Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Nat Metab ; 6(6): 1092-1107, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38773347

RESUMO

Lipid droplet tethering with mitochondria for fatty acid oxidation is critical for tumor cells to counteract energy stress. However, the underlying mechanism remains unclear. Here, we demonstrate that glucose deprivation induces phosphorylation of the glycolytic enzyme phosphofructokinase, liver type (PFKL), reducing its activity and favoring its interaction with perilipin 2 (PLIN2). On lipid droplets, PFKL acts as a protein kinase and phosphorylates PLIN2 to promote the binding of PLIN2 to carnitine palmitoyltransferase 1A (CPT1A). This results in the tethering of lipid droplets and mitochondria and the recruitment of adipose triglyceride lipase to the lipid droplet-mitochondria tethering regions to engage lipid mobilization. Interfering with this cascade inhibits tumor cell proliferation, promotes apoptosis and blunts liver tumor growth in male mice. These results reveal that energy stress confers a moonlight function to PFKL as a protein kinase to tether lipid droplets with mitochondria and highlight the crucial role of PFKL in the integrated regulation of glycolysis, lipid metabolism and mitochondrial oxidation.


Assuntos
Proliferação de Células , Glicólise , Gotículas Lipídicas , Lipólise , Mitocôndrias , Oxirredução , Gotículas Lipídicas/metabolismo , Animais , Mitocôndrias/metabolismo , Camundongos , Humanos , Masculino , Metabolismo dos Lipídeos , Perilipina-2/metabolismo , Fosforilação , Carnitina O-Palmitoiltransferase/metabolismo , Linhagem Celular Tumoral
3.
Nat Chem Biol ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538923

RESUMO

Telomere dysfunction is intricately linked to the aging process and stands out as a prominent cancer hallmark. Here we demonstrate that telomerase activity is differentially regulated in cancer and normal cells depending on the expression status of fructose-1,6-bisphosphatase 1 (FBP1). In FBP1-expressing cells, FBP1 directly interacts with and dephosphorylates telomerase reverse transcriptase (TERT) at Ser227. Dephosphorylated TERT fails to translocate into the nucleus, leading to the inhibition of telomerase activity, reduction in telomere lengths, enhanced senescence and suppressed tumor cell proliferation and growth in mice. Lipid nanoparticle-mediated delivery of FBP1 mRNA inhibits liver tumor growth. Additionally, FBP1 expression levels inversely correlate with TERT pSer227 levels in renal and hepatocellular carcinoma specimens and with poor prognosis of the patients. These findings demonstrate that FBP1 governs cell immortality through its protein phosphatase activity and uncover a unique telomerase regulation in tumor cells attributed to the downregulation or deficiency of FBP1 expression.

4.
EMBO J ; 43(6): 931-955, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38360997

RESUMO

The Von Hippel-Lindau (VHL) protein, which is frequently mutated in clear-cell renal cell carcinoma (ccRCC), is a master regulator of hypoxia-inducible factor (HIF) that is involved in oxidative stresses. However, whether VHL possesses HIF-independent tumor-suppressing activity remains largely unclear. Here, we demonstrate that VHL suppresses nutrient stress-induced autophagy, and its deficiency in sporadic ccRCC specimens is linked to substantially elevated levels of autophagy and correlates with poorer patient prognosis. Mechanistically, VHL directly binds to the autophagy regulator Beclin1, after its PHD1-mediated hydroxylation on Pro54. This binding inhibits the association of Beclin1-VPS34 complexes with ATG14L, thereby inhibiting autophagy initiation in response to nutrient deficiency. Expression of non-hydroxylatable Beclin1 P54A abrogates VHL-mediated autophagy inhibition and significantly reduces the tumor-suppressing effect of VHL. In addition, Beclin1 P54-OH levels are inversely correlated with autophagy levels in wild-type VHL-expressing human ccRCC specimens, and with poor patient prognosis. Furthermore, combined treatment of VHL-deficient mouse tumors with autophagy inhibitors and HIF2α inhibitors suppresses tumor growth. These findings reveal an unexpected mechanism by which VHL suppresses tumor growth, and suggest a potential treatment for ccRCC through combined inhibition of both autophagy and HIF2α.


Assuntos
Proteína Beclina-1 , Carcinoma de Células Renais , Neoplasias Renais , Proteína Supressora de Tumor Von Hippel-Lindau , Animais , Humanos , Camundongos , Autofagia , Proteína Beclina-1/genética , Proteína Beclina-1/metabolismo , Carcinoma de Células Renais/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Hidroxilação , Neoplasias Renais/metabolismo , Pró-Colágeno-Prolina Dioxigenase/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo
5.
Trends Cell Biol ; 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38061936

RESUMO

The circadian clock and cell metabolism are both dysregulated in cancer cells through intrinsic cell-autonomous mechanisms and external influences from the tumor microenvironment. The intricate interplay between the circadian clock and cancer cell metabolism exerts control over various metabolic processes, including aerobic glycolysis, de novo nucleotide synthesis, glutamine and protein metabolism, lipid metabolism, mitochondrial metabolism, and redox homeostasis in cancer cells. Importantly, oncogenic signaling can confer a moonlighting function on core clock genes, effectively reshaping cellular metabolism to fuel cancer cell proliferation and drive tumor growth. These interwoven regulatory mechanisms constitute a distinctive feature of cancer cell metabolism.

6.
Adv Sci (Weinh) ; 10(27): e2206380, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37541303

RESUMO

Tumor cells often overexpress immune checkpoint proteins, including CD47, for immune evasion. However, whether or how oncogenic activation of receptor tyrosine kinases, which are crucial drivers in tumor development, regulates CD47 expression is unknown. Here, it is demonstrated that epidermal growth factor receptor (EGFR) activation induces CD47 expression by increasing the binding of c-Src to CD47, leading to c-Src-mediated CD47 Y288 phosphorylation. This phosphorylation inhibits the interaction between the ubiquitin E3 ligase TRIM21 and CD47, thereby abrogating TRIM21-mediated CD47 K99/102 polyubiquitylation and CD47 degradation. Knock-in expression of CD47 Y288F reduces CD47 expression, increases macrophage phagocytosis of tumor cells, and inhibits brain tumor growth in mice. In contrast, knock-in expression of CD47 K99/102R elicits the opposite effects compared to CD47 Y288F expression. Importantly, CD47-SIRPα blockade with an anti-CD47 antibody treatment significantly enhances EGFR-targeted cancer therapy. In addition, CD47 expression levels in human glioblastoma (GBM) specimens correlate with EGFR and c-Src activation and aggravation of human GBM. These findings elucidate a novel mechanism underlying CD47 upregulation in EGFR-activated tumor cells and underscore the role of the EGFR-c-Src-TRIM21-CD47 signaling axis in tumor evasion and the potential to improve the current cancer therapy with a combination of CD47 blockade with EGFR-targeted remedy.


Assuntos
Antígeno CD47 , Glioblastoma , Evasão Tumoral , Animais , Humanos , Camundongos , Antígeno CD47/metabolismo , Linhagem Celular Tumoral , Receptores ErbB , Glioblastoma/metabolismo , Fosforilação
7.
Nat Cell Biol ; 25(5): 714-725, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37156912

RESUMO

Activation of receptor protein kinases is prevalent in various cancers with unknown impact on ferroptosis. Here we demonstrated that AKT activated by insulin-like growth factor 1 receptor signalling phosphorylates creatine kinase B (CKB) T133, reduces metabolic activity of CKB and increases CKB binding to glutathione peroxidase 4 (GPX4). Importantly, CKB acts as a protein kinase and phosphorylates GPX4 S104. This phosphorylation prevents HSC70 binding to GPX4, thereby abrogating the GPX4 degradation regulated by chaperone-mediated autophagy, alleviating ferroptosis and promoting tumour growth in mice. In addition, the levels of GPX4 are positively correlated with the phosphorylation levels of CKB T133 and GPX4 S104 in human hepatocellular carcinoma specimens and associated with poor prognosis of patients with hepatocellular carcinoma. These findings reveal a critical mechanism by which tumour cells counteract ferroptosis by non-metabolic function of CKB-enhanced GPX4 stability and underscore the potential to target the protein kinase activity of CKB for cancer treatment.


Assuntos
Carcinoma Hepatocelular , Ferroptose , Neoplasias Hepáticas , Animais , Humanos , Camundongos , Carcinoma Hepatocelular/genética , Creatina Quinase , Ferroptose/genética , Fosforilação
8.
Nat Cell Biol ; 25(2): 273-284, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36646788

RESUMO

Impairment of the circadian clock is linked to cancer development. However, whether the circadian clock is modulated by oncogenic receptor tyrosine kinases remains unclear. Here we demonstrated that receptor tyrosine kinase activation promotes CK2-mediated CLOCK S106 phosphorylation and subsequent disassembly of the CLOCK-BMAL1 dimer and suppression of the downstream gene expression in hepatocellular carcinoma (HCC) cells. In addition, CLOCK S106 phosphorylation exposes its nuclear export signal to bind Exportin1 for nuclear exportation. Cytosolic CLOCK acetylates PRPS1/2 K29 and blocks HSC70-mediated and lysosome-dependent PRPS1/2 degradation. Stabilized PRPS1/2 promote de novo nucleotide synthesis and HCC cell proliferation and liver tumour growth. Furthermore, CLOCK S106 phosphorylation and PRPS1/2 K29 acetylation are positively correlated in human HCC specimens and with HCC poor prognosis. These findings delineate a critical mechanism by which oncogenic signalling inhibits canonical CLOCK transcriptional activity and simultaneously confers CLOCK with instrumental moonlighting functions to promote nucleotide synthesis and tumour growth.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Nucleotídeos/metabolismo , Fosforilação
9.
Nat Cell Biol ; 24(11): 1655-1665, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36266488

RESUMO

Tumour cells exhibit greater metabolic plasticity than normal cells and possess selective advantages for survival and proliferation with unclearly defined mechanisms. Here we demonstrate that glucose deprivation in normal hepatocytes induces PERK-mediated fructose-1,6-bisphosphatase 1 (FBP1) S170 phosphorylation, which converts the FBP1 tetramer to monomers and exposes its nuclear localization signal for nuclear translocation. Importantly, nuclear FBP1 binds PPARα and functions as a protein phosphatase that dephosphorylates histone H3T11 and suppresses PPARα-mediated ß-oxidation gene expression. In contrast, FBP1 S124 is O-GlcNAcylated by overexpressed O-linked N-acetylglucosamine transferase in hepatocellular carcinoma cells, leading to inhibition of FBP1 S170 phosphorylation and enhancement of ß-oxidation for tumour growth. In addition, FBP1 S170 phosphorylation inversely correlates with ß-oxidation gene expression in hepatocellular carcinoma specimens and patient survival duration. These findings highlight the differential role of FBP1 in gene regulation in normal and tumour cells through direct chromatin modulation and underscore the inactivation of its protein phosphatase function in tumour growth.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Histonas/genética , Histonas/metabolismo , Frutose-Bifosfatase/genética , PPAR alfa/genética , PPAR alfa/metabolismo , Frutose , Neoplasias Hepáticas/patologia , Transcrição Gênica , Fosfoproteínas Fosfatases/metabolismo
10.
Nat Metab ; 4(2): 239-253, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35145325

RESUMO

Tumors can reprogram the functions of metabolic enzymes to fuel malignant growth; however, beyond their conventional functions, key metabolic enzymes have not been found to directly govern cell mitosis. Here, we report that glutamine synthetase (GS) promotes cell proliferation by licensing mitotic progression independently of its metabolic function. GS depletion, but not impairment of its enzymatic activity, results in mitotic arrest and multinucleation across multiple lung and liver cancer cell lines, patient-derived organoids and xenografted tumors. Mechanistically, GS directly interacts with the nuclear pore protein NUP88 to prevent its binding to CDC20. Such interaction licenses activation of the CDC20-mediated anaphase-promoting complex or cyclosome to ensure proper metaphase-to-anaphase transition. In addition, GS is overexpressed in human non-small cell lung cancer and its depletion reduces tumor growth in mice and increases the efficacy of microtubule-targeted chemotherapy. Our findings highlight a moonlighting function of GS in governing mitosis and illustrate how an essential metabolic enzyme promotes cell proliferation and tumor development, beyond its main metabolic function.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células , Glutamato-Amônia Ligase , Humanos , Camundongos , Mitose
11.
Biomed J ; 45(4): 642-653, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34311128

RESUMO

BACKGROUND: The abnormal expression of long non-coding RNA (lncRNA) Opa-interacting protein 5 antisense RNA 1 (OIP5-AS1) has been observed in many human cancers and the underlying mechanisms have been well studied. However, the function of OIP5-AS1 in acute kidney injury (AKI) remains unclear. METHODS: To explore the role of OIP5-AS1 in the progression of AKI, the cisplatin-induced AKI mouse and cell model were established. To confirm the potential protective effect of OIP5-AS1 during cisplatin-induced AKI, rescue experiments were performed. Targetscan was used to predict the potential targets of miR-144-5p. To further determine whether the effect of miR-144-5p during cisplatin-induced AKI was mediated by PMK2, the recuse experiments using PMK2 overexpressing vector was applied. RESULTS: OIP5-AS1 was significantly downregulated both in cisplatin-induced AKI mice and human renal tubular cell line HK-2 cells. Moreover, overexpression of OIP5-AS1 efficiently promoted cell growth and reduced cisplatin-induced apoptosis of HK-2 cells. Furthermore, OIP5-AS1 was identified as a sponge of miR-144-5p, and upregulation of miR-144-5p could significantly reverse overexpression of OIP5-AS1-induced protective effect on the damage of cisplatin to HK-2 cells. In addition, pyruvate kinase M2 (PKM2) was found to be a direct target of miR-144-5p, and overexpression of PKM2 efficiently reversed the effect of miR-144-5p mimics on the damage in cisplatin-stimulated HK-2 cells. CONCLUSIONS: OIP5-AS1 reduced the apoptosis of cisplatin-stimulated renal epithelial cells by targeting the miR-144-5p/PKM2 axis, which extended the regulatory network of lncRNAs in cisplatin-induced AKI and also provided a novel therapeutic target for AKI treatment.


Assuntos
Injúria Renal Aguda , MicroRNAs , Piruvato Quinase , RNA Longo não Codificante , Injúria Renal Aguda/induzido quimicamente , Animais , Apoptose , Cisplatino/efeitos adversos , Células Epiteliais , Humanos , Camundongos , MicroRNAs/genética , Piruvato Quinase/genética , RNA Longo não Codificante/genética
12.
Front Oncol ; 11: 561247, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33842305

RESUMO

Metabolic enzymes can perform non-metabolic functions and play critical roles in the regulation of a variety of important cellular activities. Phosphoenolpyruvate carboxykinase 1 (PCK1), a gluconeogenesis enzyme, was recently identified as an AKT-regulated protein kinase that phosphorylates INSIG1/2 to promote nuclear SREBP1-dependent lipogenesis. However, the relationship of this regulation with the progression of non-small-cell lung carcinoma (NSCLC) is unclear. Here, we demonstrate that epidermal growth factor receptor (EGFR) activation induces AKT-dependent PCK1 pS90, PCK1-mediated INSIG1 pS207/INSIG2 pS151, and nuclear SREBP1 accumulation in NSCLC cells. In addition, the expression levels of AKT pS473, PCK1 pS90, INSIG1 pS207/INSIG2 pS151, and nuclear SREBP1 are higher in 451 analyzed human NSCLC specimens than in their adjacent normal tissues and positively correlated with each other in the tumor specimens. Furthermore, the expression levels of PCK1 pS90, INSIG1 pS207/INSIG2 pS151, and nuclear SREBP1 are associated with TNM stage and progression in NSCLC. Importantly, levels of PCK1 pS90 or INSIG1 pS207/INSIG2 pS151 are positively correlated with poor prognosis in NSCLC patients, and the combined expression value of the PCK1 and INSIG1/2 phosphorylation has a better prognostic value than that of each individual protein phosphorylation value and is an independent prognostic marker for NSCLC. These findings reveal the role of PCK1-mediated nuclear SREBP1 activation in NSCLC progression and highlight the potential to target the protein kinase activity of PCK1 for the diagnosis and treatment of human NSCLC.

13.
J Exp Med ; 218(1)2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33601415

RESUMO

Dysregulation in lipid metabolism is among the most prominent metabolic alterations in cancer. Cancer cells harness lipid metabolism to obtain energy, components for biological membranes, and signaling molecules needed for proliferation, survival, invasion, metastasis, and response to the tumor microenvironment impact and cancer therapy. Here, we summarize and discuss current knowledge about the advances made in understanding the regulation of lipid metabolism in cancer cells and introduce different approaches that have been clinically used to disrupt lipid metabolism in cancer therapy.


Assuntos
Proliferação de Células , Imunoterapia , Metabolismo dos Lipídeos/imunologia , Neoplasias , Microambiente Tumoral/imunologia , Animais , Humanos , Invasividade Neoplásica , Metástase Neoplásica , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias/terapia
14.
Cell Metab ; 33(1): 33-50, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33406403

RESUMO

Key pathological, including oncogenic, signaling pathways regulate the canonical functions of metabolic enzymes that serve the cellular metabolic needs. Importantly, these signaling pathways also confer a large number of metabolic enzymes to have noncanonical or nonmetabolic functions that are referred to as "moonlighting" functions. In this review, we highlight how aberrantly regulated metabolic enzymes with such activities play critical roles in the governing of a wide spectrum of instrumental cellular activities, including gene expression, cell-cycle progression, DNA repair, cell proliferation, survival, apoptosis, and tumor microenvironment remodeling, thereby promoting the pathologic progression of disease, including cancer.


Assuntos
Enzimas/metabolismo , Neoplasias/metabolismo , Animais , Humanos , Neoplasias/patologia , Transdução de Sinais , Microambiente Tumoral
15.
Eur J Cancer ; 142: 123-131, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33278777

RESUMO

BACKGROUND: Metabolic enzymes have non-canonical functions and play vital roles in the regulation of various cellular activities. Phosphoenolpyruvate carboxykinase 1 (PCK1), a gluconeogenic enzyme, was recently identified as an AKT-dependent protein kinase and promoted sterol regulatory element-binding protein 1 (SREBP1)-dependent lipogenesis. However, association of this protein kinase activity of PCK1 with progression of oesophageal squamous cell carcinoma (ESCC) is unclear. METHODS: We examined 200 ESCC patient samples and prognosis using immunohistochemistry, multivariate Cox regression and Kaplan-Meier Plot analyses. RESULTS: We show that the expression levels of AKT pS473, AKT-regulated PCK1 pS90, PCK1-mediated INSIG1 pS207/INSIG2 pS151 and nuclear SREBP1 were higher in analysed 200 human ESCC specimens than in their adjacent non-tumour tissues; the expression levels of these proteins were significantly and positively correlated with each other in tumour specimens. In addition, the expression levels of PCK1 pS90, INSIG1 pS207/INSIG2 pS151 and SREBP1 were associated with the tumour, node and metastasis stage and progression in ESCC. Importantly, levels of PCK1 pS90 or INSIG1 pS207/INSIG2 pS151 or nuclear SREBP1 were positively correlated with poor prognosis in patients with ESCC, and the combined expression values of PCK1 pS90, INSIG1 pS207/INSIG2 pS151 and nuclear SREBP1 had a better prognostic value than that of each individual protein expression value and was an independent prognostic marker for ESCC. CONCLUSION: These findings reveal the role of PCK1 protein kinase activity-dependent SREBP1 activation in ESCC progression. The regulation of SREBP1 by AKT activation-dependent PCK1 protein kinase activity may provide the potential for the diagnosis and treatment of human ESCC.


Assuntos
Neoplasias Esofágicas/genética , Fosfoenolpiruvato/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Retrospectivos
16.
J Exp Med ; 217(11)2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-32860047

RESUMO

PD-L1 up-regulation in cancer contributes to immune evasion by tumor cells. Here, we show that Wnt ligand and activated EGFR induce the binding of the ß-catenin/TCF/LEF complex to the CD274 gene promoter region to induce PD-L1 expression, in which AKT activation plays an important role. ß-Catenin depletion, AKT inhibition, or PTEN expression reduces PD-L1 expression in tumor cells, enhances activation and tumor infiltration of CD8+ T cells, and reduces tumor growth, accompanied by prolonged mouse survival. Combined treatment with a clinically available AKT inhibitor and an anti-PD-1 antibody overcomes tumor immune evasion and greatly inhibits tumor growth. In addition, AKT-mediated ß-catenin S552 phosphorylation and nuclear ß-catenin are positively correlated with PD-L1 expression and inversely correlated with the tumor infiltration of CD8+ T cells in human glioblastoma specimens, highlighting the clinical significance of ß-catenin activation in tumor immune evasion.


Assuntos
Antígeno B7-H1/metabolismo , Glioblastoma/imunologia , Transcrição Gênica/genética , Evasão Tumoral/genética , beta Catenina/metabolismo , Aloenxertos , Animais , Anticorpos/imunologia , Anticorpos/farmacologia , Antígeno B7-H1/genética , Antígeno B7-H1/imunologia , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Glioblastoma/patologia , Compostos Heterocíclicos com 3 Anéis/farmacologia , Humanos , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Transfecção , Carga Tumoral/efeitos dos fármacos , Carga Tumoral/genética , Evasão Tumoral/efeitos dos fármacos , beta Catenina/genética
17.
Cancer Commun (Lond) ; 40(9): 389-394, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32809272

RESUMO

Highly active lipogenesis is essential for rapid tumor growth. Sterol regulatory element-binding protein (SREBP) is a key transcriptional factor for lipogenesis and activated by reduced sterol and oxysterol levels. However, the mechanism by which cancer cells activate SREBP without altering these sterol/oxysterol levels remains elusive. In one of our recent studies published in Nature entitled "The gluconeogenic enzyme PCK1 phosphorylates INSIG1/2 for lipogenesis", we demonstrated that activated AKT-mediated phosphoenolpyruvate carboxykinase 1 (PCK1) S90 phosphorylation reduces the gluconeogenic activity of PCK1 and triggers its translocation to the endoplasmic reticulum (ER), where PCK1 acts as a protein kinase and uses GTP, rather than ATP, as a phosphate donor to phosphorylate Insig1/2 thereby reducing oxysterol's binding to Insig1/2 and activating SREBP-mediated lipogenesis for tumor growth. These findings elucidate a coordinated regulation between gluconeogenesis and lipogenesis and uncover a critical role of the protein kinase activity of PCK1 in SREBP-dependent lipid synthesis.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/genética , Lipogênese , Neoplasias , Fosfoenolpiruvato Carboxiquinase (GTP)/genética , Humanos , Neoplasias/patologia , Fosfoenolpiruvato Carboxiquinase (GTP)/metabolismo , Fosforilação , Proteínas Quinases , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo
18.
Nature ; 580(7804): 530-535, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32322062

RESUMO

Cancer cells increase lipogenesis for their proliferation and the activation of sterol regulatory element-binding proteins (SREBPs) has a central role in this process. SREBPs are inhibited by a complex composed of INSIG proteins, SREBP cleavage-activating protein (SCAP) and sterols in the endoplasmic reticulum. Regulation of the interaction between INSIG proteins and SCAP by sterol levels is critical for the dissociation of the SCAP-SREBP complex from the endoplasmic reticulum and the activation of SREBPs1,2. However, whether this protein interaction is regulated by a mechanism other than the abundance of sterol-and in particular, whether oncogenic signalling has a role-is unclear. Here we show that activated AKT in human hepatocellular carcinoma (HCC) cells phosphorylates cytosolic phosphoenolpyruvate carboxykinase 1 (PCK1), the rate-limiting enzyme in gluconeogenesis, at Ser90. Phosphorylated PCK1 translocates to the endoplasmic reticulum, where it uses GTP as a phosphate donor to phosphorylate INSIG1 at Ser207 and INSIG2 at Ser151. This phosphorylation reduces the binding of sterols to INSIG1 and INSIG2 and disrupts the interaction between INSIG proteins and SCAP, leading to the translocation of the SCAP-SREBP complex to the Golgi apparatus, the activation of SREBP proteins (SREBP1 or SREBP2) and the transcription of downstream lipogenesis-related genes, proliferation of tumour cells, and tumorigenesis in mice. In addition, phosphorylation of PCK1 at Ser90, INSIG1 at Ser207 and INSIG2 at Ser151 is not only positively correlated with the nuclear accumulation of SREBP1 in samples from patients with HCC, but also associated with poor HCC prognosis. Our findings highlight the importance of the protein kinase activity of PCK1 in the activation of SREBPs, lipogenesis and the development of HCC.


Assuntos
Carcinoma Hepatocelular/metabolismo , Gluconeogênese , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lipogênese , Neoplasias Hepáticas/metabolismo , Proteínas de Membrana/metabolismo , Fosfoenolpiruvato Carboxiquinase (GTP)/metabolismo , Animais , Carcinogênese , Carcinoma Hepatocelular/patologia , Proliferação de Células , Modelos Animais de Doenças , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Neoplasias Hepáticas/patologia , Masculino , Proteínas de Membrana/química , Camundongos , Camundongos Nus , Oxisteróis/metabolismo , Fosforilação , Prognóstico , Ligação Proteica , Transporte Proteico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo
19.
Nat Cell Biol ; 22(3): 282-288, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32066906

RESUMO

Clustered regularly interspaced short palindromic repeats (CRISPR), CRISPR interference and programmable base editing have transformed the manipulation of eukaryotic genomes for potential therapeutic applications1-4. Here, we exploited CRISPR interference and programmable base editing to determine their potential in editing a TERT gene promoter-activating mutation, which occurs in many diverse cancer types, particularly glioblastoma5-8. Correction of the -124C>T TERT promoter mutation to -124C was achieved using a single guide RNA (sgRNA)-guided and catalytically impaired Campylobacter jejuni CRISPR-associated protein 9-fused adenine base editor (CjABE). This modification blocked the binding of members of the E26 transcription factor family to the TERT promoter, reduced TERT transcription and TERT protein expression, and induced cancer-cell senescence and proliferative arrest. Local injection of adeno-associated viruses expressing sgRNA-guided CjABE inhibited the growth of gliomas harbouring TERT-promoter mutations. These preclinical proof-of-concept studies establish the feasibility of gene editing as a therapeutic approach for cancer and validate activated TERT-promoter mutations as a cancer-specific therapeutic target.


Assuntos
Neoplasias Encefálicas/genética , Sistemas CRISPR-Cas , Edição de Genes , Glioblastoma/genética , Telomerase/genética , Animais , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Senescência Celular , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Masculino , Camundongos Nus , Pessoa de Meia-Idade , Mutação , Regiões Promotoras Genéticas , Telomerase/metabolismo , Encurtamento do Telômero , Fatores de Transcrição/metabolismo
20.
Mol Cell ; 76(6): 885-895.e7, 2019 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-31629659

RESUMO

Hypoxia, which occurs during tumor growth, triggers complex adaptive responses in which peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) plays a critical role in mitochondrial biogenesis and oxidative metabolism. However, how PGC-1α is regulated in response to oxygen availability remains unclear. We demonstrated that lysine demethylase 3A (KDM3A) binds to PGC-1α and demethylates monomethylated lysine (K) 224 of PGC-1α under normoxic conditions. Hypoxic stimulation inhibits KDM3A, which has a high KM of oxygen for its activity, and enhances PGC-1α K224 monomethylation. This modification decreases PGC-1α's activity required for NRF1- and NRF2-dependent transcriptional regulation of TFAM, TFB1M, and TFB2M, resulting in reduced mitochondrial biogenesis. Expression of PGC-1α K224R mutant significantly increases mitochondrial biogenesis, reactive oxygen species (ROS) production, and tumor cell apoptosis under hypoxia and inhibits brain tumor growth in mice. This study revealed that PGC-1α monomethylation, which is dependent on oxygen availability-regulated KDM3A, plays a critical role in the regulation of mitochondrial biogenesis.


Assuntos
Neoplasias Encefálicas/enzimologia , Histona Desmetilases com o Domínio Jumonji/metabolismo , Mitocôndrias/enzimologia , Biogênese de Organelas , Oxigênio/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Processamento de Proteína Pós-Traducional , Animais , Apoptose , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Células HeLa , Células Hep G2 , Humanos , Histona Desmetilases com o Domínio Jumonji/genética , Metilação , Camundongos Endogâmicos BALB C , Camundongos Nus , Mitocôndrias/patologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Carga Tumoral , Hipóxia Tumoral , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA