Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731831

RESUMO

Small secreted peptides (SSPs) play important roles in regulating plants' growth and development in response to external stimulus, but the genes and functions of SSPs in many species are still unknown. Therefore, it is particularly significant to characterize and annotate SSP genes in plant genomes. As a widely used stock of pears, Pyrus betulifolia has strong resistance to biotic and abiotic stresses. In this study, we analyzed the SSPs genes in the genome of P. betulifolia according to their characteristics and homology. A total of 1195 SSP genes were identified, and most of them are signaling molecules. Among these, we identified a new SSP, subtilase peptide 3 (SUBPEP3), which derived from the PA region of preSUBPEP3, increasing the expression level under salt stress. Both adding synthetic peptide SUBPEP3 to the culture medium of pears and the overexpression of SUBPEP3 in tobacco can improve the salt tolerance of plants. In summary, we annotated the SSP genes in the P. betulifolia genome and identified a small secreted peptide SUBPEP3 that regulates the salt tolerance of P. betulifolia, which provides an important theoretical basis for further revealing the function of SSPs.


Assuntos
Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Pyrus , Tolerância ao Sal , Pyrus/genética , Pyrus/metabolismo , Tolerância ao Sal/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Salino/genética , Nicotiana/genética , Nicotiana/metabolismo , Sequência de Aminoácidos , Peptídeos/metabolismo , Peptídeos/genética , Estresse Fisiológico/genética , Plantas Geneticamente Modificadas/genética
2.
Stroke Vasc Neurol ; 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38485231

RESUMO

BACKGROUND: Astrocytes regulate blood-brain barrier (BBB) integrity, whereas subarachnoid haemorrhage (SAH) results in astrocyte dysregulation and BBB disruption. Here, we explored the involvement of tissue inhibitor of matrix metalloprotease-1 (TIMP1) in astrocyte-mediated BBB protection during SAH, along with its underlying mechanisms. METHODS: C57BL/6J mice were used to establish a model of SAH. The effects of TIMP1 on SAH outcomes were analysed by intraperitoneal injection of recombinant mouse TIMP1 protein (rm-TIMP1; 250 µg/kg). The roles of TIMP1 and its effector ß1-integrin on astrocytes were observed by in vivo transduction with astrocyte-targeted adeno-associated virus carrying TIMP1 overexpression plasmid or ß1-integrin RNAi. The molecular mechanisms underlying TIMP1 and ß1-integrin interactions were explored in primary cultured astrocytes stimulated with red blood cells (RBCs). RESULTS: TIMP1 was upregulated after SAH. Administration of rm-TIMP1 mitigated SAH-induced early brain injury (EBI) in male and female mice. TIMP1 was primarily expressed in astrocytes; its overexpression in astrocytes led to increased ß1-integrin expression in astrocytes, along with the preservation of astrocytic endfoot attachment to the endothelium and subsequent recovery of endothelial tight junctions. All of these effects were reversed by the knockdown of ß1-integrin in astrocytes. Molecular analysis showed that TIMP1 overexpression decreased the RBC-induced ubiquitination of ß1-integrin; this effect was partially achieved by inhibiting the interaction between ß1-integrin and the E3 ubiquitin ligase Trim21. CONCLUSION: TIMP1 inhibits the interaction between ß1-integrin and Trim21 in astrocytes, thereby rescuing the ubiquitination of astrocytic ß1-integrin. It subsequently restores interactions between astrocytic endfeet and the endothelium, as well as BBB integrity, eventually mitigating SAH-induced EBI.

3.
Artigo em Inglês | MEDLINE | ID: mdl-37282645

RESUMO

AIMS: This cross-sectional study aimed to analyze the relationship between live birth and the prevalence of obesity in Chinese women over 40 years of age. METHODS: From April to November 2011, the Endocrinology Branch of the Chinese Medical Association conducted the REACTION project, a national, multicenter, cross-sectional study of Chinese adults aged 40 years and older. Demographic and medical data were collected through validated questionnaires and equipment. Anthropometric indicators, blood pressure, and biochemical data were measured by professional medical personnel. Data were analyzed using descriptive statistics and logistic analysis. Multivariate regression models were used to analyze obesity-related risk factors. RESULTS: The prevalence of obesity among women increased gradually from 3.8% to 6.0% with an increasing number of live births. Women with two live births had the highest prevalence of overweight at 34.3%. Overall, the obesity and overweight rates were slightly higher in premenopausal women than in postmenopausal women. Univariate regression analysis showed that the risk of obesity in women increased with an increasing number of live births. In addition, multivariate regression analysis showed that the risk of obesity increased with an increasing number of live births in women with systolic blood pressure (SBP) < 121 mmHg or current smoking (P < 0.05). CONCLUSION: The risk of obesity increases with the number of live births in Chinese women over 40 years of age with SBP < 121 mmHg or current smoking. Our findings may facilitate the development of interventions to prevent obesity in this population.


Assuntos
Nascido Vivo , Sobrepeso , Adulto , Gravidez , Humanos , Feminino , Pessoa de Meia-Idade , Nascido Vivo/epidemiologia , Sobrepeso/epidemiologia , Estudos Transversais , Obesidade/diagnóstico , Obesidade/epidemiologia , Fatores de Risco
4.
J Neuroinflammation ; 20(1): 294, 2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38071333

RESUMO

Skull bone marrow is thought to be an immune tissue closely associated with the central nervous system (CNS). Recent studies have focused on the role of skull bone marrow in central nervous system disorders. In this study, we performed single-cell RNA sequencing on ipsilateral and contralateral skull bone marrow cells after experimental stroke and then performed flow cytometry and analysis of cytokine expression. Skull marrow showed lateralization in response to stroke. Lateralization is demonstrated primarily by the proliferation and differentiation of myeloid and lymphoid lineage cells in the skull bone marrow adjacent to the ischemic region, with an increased proportion of neutrophils compared to monocytes. Analysis of chemokines in the skull revealed marked differences in chemotactic signals between the ipsilateral and contralateral skull, whereas sympathetic signals innervating the skull did not affect cranial bone marrow lateralization. Osteopontin (OPN) is involved in region-specific activation of the skull marrow that promotes inflammation in the meninges, and inhibition of OPN expression improves neurological function.


Assuntos
Medula Óssea , Osteopontina , Acidente Vascular Cerebral , Animais , Camundongos , Isquemia , Osteopontina/metabolismo , Crânio/metabolismo
5.
J Neuroinflammation ; 20(1): 270, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37978532

RESUMO

BACKGROUND: Subarachnoid hemorrhage (SAH) is an uncommon type of potentially fatal stroke. The pathophysiological mechanisms of brain injury remain unclear, which hinders the development of drugs for SAH. We aimed to investigate the pathophysiological mechanisms of SAH and to elucidate the cellular and molecular biological response to SAH-induced injury. METHODS: A cross-species (human and mouse) multiomics approach combining high-throughput data and bioinformatic analysis was used to explore the key pathophysiological processes and cells involved in SAH-induced brain injury. Patient data were collected from the hospital (n = 712). SAH was established in adult male mice via endovascular perforation, and flow cytometry, a bone marrow chimera model, qPCR, and microglial depletion experiments were conducted to explore the origin and chemotaxis mechanism of the immune cells. To investigate cell effects on SAH prognosis, murine neurological function was evaluated based on a modified Garcia score, pole test, and rotarod test. RESULTS: The bioinformatics analysis confirmed that inflammatory and immune responses were the key pathophysiological processes after SAH. Significant increases in the monocyte levels were observed in both the mouse brains and the peripheral blood of patients after SAH. Ly6C-high monocytes originated in the bone marrow, and the skull bone marrow contribute a higher proportion of these monocytes than neutrophils. The mRNA level of Ccl2 was significantly upregulated after SAH and was greater in CD11b-positive than CD11b-negative cells. Microglial depletion, microglial inhibition, and CCL2 blockade reduced the numbers of Ly6C-high monocytes after SAH. With CCR2 antagonization, the neurological function of the mice exhibited a slow recovery. Three days post-SAH, the monocyte-derived dendritic cell (moDC) population had a higher proportion of TNF-α-positive cells and a lower proportion of IL-10-positive cells than the macrophage population. The ratio of moDCs to macrophages was higher on day 3 than on day 5 post-SAH. CONCLUSIONS: Inflammatory and immune responses are significantly involved in SAH-induced brain injury. Ly6C-high monocytes derived from the bone marrow, including the skull bone marrow, infiltrated into mouse brains via CCL2 secreted from microglia. Moreover, Ly6C-high monocytes alleviated neurological dysfunction after SAH.


Assuntos
Lesões Encefálicas , Acidente Vascular Cerebral , Hemorragia Subaracnóidea , Humanos , Camundongos , Masculino , Animais , Monócitos , Hemorragia Subaracnóidea/complicações , Lesões Encefálicas/etiologia , Macrófagos , Camundongos Endogâmicos C57BL
6.
Eur J Pharmacol ; 956: 175956, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37541374

RESUMO

MicroRNA (miRNA)-mediated gene silencing is a method of RNA interference in which a miRNA binds to messenger RNA sequences and regulates target gene expression. MiRNA-based therapeutics have shown promise in treating a variety of central nervous system diseases, as verified by results from diverse preclinical model organisms. Over the last decade, several miRNA-based therapeutics have entered clinical trials for various kinds of diseases, such as tumors, infections, and inherited diseases. However, such clinical trials for central nervous system diseases are scarce, and many central nervous system diseases, including hemorrhagic stroke, ischemic stroke, traumatic brain injury, intractable epilepsy, and Alzheimer's disease, lack effective treatment. Considering its effectiveness for central nervous system diseases in preclinical experiments, microRNA-based intervention may serve as a promising treatment for these kinds of diseases. This paper reviews basic principles and recent progress of miRNA-based therapeutics and summarizes general procedures to develop such therapeutics for treating central nervous system diseases. Then, the current obstacles in drug development are discussed. This review also provides a new perspective on possible solutions to these obstacles in the future.


Assuntos
Lesões Encefálicas Traumáticas , Doenças do Sistema Nervoso Central , MicroRNAs , Neoplasias , Humanos , MicroRNAs/genética , MicroRNAs/uso terapêutico , MicroRNAs/metabolismo , Neoplasias/tratamento farmacológico , Interferência de RNA , Resultado do Tratamento , Lesões Encefálicas Traumáticas/tratamento farmacológico , Doenças do Sistema Nervoso Central/terapia , Doenças do Sistema Nervoso Central/tratamento farmacológico
7.
Plant Sci ; 332: 111705, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37059127

RESUMO

Grafting is the main asexual propagation method for horticultural crops and can enhance their resistance to biotic or abiotic stress. Many mRNAs can be transported over long distances through the graft union, however, the function of mobile mRNAs remains poorly understood. Here, we exploited lists of candidate mobile mRNAs harboring potential 5-methylcytosine (m5C) modification in pear (Pyrus betulaefolia). dCAPS RT-PCR and RT-PCR were employed to demonstrate the mobility of the 3-hydroxy-3-methylglutaryl-coenzyme A reductase1 (PbHMGR1) mRNA in grafted plants of both pear and tobacco (Nicotiana tabacum). Overexpressing PbHMGR1 in tobacco plants enhanced salt tolerance during seed germination. In addition, both histochemical staining and GUS expression analysis showed that PbHMGR1 could directly respond to salt stress. Furthermore, it was found that the relative abundance of PbHMGR1 increased in heterografted scion, which avoided serious damage under salt stress. Collectively, these findings established that PbHMGR1 mRNA could act as a salt-responsive signal and move through the graft union to enhance salt tolerance of scion, which might be used as a new plant breeding technique to improve resistance of scion through a stress-tolerant rootstock.


Assuntos
Pyrus , Pyrus/genética , Pyrus/metabolismo , Tolerância ao Sal/genética , Floema/genética , Floema/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Melhoramento Vegetal
8.
Int J Mol Sci ; 24(3)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36768908

RESUMO

Hydrocephalus has been observed in rats with spontaneous hypertension (SHRs). It has been demonstrated that activation of the oxidative stress related protein retinoic acid receptor alpha (RARα) has neuroprotective impacts. Our investigation aims to determine the potential role and mechanism of RARα in hydrocephalus. The RARα-specific agonist (Am80) and RARα inhibitor (AGN196996) were used to investigate the role of RARα in cerebrospinal fluid (CSF) secretion in the choroid plexus of SHRs. Evaluations of CSF secretion, ventricular volume, Western blotting, and immunofluorescent staining were performed. Hydrocephalus and CSF hypersecretion were identified in SHRs but not in Wistar-Kyoto rats, occurring at the age of 7 weeks. The RARα/MAFB/MSR1 pathway was also activated in SHRs. Therapy with Am80 beginning in week 5 decreased CSF hypersecretion, hydrocephalus development, and pathological changes in choroid plexus alterations by week 7. AGN196996 abolished the effect of Am80. In conclusion, activation of the RARα attenuated CSF hypersecretion to inhibit hydrocephalus development via regulating the MAFB/MSR1 pathway. RARα may act as a possible therapeutic target for hydrocephalus.


Assuntos
Hidrocefalia , Hipertensão , Animais , Ratos , Plexo Corióideo/metabolismo , Hidrocefalia/metabolismo , Hipertensão/metabolismo , Fator de Transcrição MafB/metabolismo , Proteínas Oncogênicas/metabolismo , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Receptores Depuradores Classe A/metabolismo
9.
New Phytol ; 238(3): 1115-1128, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36751904

RESUMO

Numerous plant endogenous mRNAs move via phloem and thus affect the growth and development of long-distant organs. mRNAs are transported with RNA-binding proteins forming a ribonucleoprotein complex. However, it remains elusive how such RNP complex assembles and facilitates mRNA trafficking. Protease digestion and RNA immunoprecipitation were used to investigate the RNP assembly function of the complete Chaperonin Containing T-complex Polypeptide-1. In situ hybridization, hairy root transformation, microprojectile bombardment, and grafting experiments demonstrate the role of CCT complex in the transport of a PbWoxT1-PbPTB3 RNP complex in Pyrus betulaefolia. PbCCT5 silenced caused defective movement of GFP-PbPTB3 and GFP-PbWoxT1 from hairy roots to new leaves via the phloem. PbCCT5 is shown to interact with PbPTB3. PbCCT complex enhanced PbPTB3 stabilization and permitted assembly of PbWoxT1 and PbPTB3 into an RNP complex. Furthermore, silencing of individual CCT subunits inhibited the intercellular movement of GFP-PbPTB3 and long-distance trafficking of PbWoxT1 and PbPTB3 in grafted plants. Taken together, the CCT complex assembles PbPTB3 and PbWoxT1 into an RNP complex in the phloem in order to facilitate the long-distance trafficking of PbWoxT1 in P. betulaefolia. This study therefore provides important insights into the mechanism of RNP complex formation and transport.


Assuntos
Pyrus , Chaperonina com TCP-1/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Plantas/genética , RNA de Plantas/metabolismo , Ribonucleoproteínas/metabolismo
10.
Front Neurol ; 13: 890126, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35651348

RESUMO

Objective: In moyamoya disease (MMD) with direct or combined revascularization, the initially hemodynamic recipient features are likely one of the main causes of acute hemodynamic disruption. Previous studies have explored the relationship between recipient diameter or flow velocity and postoperative complications, but there are still no optimal selection criteria with multiple potential recipient vessels. Cerebral edema is one of the most common radiological manifestations in the acute postoperative period. This study assessed the hemodynamic characteristics of cortex vessels related to postoperative cerebral edema. Methods: All patients who had undergone direct or combined revascularization with preoperative digital subtraction angiography (DSA) between 2019 and 2021 were eligible for inclusion in this study. The application of DSA was performed and regular radiological examinations were employed after surgery. DSA was analyzed with the hemodynamic features within chosen recipient vessels. Cerebral edema was identified as a low-density image on CT or high signaling in the MRI T2 phase. The recipient hemodynamic characteristics and demographic presentation, as well as clinical data, were retrospectively analyzed in this study. Results: A total of 103 patients underwent direct or combined revascularization with preoperative DSA. The mean age of this enrolled cohort was 44.31 ± 10.386 years, in which bilaterally involved MMD accounted for the main part. The preliminary correlation analysis found preoperative disease period (p = 0.078), recipients observed in angiography (p = 0.002), and surgery on the left (p = 0.097) may be associated with cerebral edema. The following regression analysis confirmed low occurrence of cerebral edema was accompanied by recipients observed in angiography (p = 0.003). After subdividing by flow direction and hemodynamic sources, the incidence rate of anterograde direction, anterior sources, and posterior sources were significantly lower than undetected recipients. Conclusions: Cerebral edema is a common radiological manifestation in MMDs after surgery. In this study, the observation in angiography reliably identifies a variety of physiological or pathological recipient detection, flow direction, and hemodynamic sources in patients with MMD after revascularization, which indicates the selection strategy of potential recipients and highlights the importance of recipient observability in DSA. Meanwhile, vascular conditions determined by recipient hemodynamics meditate the occurrence of postoperative cerebral edema.

12.
J Neuroinflammation ; 18(1): 210, 2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34530854

RESUMO

BACKGROUND: Neuroinflammation and oxidative stress plays an important role in the pathogenesis of early brain injury (EBI) after subarachnoid hemorrhage (SAH). This study is the first to show that activation of autophagy protein nuclear receptor binding factor 2 (NRBF2) could reduce endoplasmic reticulum stress (ERS)-associated inflammation and oxidative stress after SAH. METHODS: Male C57BL/6J mice were subjected to endovascular perforation to establish a model of SAH. NRBF2 overexpression adeno-associated virus (AAV), NRBF2 small interfering RNAs (siRNA), lysosomal inhibitor-chloroquine (CQ), and late endosome GTPase Rab7 receptor antagonist-CID1067700 (CID) were used to investigate the role of NRBF2 in EBI after SAH. Neurological tests, brain water content, western blotting and immunofluorescence staining were evaluated. RESULTS: Our study found that the level of NRBF2 was increased after SAH and peaked at 24 h after SAH. In addition, we found that the overexpression of NRBF2 significantly improved neurobehavioral scores and reduced ERS, oxidative stress, and neuroinflammation in SAH, whereas the inhibition of NRBF2 exacerbated these phenotypes. In terms of mechanism, NRBF2 overexpression significantly promoted autophagosome maturation, with the downregulation of CHOP, Romo-1, TXNIP, NLRP3, TNF-α, and IL-1ß expression through interaction with Rab7. The protective effect of NRBF2 on ERS-associated neuroinflammation and oxidative stress after SAH was eliminated by treatment with CQ. Meanwhile, it was also reversed by intraperitoneal injection of CID. Moreover, the MIT domain of NRBF2 was identified as a critical binding site that interacts with Rab7 and thereby promotes autophagosome maturation. CONCLUSION: Our data provide evidence that the autophagy protein NRBF2 has a protective effect on endoplasmic reticulum stress-associated neuroinflammation and oxidative stress by promoting autophagosome maturation through interactions with Rab7 after SAH.


Assuntos
Autofagossomos/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Estresse Oxidativo/fisiologia , Hemorragia Subaracnóidea/metabolismo , Transativadores/metabolismo , proteínas de unión al GTP Rab7/metabolismo , Animais , Autofagia/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/prevenção & controle
13.
J Neuroinflammation ; 18(1): 154, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34233703

RESUMO

BACKGROUND: Complex changes in the brain microenvironment following traumatic brain injury (TBI) can cause neurological impairments for which there are few efficacious therapeutic interventions. The reactivity of astrocytes is one of the keys to microenvironmental changes, such as neuroinflammation, but its role and the molecular mechanisms that underpin it remain unclear. METHODS: Male C57BL/6J mice were subjected to the controlled cortical impact (CCI) to develop a TBI model. The specific ligand of AXL receptor tyrosine kinase (AXL), recombinant mouse growth arrest-specific 6 (rmGas6) was intracerebroventricularly administered, and selective AXL antagonist R428 was intraperitoneally applied at 30 min post-modeling separately. Post-TBI assessments included neurobehavioral assessments, transmission electron microscopy, immunohistochemistry, and western blotting. Real-time polymerase chain reaction (RT-PCR), siRNA transfection, and flow cytometry were performed for mechanism assessments in primary cultured astrocytes. RESULTS: AXL is upregulated mainly in astrocytes after TBI and promotes astrocytes switching to a phenotype that exhibits the capability of ingesting degenerated neurons or debris. As a result, this astrocytic transformation promotes the limitation of neuroinflammation and recovery of neurological dysfunction. Pharmacological inhibition of AXL in astrocytes significantly decreased astrocytic phagocytosis both in vivo and in primary astrocyte cultures, in contrast to the effect of treatment with the rmGas6. AXL activates the signal transducer and activator of the transcription 1 (STAT1) pathway thereby further upregulating ATP-binding cassette transporter 1 (ABCA1). Moreover, the supernatant from GAS6-depleted BV2 cells induced limited enhancement of astrocytic phagocytosis in vitro. CONCLUSION: Our work establishes the role of AXL in the transformation of astrocytes to a phagocytic phenotype via the AXL/STAT1/ABCA1 pathway which contributes to the separation of healthy brain tissue from injury-induced cell debris, further ameliorating neuroinflammation and neurological impairments after TBI. Collectively, our findings provide a potential therapeutic target for TBI.


Assuntos
Astrócitos/enzimologia , Lesões Encefálicas Traumáticas/metabolismo , Córtex Cerebral/enzimologia , Fagocitose/fisiologia , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Animais , Astrócitos/patologia , Lesões Encefálicas Traumáticas/patologia , Células Cultivadas , Córtex Cerebral/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptor Tirosina Quinase Axl
14.
Neurosci Bull ; 37(10): 1412-1426, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34142331

RESUMO

Endogenously eliminating the hematoma is a favorable strategy in addressing intracerebral hemorrhage (ICH). This study sought to determine the role of retinoid X receptor-α (RXR-α) in the context of hematoma absorption after ICH. Our results showed that pharmacologically activating RXR-α with bexarotene significantly accelerated hematoma clearance and alleviated neurological dysfunction after ICH. RXR-α was expressed in microglia/macrophages, neurons, and astrocytes. Mechanistically, bexarotene promoted the nuclear translocation of RXR-α and PPAR-γ, as well as reducing neuroinflammation by modulating microglia/macrophage reprograming from the M1 into the M2 phenotype. Furthermore, all the beneficial effects of RXR-α in ICH were reversed by the PPAR-γ inhibitor GW9662. In conclusion, the pharmacological activation of RXR-α confers robust neuroprotection against ICH by accelerating hematoma clearance and repolarizing microglia/macrophages towards the M2 phenotype through PPAR-γ-related mechanisms. Our data support the notion that RXR-α might be a promising therapeutic target for ICH.


Assuntos
Hemorragia Cerebral , Hematoma , Receptor X Retinoide alfa , Anilidas/farmacologia , Hemorragia Cerebral/complicações , Hemorragia Cerebral/tratamento farmacológico , Hematoma/tratamento farmacológico , Humanos , Macrófagos , Microglia , Neuroproteção , PPAR gama
15.
Transl Stroke Res ; 12(6): 1018-1034, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33539006

RESUMO

Polarization of microglia/macrophages toward the pro-inflammatory phenotype is an important contributor to neuroinflammation after intracerebral hemorrhage (ICH). Dectin-1 is a pattern recognition receptor that has been reported to play a key role in regulating neuroinflammation in ischemic stroke and spinal cord injury. However, the role and mechanism of action of Dectin-1 after ICH remains unclear. In this study, we investigated the effect of Dectin-1 on modulating the microglia/macrophage phenotype and neuroinflammation and the possible underlying mechanism after ICH. We found that Dectin-1 expression increased after ICH, and was mainly localized in microglia/macrophages. Neutrophil infiltration and microglia/macrophage polarization toward the pro-inflammatory phenotype increased after ICH. However, treatment with a Dectin-1 inhibitor reversed these phenomena and induced a shift the anti-inflammatory phenotype in microglia/macrophages; this resulted in alleviation of neurological dysfunction and facilitated hematoma clearance after ICH. We also found that Dectin-1 crosstalks with the downstream pro-inflammatory pathway, Card9/NF-κB, by activating spleen tyrosine kinase (Syk) both in vivo and in vitro. In conclusion, our data suggest that Dectin-1 is involved in the microglia/macrophage polarization and functional recovery after ICH, and that this mechanism, at least in part, may contribute to the involvement of the Syk/Card9/NF-kB pathway.


Assuntos
Microglia , Doenças Neuroinflamatórias , Animais , Proteínas Adaptadoras de Sinalização CARD , Hemorragia Cerebral/tratamento farmacológico , Lectinas Tipo C , Macrófagos , Camundongos , Fenótipo
16.
J Cell Physiol ; 236(4): 2988-3000, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32964440

RESUMO

Glioblastoma (GBM) is the most common, malignant, and deadly primary glioma. Six-transmembrane epithelial antigen of prostate (STEAP) family is involved in tumorigenesis; here, we have explored the biological function and the prognostic value of the STEAP family in GBM. Differentially expressed STEAP genes in tumor and normal samples were screened by using The Cancer Genome Atlas (TCGA) database. Univariate and multivariate Cox regression identified the prognosis-related genes: STEAP2 and STEAP3, which were involved in the regulation of immune response and cell cycle. Finally, a prognostic nomogram combining age, gender, chemotherapy, radiotherapy, IDH1 status, and the risk score model based on STEAP2 and STEAP3 was built and further validated in TCGA and Chinese Glioma Genome Atlas (CGGA) cohorts via concordance index and calibration plot, which suggested a favorable value for prognosis prediction. In conclusion, our results provided a comprehensive analysis of the STEAP family and a model for the prognosis prediction of GBM.


Assuntos
Antígenos de Neoplasias/metabolismo , Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Estudos de Coortes , Feminino , Ferroptose/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Glioblastoma/imunologia , Glioblastoma/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Nomogramas , Prognóstico , Modelos de Riscos Proporcionais , Reprodutibilidade dos Testes , Fatores de Risco , Análise de Sobrevida
17.
J Neuroinflammation ; 17(1): 165, 2020 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-32450897

RESUMO

BACKGROUND: Neuroinflammation is closely associated with the poor prognosis in subarachnoid hemorrhage (SAH) patients. This study was aimed to determine the role of stimulator of IFN genes (STING), an essential regulator to innate immunity, in the context of SAH. METHODS: A total of 344 male C57BL/6 J mice were subjected to endovascular perforation to develop a model of SAH. Selective STING antagonist C-176 and STING agonist CMA were administered at 30 min or 1 h post-modeling separately. To investigate the underlying mechanism, the AMPK inhibitor compound C was administered intracerebroventricularly at 30 min before surgery. Post-SAH assessments included SAH grade, neurological test, brain water content, western blotting, RT-PCR, and immunofluorescence. Oxygenated hemoglobin was introduced into BV2 cells to establish a SAH model in vitro. RESULTS: STING was mainly distributed in microglia, and microglial STING expression was significantly increased after SAH. Administration of C-176 substantially attenuated SAH-induced brain edema and neuronal injury. More importantly, C-176 significantly alleviated both short-term and persistent neurological dysfunction after SAH. Meanwhile, STING agonist CMA remarkably exacerbated neuronal injury and deteriorated neurological impairments. Mechanically, STING activation aggravated neuroinflammation via promoting microglial activation and polarizing into M1 phenotype, evidenced by microglial morphological changes, as well as the increased level of microglial M1 markers including IL-1ß, iNOS, IL-6, TNF-α, MCP-1, and NLRP3 inflammasome, while C-176 conferred a robust anti-inflammatory effect. However, all the mentioned beneficial effects of C-176 including alleviated neuroinflammation, attenuated neuronal injury and the improved neurological function were reversed by AMPK inhibitor compound C. Meanwhile, the critical role of AMPK signal in C-176 mediated anti-inflammatory effect was also confirmed in vitro. CONCLUSION: Microglial STING yielded neuroinflammation after SAH, while pharmacologic inhibition of STING could attenuate SAH-induced inflammatory injury at least partly by activating AMPK signal. These data supported the notion that STING might be a potential therapeutic target for SAH.


Assuntos
Inflamação/patologia , Proteínas de Membrana/metabolismo , Hemorragia Subaracnóidea/patologia , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Modelos Animais de Doenças , Inflamação/imunologia , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/fisiologia , Hemorragia Subaracnóidea/imunologia , Hemorragia Subaracnóidea/metabolismo
18.
Neurochem Int ; 134: 104656, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31899197

RESUMO

Neuronal apoptosis is one of the main pathophysiological events in the early brain injury (EBI) post subarachnoid hemorrhage (SAH). Wnt-3a, one of the endogenous wnt ligands crucial in neurogenesis, has been proven to be efficacious in neuroprotection in traumatic brain injury and ischemic stroke. The glycolytic enzyme aldolase C and ribosome biogenesis protein PPAN were revealed to be linked to wnt signaling pathway. The aim of the study was to explore the antiapoptotic effects of intranasal wnt-3a through Frizzled-1 (Frz-1)/aldolase C/PPAN pathway in SAH. Approaches for assessment included SAH grade, Garcia test, brain water content evaluation, rotarod test, Morris water maze test, Western blot, immunofluorescence and transmission electron microscopy. The results showed that wnt-3a improved the neurological scores, brain water content and long-term neurobehavioral functions after SAH. Wnt-3a increased the level of Frz-1, aldolase C, ß-catenin, PPAN and the Bcl-2/Bax ratio; and decreased the level of axin and cleaved caspase-3 (CC-3). The anti-apoptotic effect of wnt-3a was further evidenced by TUNEL staining and subcellular structure imaging. Frz-1 siRNA and aldolase C siRNA offset the effects of wnt-3a; and restoration of aldolase C by aldolase C CRISPR in Frz-1 siRNA preconditioned SAH rats salvaged the level of Frz-1, aldolase C, PPAN and reduced axin and CC-3. In summary, intranasal administration of wnt-3a alleviates neuronal apoptosis through Frz-1/aldolase C/PPAN pathway in the EBI of SAH rats. The feasible intranasal route and the long-lasting neuroprotective property of wnt-3a is of great clinical relevance.


Assuntos
Apoptose/efeitos dos fármacos , Lesões Encefálicas/tratamento farmacológico , Frutose-Bifosfato Aldolase/farmacologia , Hemorragia Subaracnóidea/tratamento farmacológico , Administração Intranasal , Animais , Lesões Encefálicas/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neuroproteção/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Hemorragia Subaracnóidea/metabolismo
19.
Plant Sci ; 280: 424-432, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30824022

RESUMO

The grafting of horticultural crops enables breeders to induce phenotypic changes in rootstocks and scions. A number of signaling molecules, including RNAs and proteins, were recently shown to underlie these changes; however, little is known about the composition of ribonucleoprotein (RNP) complexes or how these macromolecules are transported. Here, we used a polypyrimidine tract-binding protein, PbPTB3, as a bait to screen a library of phloem cDNA from a pear variety 'Du Li' (Pyrus betulaefolia). We identified a new protein constituent of the RNP complex, TRANSPARENT TESTA GLABRA1 (PbTTG1), a WD40 protein that interacts with PbPTB3 to facilitate its transport with PbWoxT1 mRNA through the phloem. Overexpression experiments indicated that PbTTG1 binds to PbPTB3, facilitating its transmission from the leaf through the petiole, while silencing of PbTTG1 expression prevented their translocation. Heterografting experiments also showed that silencing of PbTTG1 prevented the transport of PbPTB3 from the rootstock to the scion. Collectively, these findings established that PbTTG1 binds to PbPTB3 and PbWoxT1 to form an RNP complex, which facilitates their long-distance movement.


Assuntos
Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Transporte Proteico , Pyrus/metabolismo , Ribonucleoproteínas/metabolismo , Produtos Agrícolas , Biblioteca Gênica , Inativação Gênica , Genes Reporter , Floema/genética , Floema/metabolismo , Filogenia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Pyrus/genética , RNA Mensageiro/metabolismo , RNA de Plantas/metabolismo , Ribonucleoproteínas/genética , Técnicas do Sistema de Duplo-Híbrido
20.
Int J Pharm ; 551(1-2): 8-13, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30196141

RESUMO

Nanoparticle drug delivery system improves the therapeutic efficacy of a drug; however, achieving sustained release from nanoparticles is challenging, owing to the increase of surface area and pronounced burst release. In this study, by incorporating an organogel of 12-hydroxystearic acid (12-HSA) into lipid-bilayers, a gel-liposomal formulation was developed to sustain drug release over time. The lipid-bilayer-coated nanogels (LBCNs) with a particle size of approximately 200 nm and with a core-shell structure had an entrapment efficiency of up to 80% for paclitaxel. LBCNs could continually release both hydrophobic and water-soluble drugs over time. Interestingly, the incorporation of organogel enhanced the cellular uptake of liposomes significantly and, accordingly, enabled improved cytotoxicity of chemotherapy agent against the cancer cells. In conclusion, by formulating the organogel into the lipid bilayers, gel-liposomes were developed, allowing for sustained drug release, improved internalization and the resultant enhancement of cytotoxicity of chemotherapy agent to cancer cells.


Assuntos
Antineoplásicos Fitogênicos/administração & dosagem , Bicamadas Lipídicas/administração & dosagem , Nanopartículas/administração & dosagem , Paclitaxel/administração & dosagem , Células A549 , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Preparações de Ação Retardada/administração & dosagem , Liberação Controlada de Fármacos , Géis , Humanos , Lipossomos , Ácidos Esteáricos/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA