RESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Rhubarb (Rhei Radix et Rhizoma) is a traditional Chinese medicine, has been used as a strong astringent in China to treat inflammation-related diseases, such as acute pancreatitis, acute cholecystitis, appendicitis and so on. Rhein, emodin and aloe-emodin are the important active anthraquinone in rhubarb, and are considered to be the main ingredients contributing to anti-inflammatory. AIM OF THE STUDY: Rhein, emodin and aloe-emodin, anthraquinones with the same parent structure that are found in rhubarb, have beneficial anti-inflammatory effects in vitro and in vivo. Anthraquinone derivatives also have important clinical roles. However, their pharmacodynamic differences and the structure-activity relationships associated with their anti-inflammatory properties have not been systematically explored. The present study was designed to quantify the effects of three rhubarb anthraquinones on inflammation and to explore the structure-activity relationships of these compounds. MATERIALS AND METHODS: In this study, we detected NF-κB phosphorylation, iNOS protein expression, and IL-6 and NO production in LPS-stimulated RAW264.7 cells and then calculated median effect equations and built a dynamic pharmacodynamic model to quantitatively evaluate the efficacy of these three anthraquinones. Additionally, to determine the structure-activity relationships, we investigated the physicochemical properties and molecular electrostatic potentials of the drug molecules. RESULTS: We found that rhein, emodin, and aloe-emodin exerted at least dual-target (NF-κB, iNOS) inhibition of LPS-induced inflammatory responses. Compared with rhein and emodin, aloe-emodin had a stronger anti-inflammatory effect, and its inhibition of iNOS protein expression was approximately twice that of NF-κB phosphorylation. In addition, aloe-emodin had the strongest hydrophobic effect among the three anthraquinones. CONCLUSIONS: Overall, we concluded that the receptor binding the rhubarb anthraquinones had a hydrophobic pocket. Anthraquinone molecules with stronger hydrophobic effects had higher affinity for the receptor, resulting in greater anti-inflammatory activity. These results suggest that the addition of a hydrophobic group is a potential method for structural modification to design anti-inflammatory anthraquinone derivatives with enhanced potency.
Assuntos
Antraquinonas/farmacologia , Emodina/farmacologia , Lipopolissacarídeos/toxicidade , Macrófagos/efeitos dos fármacos , Rheum/química , Animais , Antraquinonas/química , Emodina/química , Camundongos , Estrutura Molecular , Células RAW 264.7 , Relação Estrutura-AtividadeRESUMO
Pro-inflammatory factors are important indicators for assessing inflammation severity and drug efficacy. Coptisine has been reported to inhibit LPS-induced TNF-α and NO production. In this study, we aim to build a pharmacokinetic-pharmacodynamic model to quantify the coptisine time course and potency of its anti-inflammatory effect in LPS-stimulated rats. The plasma and lung coptisine concentrations, plasma and lung TNF-α concentrations, plasma NO concentration, and lung iNOS expression were measured in LPS-stimulated rats after intravenous injection of three coptisine doses. The coptisine disposition kinetics were described by a two-compartment model. The coptisine distribution process from the plasma to the lung was described by first-order dynamics. The dynamics of plasma TNF-α generation and elimination followed zero-order kinetics and the Michaelis-Menten equation. A first-order kinetic model described the TNF-α diffusion process from the plasma to the lung. A precursor-pool indirect response model was used to describe the iNOS and NO generation induced by TNF-α. The inhibition rates of TNF-α production by coptisine (54.73%, 26.49%, and 13.25%) calculated from the simulation model were close to the decline rates of the plasma TNF-α AUC (57.27%, 40.33%, and 24.98%, respectively). Coptisine suppressed plasma TNF-α generation in a linear manner, resulting in a cascading reduction of iNOS and NO. The early term TNF-α response to stimulation is a key factor in the subsequent inflammatory cascade. In conclusion, this comprehensive PK-PD model provided a rational explanation for the interlocking relationship among TNF-α, iNOS and NO production triggered by LPS and a quantitative evaluation method for inhibition of TNF-α production by coptisine.