipertensão Pulmonar , Pulmão , Imageamento por Ressonância Magnética , Troca Gasosa Pulmonar , Isótopos de Xenônio/farmacologia , Animais , Modelos Animais de Doenças , Hipertensão Pulmonar/diagnóstico por imagem , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/fisiopatologia , Pulmão/metabolismo , Pulmão/fisiopatologia , Masculino , Ratos , Ratos Sprague-Dawley
8.
Anal Chem ; 91(18): 11606-11613, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31418558

RESUMO

Protein phosphorylation is a critical post-translational modification (PTM). Despite recent technological advances in reversed-phase liquid chromatography (RPLC)-mass spectrometry (MS)-based proteomics, comprehensive phosphoproteomic coverage in complex biological systems remains challenging, especially for hydrophilic phosphopeptides with enriched regions of serines, threonines, and tyrosines that often orchestrate critical biological functions. To address this issue, we developed a simple, easily implemented method to introduce a commonly used tandem mass tag (TMT) to increase peptide hydrophobicity, effectively enhancing RPLC-MS analysis of hydrophilic peptides. Different from conventional TMT labeling, this method capitalizes on using a nonprimary amine buffer and TMT labeling occurring before C18-based solid phase extraction. Through phosphoproteomic analyses of MCF7 cells, we have demonstrated that this method can greatly increase the number of identified hydrophilic phosphopeptides and improve MS detection signals. We applied this method to study the peptide QPSSSR, a very hydrophilic tryptic peptide located on the C-terminus of the G protein-coupled receptor (GPCR) CXCR3. Identification of QPSSSR has never been reported, and we were unable to detect it by traditional methods. We validated our TMT labeling strategy by comparative RPLC-MS analyses of both a hydrophilic QPSSSR peptide library as well as common phosphopeptides. We further confirmed the utility of this method by quantifying QPSSSR phosphorylation abundances in HEK 293 cells under different treatment conditions predicted to alter QPSSSR phosphorylation. We anticipate that this simple TMT labeling method can be broadly used not only for decoding GPCR phosphoproteome but also for effective RPLC-MS analysis of other highly hydrophilic analytes.


Assuntos
Sondas Moleculares/química , Fosfopeptídeos/análise , Sequência de Aminoácidos , Cromatografia de Fase Reversa , Células HEK293 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Células MCF-7 , Biblioteca de Peptídeos , Fosfopeptídeos/química , Fosforilação , Processamento de Proteína Pós-Traducional , Proteômica/métodos , Succinimidas/química , Espectrometria de Massas em Tandem/métodos
9.
J Hematol Oncol ; 8: 47, 2015 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-25956236

RESUMO

Eukaryotic cell membrane dynamics change in curvature during physiological and pathological processes. In the past ten years, a novel protein family, Fes/CIP4 homology-Bin/Amphiphysin/Rvs (F-BAR) domain proteins, has been identified to be the most important coordinators in membrane curvature regulation. The F-BAR domain family is a member of the Bin/Amphiphysin/Rvs (BAR) domain superfamily that is associated with dynamic changes in cell membrane. However, the molecular basis in membrane structure regulation and the biological functions of F-BAR protein are unclear. The pathophysiological role of F-BAR protein is unknown. This review summarizes the current understanding of structure and function in the BAR domain superfamily, classifies F-BAR family proteins into nine subfamilies based on domain structure, and characterizes F-BAR protein structure, domain interaction, and functional relevance. In general, F-BAR protein binds to cell membrane via F-BAR domain association with membrane phospholipids and initiates membrane curvature and scission via Src homology-3 (SH3) domain interaction with its partner proteins. This process causes membrane dynamic changes and leads to seven important cellular biological functions, which include endocytosis, phagocytosis, filopodium, lamellipodium, cytokinesis, adhesion, and podosome formation, via distinct signaling pathways determined by specific domain-binding partners. These cellular functions play important roles in many physiological and pathophysiological processes. We further summarize F-BAR protein expression and mutation changes observed in various diseases and developmental disorders. Considering the structure feature and functional implication of F-BAR proteins, we anticipate that F-BAR proteins modulate physiological and pathophysiological processes via transferring extracellular materials, regulating cell trafficking and mobility, presenting antigens, mediating extracellular matrix degradation, and transmitting signaling for cell proliferation.


Assuntos
Membrana Celular/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Proto-Oncogênicas c-fes/metabolismo , Humanos , Antígenos de Histocompatibilidade Menor
10.
Mol Immunol ; 43(5): 436-42, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16337486

RESUMO

It has been demonstrated that the immunodominant region of the HCV core protein and the hepatitis B surface antigen (HBsAg) have high degree of reactivity. In order to construct a chimeric protein that carries HCV and HBV epitopes and possesses immunogenicity to both HCV and HBV, four epitopes derived from residues aa2-21 (epitope C1), aa22-40 (epitope C2) of the core protein, residues aa315-328 (epitope E) of E1 protein of HCV, and residues aa124-147 (epitope S) of HBsAg were chosen to be displayed in a conformation-specific manner on the outer surface of the Flock House virus capsid protein and expressed in E. coli cells. The reactivity of these epitopes with antisera from hepatitis C and hepatitis B patients and induction of immune response in guinea pigs were determined. The results showed that when displayed in this system, the chimeric protein carrying only epitope S could react with anti-HBsAg positive human sera, elicit an anti-HBsAg response in guinea pigs. The chimeric protein carrying epitopes C1, C2 and E could react with antibodies to different HCV genotypes, elicit an anti-HCV response in guinea pigs. The chimeric protein carrying epitopes C1, C2, E, and S could react with antibodies against HCV and HBV, elicit anti-HCV and anti-HBsAg responses in guinea pigs. The results suggested that these epitopes displayed in this form could be considered for development of epitope-based vaccines against HCV/HBV infections.


Assuntos
Hepacivirus/imunologia , Antígenos de Superfície da Hepatite B/imunologia , Vírus da Hepatite B/imunologia , Antígenos da Hepatite C/imunologia , Epitopos Imunodominantes/imunologia , Proteínas do Core Viral/imunologia , Proteínas do Envelope Viral/imunologia , Sequência de Aminoácidos , Animais , Capsídeo/química , Capsídeo/imunologia , Reações Cruzadas , Cobaias , Hepacivirus/genética , Anticorpos Anti-Hepatite B/biossíntese , Anticorpos Anti-Hepatite B/imunologia , Antígenos de Superfície da Hepatite B/química , Antígenos de Superfície da Hepatite B/genética , Vírus da Hepatite B/genética , Anticorpos Anti-Hepatite C/biossíntese , Anticorpos Anti-Hepatite C/imunologia , Antígenos da Hepatite C/química , Antígenos da Hepatite C/genética , Humanos , Epitopos Imunodominantes/química , Epitopos Imunodominantes/genética , Vírus de Insetos/genética , Modelos Moleculares , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/imunologia , Biblioteca de Peptídeos , Conformação Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/imunologia , Proteínas do Core Viral/química , Proteínas do Core Viral/genética , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA