Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Proteome Res ; 23(5): 1859-1870, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38655723

RESUMO

To understand how upregulated isoglutaminyl cyclase (isoQC) is involved in the initiation of diseases such as cancer, we developed a human KYSE30 carcinoma cell model in which isoQC was stably overexpressed. GO and KEGG analysis of the DEGs (228) and DEPs (254) respectively implicated isoQC on the proliferation invasion and metastasis of cells and suggested that isoQC might participate in the regulation of MAPK, RAS, circadian rhythm, and related pathways. At the functional level, isoQC-overexpressing KYSE30 cells showed enhanced proliferation, migration, and invasion capacity. Next, we decided to study the precise effect of isoQC overexpression on JNK, p-JNK, AKT, p-AKT, ERK, p-ERK, and PER2, as RNA levels of these proteins are significantly correlated with signal levels indicated in RNA-Seq analysis, and these candidates are the top correlated DEPs enriched in RT-qPCR analysis. We saw that only p-ERK expression was inhibited, while PER2 was increased. These phenotypes were inhibited upon exposure to PER2 inhibitor KL044, which allowed for the restoration of p-ERK levels. These data support upregulated isoQC being able to promote cancer cell proliferation and migration in vitro, likely by helping to regulate the MAPK and RAS signaling pathways, and the circadian protein PER2 might be a potential mediator.


Assuntos
Aminoaciltransferases , Movimento Celular , Proliferação de Células , Sistema de Sinalização das MAP Quinases , Humanos , Proliferação de Células/genética , Movimento Celular/genética , Sistema de Sinalização das MAP Quinases/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Invasividade Neoplásica , Regulação para Cima , Neoplasias/genética , Neoplasias/patologia , Neoplasias/metabolismo
2.
Biomed Res Int ; 2022: 4154697, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36479306

RESUMO

Glutaminyl cyclase (QC) is responsible for converting the N-terminal glutaminyl and glutamyl of the proteins into pyroglutamate (pE) through cyclization. It has been confirmed that QC catalyzes the formation of neurotoxic pE-modified Aß in the brain of AD patients. But the effects of upregulated QC in diverse diseases have not been much clear until recently. Here, RNA sequencing was applied to identify differentially expressed genes (DEGs) in PC12 cells with QC overexpressing or knockdown. A total of 697 DEGs were identified in QC overexpressing cells while only 77 in QC knockdown cells. Multiple bioinformatic approaches revealed that the DEGs in QC overexpressing group were enriched in endoplasmic reticulum stress (ERS) related signaling pathways. The gene expression patterns of 23 DEGs were confirmed by RT-qPCR, in which the genes related to ERS showed the highest consistency. We also revealed the protein levels of GRP78, PERK, CHOP, and PARP-1, and caspase family was significantly upregulated by overexpressing QC. Moreover, overexpressing QC significantly increased apoptosis of PC12 cells in a time dependent manner. However, no significant alteration was observed in QC knockdown cells. Therefore, our study indicated that upregulated QC could induce ERS and apoptosis, which consequently trigger diseases by catalyzing the generation of pE-modified mediators.


Assuntos
Aminoaciltransferases , Apoptose , Estresse do Retículo Endoplasmático , Animais , Ratos , Apoptose/genética , Biologia Computacional , Estresse do Retículo Endoplasmático/genética , Células PC12 , Aminoaciltransferases/metabolismo
3.
J Med Chem ; 64(10): 6549-6565, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-34000808

RESUMO

Pyroglutamate (pE) modification, catalyzed mainly by glutaminyl cyclase (QC), is prevalent throughout nature and is particularly important in mammals including humans for the maturation of hormones, peptides, and proteins. In humans, the upregulation of QC is involved in multiple diseases and conditions including Alzheimer's disease, Huntington's disease, melanomas, thyroid carcinomas, accelerated atherosclerosis, septic arthritics, etc. This upregulation catalyzes the generation of modified mediators such as pE-amyloid beta (Aß) and pE-chemokine ligand 2 (CCL2) peptides. Not surprisingly, QC has emerged as a reasonable target for the development of therapeutics to combat these diseases and conditions. In this manuscript the deleterious effects of upregulated QC resulting in disease manifestation are reviewed, along with progress on the development of QC inhibitors.


Assuntos
Aminoaciltransferases/antagonistas & inibidores , Inibidores Enzimáticos/química , Aminoaciltransferases/metabolismo , Peptídeos beta-Amiloides/metabolismo , Produtos Biológicos/química , Produtos Biológicos/metabolismo , Produtos Biológicos/uso terapêutico , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/uso terapêutico , Humanos , Imidazóis/química , Imidazóis/metabolismo , Imidazóis/uso terapêutico , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Ácido Pirrolidonocarboxílico/metabolismo , Regulação para Cima
4.
ChemistryOpen ; 10(9): 877-881, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33377311

RESUMO

Alzheimer's disease (AD) is one of the most common neurodegenerative causes of dementia, the pathology of which is still not much clear. It's challenging to discover the disease modifying agents for the prevention and treatment of AD over the years. Emerging evidence has been accumulated to reveal the crucial role of up-regulated glutaminyl cyclase (QC) in the initiation of AD. In the current study, the QC inhibitory potency of a library consisting of 1621 FDA-approved compounds was assessed. A total of 54 hits, 3.33 % of the pool, exhibited QC inhibitory activities. The Ki of the top 5 compounds with the highest QC inhibitory activities were measured. Among these selected hits, compounds affecting neuronal signaling pathways and other mechanisms were recognized. Moreover, several polyphenol derivatives with QC inhibitory activities were also identified. Frameworks and subsets contained in these hits were analyzed. Taken together, our results may contribute to the discovery and development of novel QC inhibitors as potential anti-AD agents.


Assuntos
Aminoaciltransferases/antagonistas & inibidores , Reposicionamento de Medicamentos , Inibidores Enzimáticos/química , Bibliotecas de Moléculas Pequenas/química , Doença de Alzheimer/tratamento farmacológico , Aminoaciltransferases/metabolismo , Cristalografia por Raios X , Inibidores Enzimáticos/metabolismo , Humanos , Estrutura Molecular , Ligação Proteica , Bibliotecas de Moléculas Pequenas/metabolismo , Relação Estrutura-Atividade
5.
Artigo em Inglês | MEDLINE | ID: mdl-33273950

RESUMO

Green tea polyphenols (GTPs) have been shown to exhibit diverse beneficial effects against a variety of diseases. Acetaminophen (APAP) overdose is one of the most frequent causes of drug-induced liver injury. In the current study, we aimed to investigate the protective effect of GTP on APAP-induced liver injury in mice and the underlying mechanisms involved. Male C57BL/6J mice were treated orally with different doses of GTP (37.5, 75, or 150 mg/kg) 4 h after APAP overdose (400 mg/kg) and continuously given every 8 h until sacrificed at 4, 12, 20, and 48 h after the first treatment of GTP. Survival rate and histological and biochemical assessments were performed to evaluate the APAP-induced liver injury. Protein expression of multiple drug metabolizing enzymes and transporters was measured to demonstrate the possible mechanisms involved. Our results revealed that administration of different doses of GTP significantly alleviated APAP-induced liver injury by improving the survival rate, hepatocellular necrosis, and ALT/AST/GSH levels after APAP overdose (400 mg/kg). The protein expression of APAP-induced drug transporters and metabolizing enzymes was mostly induced by GTP treatment, which was followed by reduction in drug transporters at the later time points. The current study collectively demonstrated that GTP protects against APAP-induced liver injury, possibly through regulating drug metabolizing enzymes and transporters after APAP overdose.

6.
Viruses ; 12(9)2020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32967229

RESUMO

As evidence has mounted that virus-infected cells, such as cancer cells, negatively regulate the function of T-cells via immune checkpoints, it has become increasingly clear that viral infections similarly exploit immune checkpoints as an immune system escape mechanism. Although immune checkpoint therapy has been successfully used in cancer treatment, numerous studies have suggested that such therapy may also be highly relevant for treating viral infection, especially chronic viral infections. However, it has not yet been applied in this manner. Here, we reviewed recent findings regarding immune checkpoints in viral infections, including COVID-19, and discussed the role of immune checkpoints in different viral infections, as well as the potential for applying immune checkpoint blockades as antiviral therapy.


Assuntos
Fatores Imunológicos/imunologia , Viroses/imunologia , Vírus/imunologia , Animais , Antivirais/uso terapêutico , Doença Crônica , Humanos , Fatores Imunológicos/antagonistas & inibidores , Imunoterapia , Ativação Linfocitária/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/patologia , Viroses/terapia , Vírus/classificação
7.
Molecules ; 24(6)2019 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-30889805

RESUMO

Senescence is an irreversible state of cell cycle arrest that can be triggered by multiple stimuli, such as oxygen reactive species and DNA damage. Growing evidence has proven that senescence is a tumor-suppressive approach in cancer treatment. Therefore, developing novel agents that modulate senescence may be an alternative strategy against cancer. In our study, we investigated the inhibitory effect of gypenoside L (Gyp-L), a saponin isolated from Gynostemma pentaphyllum, on cancer cell growth. We found that Gyp-L increased the SA-ß-galactosidase activity, promoted the production of senescence-associated secretory cytokines, and inhibited cell proliferation of human liver and esophageal cancer cells. Moreover, Gyp-L caused cell cycle arrest at S phase, and activated senescence-related cell cycle inhibitor proteins (p21 and p27) and their upstream regulators. In addition, Gyp-L activated p38 and ERK MAPK pathways and NF-κB pathway to induce senescence. Consistently, adding chemical inhibitors efficiently counteracted the Gyp-L-mediated senescence, growth inhibition, and cell cycle arrest in cancer cells. Furthermore, treatment with Gyp-L, enhanced the cytotoxicity of clinic therapeutic drugs, including 5-fluorouracil and cisplatin, on cancer cells. Overall, these results indicate that Gyp-L inhibits proliferation of cancer cells by inducing senescence and renders cancer cells more sensitive to chemotherapy.


Assuntos
Senescência Celular/efeitos dos fármacos , Neoplasias Esofágicas/patologia , Neoplasias Hepáticas/patologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/metabolismo , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Gynostemma , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , NF-kappa B/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Regulação para Cima/efeitos dos fármacos , beta-Galactosidase/metabolismo
8.
Acta Pharm Sin B ; 7(5): 583-592, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28924552

RESUMO

Alcohol abuse leads to alcoholic liver disease and no effective therapy is currently available. Wuzhi Tablet (WZ), a preparation of extract from Schisandra sphenanthera that is a traditional hepato-protective herb, exerted a significant protective effect against acetaminophen-induced liver injury in our recent studies, but whether WZ can alleviate alcohol-induced toxicity remains unclear. This study aimed to investigate the contribution of WZ to alcohol-induced liver injury by using chronic-binge and acute models of alcohol feeding. The activities of ALT and AST in serum were assessed as well as the level of GSH and the activity of SOD in the liver. The expression of CYP2E1 and proteins in the NRF2-ARE signaling pathway including NRF2, GCLC, GCLM, HO-1 were measured, and the effect of WZ on NRF2 transcriptional activity was determined. We found that both models resulted in liver steatosis accompanied by increased transaminase activities, but that liver injury was significantly attenuated by WZ. WZ administration also inhibited CYP2E1 expression induced by alcohol, and elevated the level of GSH and the activity of SOD in the liver. Moreover, the NRF2-ARE signaling pathway was activated by WZ and the target genes were all upregulated. Furthermore, WZ significantly activated NRF2 transcriptional activity. Collectively, our study demonstrates that WZ protected against alcohol-induced liver injury by reducing oxidative stress and improving antioxidant defense, possibly by activating the NRF2-ARE pathway.

9.
Biochim Biophys Acta ; 1859(9): 1121-1129, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26906544

RESUMO

The pregnane X receptor (PXR) and constitutive androstane receptor (CAR) are two members of the nuclear receptor superfamily that regulate a broad range of genes involved in drug metabolism and transport. A variety of naturally occurring compounds present in herbal medicines were identified as ligands of PXR and CAR. Recently, accumulative evidences have revealed the PXR- and CAR-mediated herbal effect against multiple human diseases, including inflammatory bowel disease (IBD), cholestatic liver disease, and jaundice. The current review summarized the recent progress in identifying the expanding libraries of herbal medicine as ligands for PXR and CAR. Moreover, the potential for herbal medicines as promising therapeutic agents which were mainly regulated through PXR/CAR signaling pathways was also discussed. The discovery of herbal medicines as modulators of PXR and CAR, and their PXR- and CAR-mediated effect on human diseases will provide a basis for rational drug design, and eventually be explored as a novel therapeutic approach against human diseases. This article is part of a Special Issue entitled: Xenobiotic nuclear receptors: New Tricks for An Old Dog, edited by Dr. Wen Xie.


Assuntos
Colestase/tratamento farmacológico , Medicamentos de Ervas Chinesas/uso terapêutico , Hepatite/tratamento farmacológico , Doenças Inflamatórias Intestinais/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Receptores Citoplasmáticos e Nucleares/agonistas , Receptores de Esteroides/agonistas , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Colestase/genética , Colestase/metabolismo , Colestase/patologia , Receptor Constitutivo de Androstano , Regulação da Expressão Gênica , Hepatite/genética , Hepatite/metabolismo , Hepatite/patologia , Humanos , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/patologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Medicina Tradicional Chinesa/métodos , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Fitoterapia/métodos , Receptor de Pregnano X , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo , Transdução de Sinais
10.
Yao Xue Xue Bao ; 50(9): 1192-6, 2015 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-26757559

RESUMO

The study aimed to investigate the effects of small ubiquitin-related modifier (SUMO) specific protease 1 (SENP1) on human PXR-mediated MDR1 transcriptional activity and mRNA expression. Empty vector and expression plasmids, including PXR, SENP1 and SENP1 mutant (SENP1m) were transiently transfected into HepG2 and LS174T cells using Lipo2000. Transcriptional activity was detected by dual luciferase reporter gene assay, and mRNA level was measured using real-time polymerase chain reaction. The results showed that SENP1 could remarkably reduce the rifampicin (RIF)-induced MDR1 reporter activity and mRNA level in hPXR over expressed HepG2 and LS174T cells (P < 0.05), whereas adding SENP1m restored the RIF-induced increases (P < 0.05). These results indicated that SENP1 could repress the RIF-induced hPXR-mediated MDR1 transcriptional activity and mRNA expression.


Assuntos
Endopeptidases/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Ativação Transcricional , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Cisteína Endopeptidases , Expressão Gênica , Células Hep G2 , Humanos , Receptor 1 de Sinal de Orientação para Peroxissomos , RNA Mensageiro
11.
J Pharmacol Sci ; 126(2): 146-54, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25341566

RESUMO

The pregnane X receptor (PXR, NR1I2), a member of the nuclear receptor superfamily, is activated by a number of clinically prescribed drugs and herbal extracts. The inducible expression of several important cytochrome P450 (CYP450) enzymes has been shown to be regulated by the activation of PXR in the liver. In the current study, reporter gene-transfected cells were used to identify potential antagonists of PXR. Here, we showed that resveratrol (RES), a natural polyphenolic compound could significantly suppress the rifampicin-induced PXR transactivation of the CYP3A4 promoter. Treatment of hPXR-over-expressed cells with RES reduced the rifampicin-inducible expression of CYP3A4 in a concentration-dependent manner. Moreover, the induction of mRNA and protein expression of CYP3A11 by pregnenolone 16α-carbonitrile was also significantly reduced when RES was applied in primary cultures of mouse hepatocytes. Taking together, these findings suggest that RES can attenuate the PXR-mediated induction of CYP3A enzyme. Therefore, it would be possible for RES to antagonize the elevation in CYP3A-mediated drug metabolism by identified PXR activators.


Assuntos
Receptores de Esteroides/antagonistas & inibidores , Estilbenos/farmacologia , Animais , Células Cultivadas , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Relação Dose-Resposta a Droga , Indução Enzimática/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Hepatócitos/metabolismo , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos BALB C , Receptor de Pregnano X , Carbonitrila de Pregnenolona/farmacologia , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo , Resveratrol , Rifampina/antagonistas & inibidores , Ativação Transcricional/efeitos dos fármacos
12.
Drug Metab Dispos ; 42(5): 844-52, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24510383

RESUMO

Oleanolic acid (OA) is a natural triterpenoid and has been demonstrated to protect against varieties of hepatotoxicants. Recently, however, OA at high doses was reported to produce apparent cholestasis in mice. In this study, we characterized the protective effect of OA at low doses against lithocholic acid (LCA)-induced cholestasis in mice and explored further mechanisms. OA cotreatment (5, 10, and 20 mg/kg, i.p.) significantly improved mouse survival rate, attenuated liver necrosis, and decreased serum alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase; more importantly, serum total bile acids and bilirubin, as well as hepatic total bile acids were also remarkably reduced. Gene and protein expression analysis showed that hepatic expression of multidrug resistance-associated protein 2 (Mrp2), Mrp3, and Mrp4 was significantly increased by OA cotreatment, whereas other bile acid metabolism- and transport-related genes, including Na+/taurocholate cotransporter, organic anion transporter 1b2, bile salt export pump, multidrug resistance protein 3, Cyp3a11, Cyp2b10, Sulfotransferase 2a1 (Sult2a1), and UDP-glucuronosyltransferase 1a1 (Ugt1a1), were only slightly changed. OA also caused increased nuclear factor-E2-related factor (Nrf2) mRNA expression and nuclear protein accumulation, whereas nuclear receptors farnesoid X receptor (FXR), pregnane X receptor (PXR), and constitutive androstane receptor were not significantly influenced by OA. Luciferase (Luc) assays performed in HepG2 cells illustrated that OA was a strong Nrf2 agonist with moderate PXR and weak FXR agonism. Finally, in mouse primary cultured hepatocytes, OA dose- and time-dependently induced expression of Mrp2, Mrp3, and Mrp4; however, this upregulation was abrogated when Nrf2 was silenced. In conclusion, OA produces a protective effect against LCA-induced hepatotoxicity and cholestasis, possibly due to Nrf2-mediated upregulation of Mrp2, Mrp3, and Mrp4.


Assuntos
Colestase/prevenção & controle , Expressão Gênica/efeitos dos fármacos , Ácido Litocólico/farmacologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Fator 2 Relacionado a NF-E2/metabolismo , Ácido Oleanólico/uso terapêutico , Animais , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Colestase/induzido quimicamente , Colestase/metabolismo , Relação Dose-Resposta a Droga , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Testes de Função Hepática , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/agonistas , Ácido Oleanólico/administração & dosagem , Cultura Primária de Células , Regulação para Cima
13.
Eur J Pharmacol ; 714(1-3): 105-11, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23791612

RESUMO

Wedelolactone is a major coumarin of Eclipta prostrata, which is used for preventing liver damage. However the effects of wedelolactone on hepatic fibrosis remained unexplored. The purpose of this study was to demonstrate the anti-fibrotic effects of wedelolactone on activated human hepatic stellate cell (HSC) line LX-2 and the possible underlying mechanisms by means of MTT assay, Hoechst staining, as well as real-time quantitative PCR and western blot. The results showed that wedelolactone reduced the cellular viability of LX-2 in a time and dose-dependent manner. After treatment of wedelolactone, the expressions of collagen I and α-smooth muscle actin, two biomarkers of LX-2 activation, were remarkably decreased. The apoptosis of LX-2 cells was induced by wedelolactone accompanied with the decreasing expression of anti-apoptotic Bcl-2 and increasing expression of pro-apoptotic Bax. In addition, phosphorylated status of extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) was up-regulated, but not in p38. Moreover, wedelolactone significantly repressed the level of phosphorylated inhibitor of nuclear factor κB (IκB) and p65 in nucleus in spite of tumor necrosis factor-α stimulation. In conclusion, wedelolactone could significantly inhibit the activation of LX-2 cells, the underlying mechanisms of which included inducing Bcl-2 family involved apoptosis, up-regulating phosphorylated status of ERK and JNK expressions, and inhibiting nuclear factor-κB (NF-κB) mediated activity. Wedelolactone might present as a useful tool for the prevention and treatment of hepatic fibrosis.


Assuntos
Cumarínicos/farmacologia , Células Estreladas do Fígado/citologia , Células Estreladas do Fígado/efeitos dos fármacos , Cirrose Hepática/tratamento farmacológico , Apoptose/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cumarínicos/uso terapêutico , Células Estreladas do Fígado/metabolismo , Humanos , Cirrose Hepática/patologia , NF-kappa B/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
14.
Expert Opin Drug Metab Toxicol ; 6(3): 261-71, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20163318

RESUMO

IMPORTANCE OF THE FIELD: Emerging evidence demonstrates that several nuclear receptor (NR) family members regulate drug-inducible expression and activity of several important carboxylesterase (CES) enzymes in mammalian liver and intestine. Numerous clinically prescribed anticancer prodrugs, carbamate and pyrethroid insecticides, environmental toxicants and procarcinogens are substrates for CES enzymes. Moreover, a key strategy used in rational drug design frequently utilizes an ester linkage methodology to selectively target a prodrug, or to improve the water solubility of a novel compound. AREAS COVERED IN THIS REVIEW: This review summarizes the current state of knowledge regarding NR-mediated regulation of CES enzymes in mammals and highlights their importance in drug metabolism, drug-drug interactions and toxicology. WHAT THE READER WILL GAIN: New knowledge regarding the transcriptional regulation of CES enzymes by NR proteins pregnane x receptor (NR1I2) and constitutive androstane receptor (NR1I3) has recently come to light through the use of knockout and transgenic mouse models. Novel insights regarding the species-specific cross-regulation of glucocorticoid receptor (NR3C1) and PPAR-alpha (NR1C1) signaling and CES gene expression are discussed. TAKE HOME MESSAGE: Elucidation of the role of NR-mediated regulation of CES enzymes in liver and intestine will have a significant impact on rational drug design and the development of novel prodrugs, especially for patients on combination therapy.


Assuntos
Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Regulação Enzimológica da Expressão Gênica , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Hidrolases de Éster Carboxílico/química , Receptor Constitutivo de Androstano , Humanos , Preparações Farmacêuticas/metabolismo , Receptores Citoplasmáticos e Nucleares/química
15.
Drug Metab Dispos ; 37(7): 1539-47, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19359405

RESUMO

The liver- and intestine-enriched carboxylesterase 2 (CES2) enzyme catalyzes the hydrolysis of several clinically important anticancer agents administered as prodrugs. For example, irinotecan, a carbamate prodrug used in the treatment of colorectal cancer, is biotransformed in vivo by CES2 in intestine and liver, thereby producing a potent topoisomerase I inhibitor. Pregnane X receptor (PXR) and constitutive androstane receptor (CAR), two members of the nuclear receptor superfamily of ligand-activated transcription factors, mediate gene activation in response to xenobiotic stress. Together, these receptors comprise a protective response in mammals that coordinately regulate hepatic transport, metabolism, and elimination of numerous xenobiotic compounds. In the present study, microarray analysis was used to identify PXR target genes in duodenum in mice. Here, we show that a gene encoding a member of the CES2 subtype of liver- and intestine-enriched CES enzymes, called Ces6, is induced after treatment with pregnenolone 16alpha-carbonitrile in a PXR-dependent manner in duodenum and liver in mice. Treatment of mice with the CAR activator 1,4-bis[2-(3,5-dichloropyridyloxy)] benzene also induced expression of Ces6 in duodenum and liver in a CAR-dependent manner, whereas treatment with phenobarbital produced induction of Ces6 exclusively in liver. These data identify a key role for PXR and CAR in regulating the drug-inducible expression and activity of an important CES enzyme in vivo. Future studies should focus on determining whether these signaling pathways governing drug-inducible CES expression in intestine and liver are conserved in humans.


Assuntos
Hidrolases de Éster Carboxílico/metabolismo , Regulação Enzimológica da Expressão Gênica/fisiologia , Receptores Citoplasmáticos e Nucleares/fisiologia , Receptores de Esteroides/fisiologia , Xenobióticos/farmacologia , Animais , Carboxilesterase , Hidrolases de Éster Carboxílico/genética , Receptor Constitutivo de Androstano , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Duodeno/metabolismo , Expressão Gênica/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Fígado/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Receptor de Pregnano X , Carbonitrila de Pregnenolona/farmacologia , RNA Mensageiro/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores de Esteroides/metabolismo , Recoverina/genética , Recoverina/metabolismo
16.
J Biol Chem ; 284(11): 6639-49, 2009 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-19141612

RESUMO

Pregnane x receptor is a ligand-activated transcription factor that regulates drug-inducible expression of several key cytochrome P450 enzymes and drug transporter proteins in liver and intestine in a species-specific manner. Activation of this receptor modulates several key biochemical pathways, including gluconeogenesis, beta-oxidation of fatty acids, fatty acid uptake, cholesterol homeostasis, and lipogenesis. It is of current interest to determine whether the interaction between pregnane x receptor and these key biochemical pathways is evolutionarily conserved. We show here that activation of the cyclic AMP-dependent protein kinase signaling pathway synergizes with pregnane x receptor-mediated gene activation in mouse hepatocytes. Conversely, cyclic AMP-dependent protein kinase signaling has a repressive effect upon pregnane x receptor-mediated gene activation in rat and human hepatocytes. We show that the human pregnane x receptor protein can serve as an effective substrate for catalytically active cyclic AMP-dependent protein kinase in vitro. Metabolic labeling of the protein in vivo indicates that human pregnane x receptor exists as a phosphoprotein and that activation of cyclic AMP-dependent protein kinase signaling modulates the phosphorylation status of pregnane x receptor. Activation of cyclic AMP-dependent protein kinase signaling also modulates the interactions of pregnane x receptor with protein cofactors. Our results define the species-specific impact of cyclic AMP-dependent protein kinase signaling on pregnane x receptor and provide a molecular explanation of cyclic AMP-dependent protein kinase-mediated repression of human pregnane x receptor activity. Taken together, our results identify a novel mode of regulation of pregnane x receptor activity and highlight prominent functional differences in the process across species.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Fosfoproteínas/metabolismo , Receptores de Esteroides/metabolismo , Transdução de Sinais/fisiologia , Animais , Ativação Enzimática/fisiologia , Humanos , Masculino , Camundongos , Fosforilação/fisiologia , Receptor de Pregnano X , Ratos , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA