Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 165
Filtrar
1.
Prostaglandins Other Lipid Mediat ; : 106871, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38992854

RESUMO

This mini-review addresses lipoxygenases and receptors for leukotrienes in hematological malignancies. Potential novel biomarkers and drug targets in leukemia and B-cell lymphoma are discussed.

2.
Discov Oncol ; 15(1): 275, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980440

RESUMO

BACKGROUND: Osteosarcoma (OS), the most common primary malignant bone tumor, predominantly affects children and young adults and is characterized by high invasiveness and poor prognosis. Despite therapeutic advancements, the survival rate remains suboptimal, indicating an urgent need for novel biomarkers and therapeutic targets. This study aimed to investigate the prognostic significance of LGMN expression and immune cell infiltration in the tumor microenvironment of OS. METHODS: We performed an integrative bioinformatics analysis utilizing the GEO and TARGET-OS databases to identify differentially expressed genes (DEGs) associated with LGMN in OS. We conducted Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA) to explore the biological pathways and functions. Additionally, we constructed protein-protein interaction (PPI) networks, a competing endogenous RNA (ceRNA) network, and applied the CIBERSORT algorithm to quantify immune cell infiltration. The diagnostic and prognostic values of LGMN were evaluated using the area under the receiver operating characteristic (ROC) curve and Cox regression analysis. Furthermore, we employed Consensus Clustering Analysis to explore the heterogeneity within OS samples based on LGMN expression. RESULTS: The analysis revealed significant upregulation of LGMN in OS tissues. DEGs were enriched in immune response and antigen processing pathways, suggesting LGMN's role in immune modulation within the TME. The PPI and ceRNA network analyses provided insights into the regulatory mechanisms involving LGMN. Immune cell infiltration analysis indicated a correlation between high LGMN expression and increased abundance of M2 macrophages, implicating an immunosuppressive role. The diagnostic AUC for LGMN was 0.799, demonstrating its potential as a diagnostic biomarker. High LGMN expression correlated with reduced overall survival (OS) and progression-free survival (PFS). Importantly, Consensus Clustering Analysis identified two distinct subtypes of OS, highlighting the heterogeneity and potential for personalized medicine approaches. CONCLUSIONS: Our study underscores the prognostic value of LGMN in osteosarcoma and its potential as a therapeutic target. The identification of LGMN-associated immune cell subsets and the discovery of distinct OS subtypes through Consensus Clustering Analysis provide new avenues for understanding the immunosuppressive TME of OS and may aid in the development of personalized treatment strategies. Further validation in larger cohorts is warranted to confirm these findings.

3.
Materials (Basel) ; 17(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38893787

RESUMO

The aggregation of graphene oxide (GO) during the hydration process limits its wide application. Polymer superplasticizers have been used to improve the dispersion state of GO due to their adsorption and site-blocking effects, though the formation of a large amount of foam during the mixing process weakens the mechanical properties of cement. A highly dispersed amphoteric polycarboxylate superplasticizer-stabilized graphene oxide (APC/GO) toughening agent was prepared by electrostatic self-assembly. Results demonstrate that the APC/GO composite dispersed well in a cement pore solution due to the steric effect offered by the APC. Additionally, the well-dispersed GO acted as an antifoaming agent in the cement since GO nanosheets can be absorbed at the air-liquid interface of APC foam via electrostatic interactions and eliminate the air-entraining effect. The well-dispersed APC/GO sheets promoted cement hydration and further refined its pore structure owing to the nucleation effect. The flexural and compressive strength of the cement containing the APC/GO composite were enhanced by 21.51% and 18.58%, respectively, after a 7-day hydration process compared with a blank sample. The improved hydration degree, highly polymerized C-S-H gel, and refined pore structure provided enhanced mechanical properties.

4.
Biochem Biophys Res Commun ; 719: 150096, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38749091

RESUMO

Protein S-nitrosylation, which is defined by the covalent attachment of nitric oxide (NO) to the thiol group of cysteine residues, is known to play critical roles in plant development and stress responses. NO promotes seedling photomorphogenesis and NO emission is enhanced by light. However, the function of protein S-nitrosylation in plant photomorphogenesis is largely unknown. E3 ligase CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) and transcription factor ELONGATED HYPOCOTYL 5 (HY5) antagonistically regulate seedling photomorphogenesis. COP1 inhibits plant photomorphogenesis by targeting photomorphogenic promoters like HY5 for 26S proteasome degradation. Here, we report that COP1 is S-nitrosylated in vitro. Mass spectrometry analyses revealed that two evolutionarily well conserved residues, cysteine 425 and cysteine 607, in the WD40 domain of COP1 are S-nitrosylated. S-nitrosylated glutathione (GSNO) is an important physiological NO donor for protein S-nitrosylation. The Arabidopsis (Arabidopsis thaliana) gsnor1-3 mutant, which accumulates higher level of GSNO, accumulated higher HY5 levels than wildtype (WT), indicating that COP1 activity is inhibited. Protein S-nitrosylation can be reversed by Thioredoxin-h5 (TRXh5) in plants. Indeed, COP1 interacts directly with TRXh5 and its close homolog TRXh3. Moreover, catalase 3 (CAT3) acts as a transnitrosylase that transfers NO to its target proteins like GSNO reductase (GSNOR). We found that CAT3 interacts with COP1 in plants. Taken together, our data indicate that the activity of COP1 is likely inhibited by NO via S-nitrosylation to promote the accumulation of HY5 and photomorphogenesis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fatores de Transcrição de Zíper de Leucina Básica , Óxido Nítrico , Ubiquitina-Proteína Ligases , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Óxido Nítrico/metabolismo , Luz , Cisteína/metabolismo , Plântula/metabolismo , Plântula/crescimento & desenvolvimento , Plântula/genética , Aldeído Oxirredutases/metabolismo , Aldeído Oxirredutases/genética , Regulação da Expressão Gênica de Plantas
5.
Cancer Cell Int ; 24(1): 127, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580966

RESUMO

BACKGROUND: Cancer-associated fibroblasts (CAFs) drive cancer progression and treatment failure on one hand, while their tumor-restraining functions are also observed on the other. Recent single cell RNA sequencing (scRNA-seq) analyses demonstrates heterogeneity of CAFs and defines molecular subtypes of CAFs, which help explain their different functions. However, it remains unclear whether these CAF subtypes have the same or different biological/clinical implications in prostate cancer (PCa) or other malignancies. METHODS: PCa cells were incubated with supernatant from normal fibroblasts and CAFs to assess their effects on cell behaviors. Sequencing, genomic, and clinical data were collected from TCGA, MSKCC, CPGEA and GEO databases. CAF molecular subtypes and total CAF scores were constructed and grouped into low and high groups based on CAF-specific gene expression. Progression free interval (PFI), clinicopathological features, telomere length, immune cell infiltration, drug treatment and somatic mutations were compared among CAF molecular subtypes and low/high score groups. RESULTS: The PCa CAF-derived supernatant promoted PCa cell proliferation and invasion. Based on differentially expressed genes identified by scRNA-seq analyses, we classified CAFs into 6 molecular subtypes in PCa tumors, and each subtype was then categorized into score-high and low groups according to the subtype-specific gene expression level. Such score models in 6 CAF subtypes all predicted PFI. Telomeres were significantly shorter in high-score tumors. The total CAF score from 6 CAF subtypes was also associated with PFI in PCa patients inversely, which was consistent with results from cellular experiments. Immunosuppressive microenvironment occurred more frequently in tumors with a high CAF score, which was characterized by increased CTLA4 expression and indicated better responses to CTLA4 inhibitors. Moreover, this model can also serve as a useful PFI predictor in pan-cancers. CONCLUSION: By combining scRNA-seq and bulk RNA-seq data analyses, we develop a CAF subtype score system as a prognostic factor for PCa and other cancer types. This model system also helps distinguish different immune-suppressive mechanisms in PCa, suggesting its implications in predicting response to immunotherapy. Thus, the present findings should contribute to personalized PCa intervention.

6.
Proc Natl Acad Sci U S A ; 121(7): e2318970121, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38315838

RESUMO

Solar-driven photocatalytic CO2 reduction is an energy-efficient and sustainable strategy to mitigate CO2 levels in the atmosphere. However, efficient and selective conversion of CO2 into multi-carbon products, like C2H4, remains a great challenge due to slow multi-electron-proton transfer and sluggish C-C coupling. Herein, a two-dimensional thin-layered hybrid perovskite is fabricated through filling of oxygen into iodine vacancy in pristine DMASnI3 (DMA = dimethylammonium). The rational-designed DMASnI3(O) induces shrinkage of active sites distance and facilitates dimerization of C-C coupling of intermediates. Upon simulated solar irradiation, the DMASnI3(O) photocatalyst achieves a high selectivity of 74.5%, corresponding to an impressive electron selectivity of 94.6%, for CO2 to C2H4 conversion and an effective C2H4 yield of 11.2 µmol g-1 h-1. In addition, the DMASnI3(O) inherits excellent water stability and implements long-term photocatalytic CO2 reduction to C2H4 in a water medium. This work establishes a unique paradigm to convert CO2 to C2+ hydrocarbons in a perovskite-based photocatalytic system.

7.
Aging (Albany NY) ; 15(24): 15084-15113, 2023 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-38157255

RESUMO

AIMS: Dysregulated copper metabolism has been noticed in many types of cancer including hepatocellular carcinoma (HCC); however, a comprehensive understanding about this dysregulation still remains unclear in HCC. METHODS: A set of bioinformatic tools was integrated to analyze the expression and prognostic significance of copper metabolism-related genes. A related risk score, termed as CMscore, was developed via univariate Cox regression, least absolute shrinkage and selection operator (LASSO) Cox regression and multivariate Cox regression. Pathway enrichment analyses and tumor immune cell infiltration were further investigated in CMscore stratified HCC patients. Weighted correlation network analysis (WGCNA) was used to identify potential regulator of cuproptosis. RESULTS: Copper metabolism was dysregulated in HCC. HCC patients in the high-CMscore group showed a significantly lower overall survival (OS) and enriched in most cancer-related pathways. Besides, HCC patients with high CMscore had higher expression of pro-tumor immune infiltrates and immune checkpoints. Moreover, cancer patients with high CMscore from two large cohorts exhibited significantly prolonged survival time after immunotherapy. WGCNA and subsequently correlation analysis revealed that SLC27A5 might be a potential regulator of cuproptosis in HCC. In vitro experiments revealed that SLC27A5 inhibited cell proliferation and migration of HCC cells and could upregulate FDX1, the key regulator of cuproptosis. SIGNIFICANCE: The CMscore is helpful in clustering HCC patients with distinct prognosis, gene mutation signatures, and sensitivity to immunotherapy. SLC27A5 might serve as a potential target in the induction of cuproptosis in HCC.


Assuntos
Carcinoma Hepatocelular , Cobre , Neoplasias Hepáticas , Humanos , Apoptose , Carcinoma Hepatocelular/genética , Linhagem Celular , Proliferação de Células , Cobre/metabolismo , Proteínas de Transporte de Ácido Graxo/metabolismo , Neoplasias Hepáticas/genética , Prognóstico , Microambiente Tumoral
8.
Biomed Pharmacother ; 169: 115863, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37952356

RESUMO

Acquired aplastic anemia (AA) is a bone marrow failure (BMF) disease, characterized by fatty bone marrow (BM) and BM hypocellularity resulted from auto-immune dysregulated T cells-mediated destruction of BM haemopoietic stem cells (HPSC). The objective of this study was to investigate potential therapeutic effect of irisin, a molecule involved in adipose tissue transition, on AA mouse model. Our results showed that the concentration of irisin in serum was lower in AA patients than in healthy controls, suggesting a role of irisin in the pathogenesis of AA. In the AA mice, irisin administration prolonged the survival rate, prevented or attenuated peripheral pancytopenia, and preserved HPSC in the BM. Moreover, irisin also markedly reduced BM adipogenesis. In vitro results showed that irisin increased both cell proliferation and colony numbers of HPSC. Furthermore, our results demonstrated that irisin upregulated the expression of mitochondrial ATPase Inhibitory Factor 1 (IF1) in HPSC, inhibited the activation of mitochondrial fission protein (DRP1) and enhanced aerobic glycolysis. Taken together, our findings indicate novel roles of irisin in the pathogenesis of AA, and in the protection of HPSC through stimulation of proliferation and regulation of mitochondria function, which provides a proof-of-concept for the application of irisin in AA therapy.


Assuntos
Anemia Aplástica , Células-Tronco Hematopoéticas , Pancitopenia , Animais , Humanos , Camundongos , Anemia Aplástica/patologia , Medula Óssea/metabolismo , Células da Medula Óssea/metabolismo , Fibronectinas/metabolismo , Fibronectinas/farmacologia , Pancitopenia/metabolismo , Pancitopenia/patologia , Células-Tronco Hematopoéticas/efeitos dos fármacos
9.
Biol Sex Differ ; 14(1): 46, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37434223

RESUMO

BACKGROUND: Clear cell renal cell carcinoma (ccRCC) displays sex-biased incidence, outcomes, molecular alterations and treatment efficacy; however, clinical managements are largely identical in male and female patients. Moreover, many biomarkers have been identified as predictors for ccRCC outcomes and response to therapeutic drugs, such as multitargeted tyrosine-kinase receptor (TKR) inhibitors, but little is known about their sex-specificity. Dyskerin (DKC1), encoded by the DKC1 gene within Xq28, is a telomerase co-factor stabilizing telomerase RNA component (TERC) and overexpressed in various cancers. Here, we determined whether DKC1 and/or TERC affect ccRCC sex-differentially. METHODS: DKC1 and TERC expression in primary ccRCC tumors was assessed using RNA sequencing and qPCR. DKC1 association with molecular alterations and overall or progression-free survival (OS or PFS) was analyzed in the TCGA cohort of ccRCC. The IMmotion 151 and 150 ccRCC cohorts were analyzed to evaluate impacts of DKC1 and TERC on Sunitinib response and PFS. RESULTS: DKC1 and TERC expression was significantly upregulated in ccRCC tumors. High DKC1 expression predicts shorter PFS independently in female but not male patients. Tumors in the female DKC1-high group exhibited more frequent alterations in PIK3CA, MYC and TP53 genes. Analyses of the IMmotion 151 ccRCC cohort treated with the TKR inhibitor Sunitinib showed that female patients in the DKC1-high group was significantly associated with lower response rates (P = 0.021) accompanied by markedly shortened PFS (6.1 vs 14.2 months, P = 0.004). DKC1 and TERC expression correlated positively with each other, and higher TERC expression predicted poor Sunitinib response (P = 0.031) and shorter PFS (P = 0.004), too. However, DKC1 rather than TERC acted as an independent predictor (P < 0.001, HR = 2.0, 95% CI 1.480-2.704). In male patients, DKC1 expression was associated with neither Sunitinib response (P = 0.131) nor PFS (P = 0.184), while higher TERC levels did not predict response rates. Similar results were obtained from the analysis of the Sunitinib-treated IMmotion 150 ccRCC patients. CONCLUSIONS: DKC1 serves as an independent female-specific predictor for survival and Sunitinib efficacy in ccRCC, which contribute to better understanding of the sex-biased ccRCC pathogenesis and improve personalized interventions of ccRCC.


Many types of cancer including clear cell renal cell carcinoma (ccRCC) are known to display sex-biased survival, genomic alterations and treatment efficacy; however, clinical managements are largely identical in male and female ccRCC patients. Many molecules have been identified as predictors for ccRCC survival and response to therapeutic drugs, such as multitargeted tyrosine-kinase receptor inhibitor Sunitinib, but little is known about their sex-specificity. Dyskerin (DKC1), encoded by the DKC1 gene on X chromosome, is a telomerase co-factor stabilizing telomerase RNA component (TERC), whereas telomerase plays key roles in cancer development and progression. In this study, we observed increased DKC1 expression in ccRCC tumors. High DKC1 expression predicts shorter disease progression-free survival (PFS) in female but not male patients. Oncogene activation and tumor suppressor inactivation are more frequent in the female DKC1-high tumors. By analyzing two cohorts of ccRCC patients treated with Sunitinib, we showed that female patients in the DKC1-high group was significantly associated with lower response rates accompanied by markedly shortened PFS. DKC1 and TERC expression correlated positively with each other, and higher TERC expression predicted poor Sunitinib response and shorter PFS, too. However, DKC1 rather than TERC acted as an independent predictor. In male patients, DKC1 expression was associated with neither Sunitinib response nor PFS. Thus, DKC1 serves as a female-specific predictor for survival and Sunitinib response in ccRCC. Our findings are expected to improve personalized management of ccRCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Telomerase , Humanos , Feminino , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/genética , Sunitinibe/uso terapêutico , Telomerase/genética , Proteínas de Ligação a RNA , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/genética , Proteínas Nucleares , Proteínas de Ciclo Celular
10.
Front Immunol ; 14: 1208223, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37388735

RESUMO

Like telomere shortening, global DNA hypomethylation occurs progressively with cellular divisions or in vivo aging and functions as a mitotic clock to restrain malignant transformation/progression. Several DNA-methylation (DNAm) age clocks have been established to precisely predict chronological age using normal tissues, but show DNAm age drift in tumors, which suggests disruption of this mitotic clock during carcinogenesis. Little is known about DNAm age alterations and biological/clinical implications in endometrial cancer (EC). Here we address these issues by analyzing TCGA and GSE67116 cohorts of ECs. Horvath clock analysis of these tumors unexpectedly revealed that almost 90% of them exhibited DNAm age deceleration (DNAmad) compared to patient chronological age. Combined with an additional clock named Phenoage, we identified a subset of tumors (82/429) with high DNAmad (hDNAmad+) as assessed by both clocks. Clinically, hDNAmad+ tumors were associated with advanced diseases and shorter patient survival, compared to hDNAmad- ones. Genetically, hDNAmad+ tumors were characterized by higher copy number alterations (CNAs) whereas lower tumor mutation burden. Functionally, hDNAmad+ tumors were enriched with cell cycle and DNA mismatch repair pathways. Increased PIK3CA alterations and downregulation of SCGB2A1, the inhibitor of PI3K kinase, in hDNAmad+ tumors, might promote tumor growth/proliferation and stemness. In addition, the inactivation of aging drivers/tumor suppressors (TP53, RB1, and CDKN2A) while enhanced telomere maintenance occurred more frequently in hDNAmad+ tumors, which supports sustained tumor growth. Prominently, hDNAmad+ tumors were featured with immunoexclusion microenvironments, accompanied by significantly higher levels of VTCN1 expression while lower PD-L1 and CTLA4 expression, which indicates their poor response to immune checkpoint inhibitor (ICI)-based immunotherapy. We further showed significantly higher levels of DNMT3A and 3B expression in hDNAmad+ than in hDNAmad- tumors. Thus, the tumor suppressive function of aging-like DNA hypomethylation is severely impaired in hDNAmad+ tumors, likely due to enhanced expression of DNMT3A/3B and dysregulated aging regulators. Our findings not only enrich biological knowledge of EC pathogenesis but also help improve EC risk stratification and precision ICI immunotherapy.


Assuntos
Metilação de DNA , Neoplasias do Endométrio , Feminino , Humanos , Desaceleração , Neoplasias do Endométrio/genética , Carcinogênese , Metilases de Modificação do DNA , DNA , Microambiente Tumoral
11.
Front Immunol ; 14: 1126247, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37207200

RESUMO

Bladder cancer (BC) or carcinoma (BLCA) is predominantly derived from urothelium and includes non-muscle invasive BC (NMIBC) and muscle invasive BC (MIBC). Bacillus Calmette-Guerin (BCG) has long been applied for NMIBC to effectively reduce disease recurrence or progression, whereas immune checkpoint inhibitors (ICIs) were recently introduced to treat advanced BLCA with good efficacy. For BCG and ICI applications, reliable biomarkers are required to stratify potential responders for better personalized interventions, and ideally, they can replace or reduce invasive examinations such as cystoscopy in monitoring treatment efficacy. Here we developed the cuproptosis-associated 11 gene signature (CuAGS-11) model to accurately predict survival and response to BCG and ICI regimens in BLCA patients. In both discovery and validation cohorts where BLCA patients were divided into high- and low-risk groups based on a median CuAGS-11 score as the cutoff, the high-risk group was associated with significantly shortened overall survival (OS) and progression-free survival (PFS) independently. The survival predictive accuracy was comparable between CuAGS-11 and stage, and their combination-based nomograms showed high consistence between predicted and observed OS/PFS. The analysis of 3 BLCA cohorts treated with BCG unveiled lower response rates and higher frequencies of recurrence or progression coupled with shorter survival in CuAGS-11 high-risk groups. In contrast, almost none of patients underwent progression in low-risk groups. In IMvigor210 cohort of 298 BLCA patients treated with ICI Atezolizumab, complete/partial remissions were 3-fold higher accompanied by significantly longer OS in the CuAGS-11 low- than high-risk groups (P = 7.018E-06). Very similar results were obtained from the validation cohort (P = 8.65E-05). Further analyses of Tumor Immune Dysfunction and Exclusion (TIDE) scores revealed that CuAGS-11 high-risk groups displayed robustly higher T cell exclusion scores in both discovery (P = 1.96E-05) and validation (P = 0.008) cohorts. Collectively, the CuAGS-11 score model is a useful predictor for OS/PFS and BCG/ICI efficacy in BLCA patients. For BCG-treated patients, reduced invasive examinations are suggested for monitoring the CuAGS-11 low-risk patients. The present findings thus provide a framework to improve BLCA patient stratification for personalized interventions and to reduce invasive monitoring inspections.


Assuntos
Apoptose , Carcinoma , Neoplasias da Bexiga Urinária , Humanos , Vacina BCG/uso terapêutico , Carcinoma/patologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Recidiva Local de Neoplasia/patologia , Bexiga Urinária , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia , Cobre
12.
Front Oncol ; 13: 1133902, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37197417

RESUMO

Background: Chromosomal instability (CIN) is a cancer hallmark and it is difficult to directly measure its phenotype, while a CIN25 gene signature was established to do so in several cancer types. However, it is currently unclear whether there exists this signature in clear cell renal cell carcinoma (ccRCC), and if so, which biological and clinical implications it has. Methods: Transcriptomic profiling was performed on 10 ccRCC tumors and matched renal non-tumorous tissues (NTs) for CIN25 signature analyses. TCGA and E-MBAT1980 ccRCC cohorts were analyzed for the presence of CIN25 signature, CIN25 score-based ccRCC classification, and association with molecular alterations and overall or progression-free survival (OS or PFS). IMmotion150 and 151 cohorts of ccRCC patients treated with Sunitinib were analyzed for the CIN25 impact on Sunitinib response and survival. Results: The transcriptomic analysis of 10 patient samples showed robustly upregulated expression of the CIN25 signature genes in ccRCC tumors, which were further confirmed in TCGA and E-MBAT1980 ccRCC cohorts. Based on their expression heterogeneity, ccRCC tumors were categorized into CIN25-C1 (low) and C2 (high) subtypes. The CIN25-C2 subtype was associated with significantly shorter patient OS and PFS, and characterized by increased telomerase activity, proliferation, stemness and EMT. The CIN25 signature reflects not only a CIN phenotype, but also levels of the whole genomic instability including mutation burden, microsatellite instability and homologous recombination deficiency (HRD). Importantly, the CIN25 score was significantly associated with Sunitinib response and survival. In IMmotion151 cohort, patients in the CIN25-C1 group exhibited 2-fold higher remission rate than those in the CIN25-C2 group (P = 0.0004) and median PFS in these two groups was 11.2 and 5.6 months, respectively (P = 7.78E-08). Similar results were obtained from the IMmotion150 cohort analysis. Higher EZH2 expression and poor angiogenesis, well characterized factors leading to Sunitinib resistance, were enriched in the CIN25-C2 tumors. Conclusion: The CIN25 signature identified in ccRCC serves as a biomarker for CIN and other genome instability phenotypes and predicts patient outcomes and response to Sunitinib treatment. A PCR quantification is enough for the CIN25-based ccRCC classification, which holds great promises in clinical routine application.

13.
J Affect Disord ; 338: 228-238, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37257779

RESUMO

BACKGROUND: The salt-inducible kinase 1 (SIK1)-CREB-regulated transcription co-activator 1 (CRTC1) system in the paraventricular nucleus (PVN) of the hypothalamus has been demonstrated to participate in not only depression neurobiology but also the antidepressant mechanisms of fluoxetine, paroxetine, venlafaxine, and duloxetine. Like fluoxetine and paroxetine, escitalopram is also a well-known selective serotonin (5-HT) reuptake inhibitor (SSRI). However, recently it has been found that escitalopram can modulate a lot of targets other than the 5-HT system. Here, we speculate that escitalopram produces effects on the SIK1-CRTC1 system in the PVN. METHODS: Two mice models of depression (chronic social defeat stress (CSDS) and chronic unpredictable mild stress (CUMS)), various behavioral tests, enzyme linked immunosorbent assay (ELISA), western blotting, co-immunoprecipitation (Co-IP), quantitative real-time reverse transcription PCR (qRT-PCR), immunofluorescence, and adeno-associated virus (AAV)-mediated gene transfer were used together in the present study. RESULTS: It was found that escitalopram administration not only significantly prevented the hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis induced by CSDS and CUMS, but also notably reversed the effects of CSDS and CUMS on SIK1, CRTC1, and CRTC1-CREB binding in the PVN of mice. AAV-based genetic knock-down of SIK1 in PVN neurons evidently abolished the antidepressant-like effects of escitalopram in mice. LIMITATION: A shortage of this study is that only rodent models of depression were used, while human samples were not included. CONCLUSIONS: In summary, regulating the SIK1-CRTC1 system in the PVN participates in the antidepressant mechanism of escitalopram, which extends the knowledge of the pharmacological actions of escitalopram.


Assuntos
Escitalopram , Núcleo Hipotalâmico Paraventricular , Camundongos , Humanos , Animais , Paroxetina , Fluoxetina , Serotonina , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/metabolismo , Depressão/tratamento farmacológico , Depressão/genética , Depressão/metabolismo
14.
Aging (Albany NY) ; 15(9): 3442-3464, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37142279

RESUMO

BACKGROUND: Immunogenic cell death (ICD) could activate innate and adaptive immune response. In this work, we aimed to develop an ICD-related signature in uveal melanoma (UVM) patients and facilitate assessment of their prognosis and immunotherapy. METHODS: A set of machine learning methods, including non-negative matrix factorization (NMF) method and least absolute shrinkage and selection operator (LASSO) logistic regression model, and bioinformatics analytic tools were integrated to construct an ICD-related risk score (ICDscore). CIBERSORT and ESTIMATE algorithms were used to evaluate the infiltration of immune cells. The Genomics of Drug Sensitivity in Cancer (GDSC), cellMiner and tumor immune dysfunction and exclusion (TIDE) databases were used for therapy sensitivity analyses. The predictive performance between ICDscore with other mRNA signatures was also compared. RESULTS: The ICDscore could predict the prognosis of UVM patients in both the training and four validating cohorts. The ICDscore outperformed 19 previously published signatures. Patients with high ICDscore exhibited a substantial increase in immune cell infiltration and expression of immune checkpoint inhibitor-related genes, leading to a higher response rate to immunotherapy. Furthermore, the downregulation of poly (ADP-ribose) polymerase family member 8 (PARP8), a critical gene involved in the development of the ICDscore, resulted in decreased cell proliferation and slower migration of UVM cells. CONCLUSION: In conclusion, we developed a robust and powerful ICD-related signature for evaluating the prognosis and benefits of immunotherapy that could serve as a promising tool to guide decision-making and surveillance for UVM patients.


Assuntos
Morte Celular Imunogênica , Melanoma , Humanos , Melanoma/terapia , Prognóstico , Imunoterapia , Microambiente Tumoral
15.
Biomed Pharmacother ; 158: 114193, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36586240

RESUMO

DNA helicases are essential to genomic stability by regulating DNA metabolisms and their loss-of-function mutations lead to genomic instability and predisposition to cancer. Paradoxically, overexpression of DNA helicases is observed in several cancers. Here we analyzed genomic and molecular alterations in 12 important DNA helicases in TCGA pan-cancers to provide an overview of their aberrations. Significant expression heterogeneity of 12 DNA helicases was observed. We calculated DNA helicase score (DHS) based on their expression, and categorized tumors into high, low and intermediate subtypes. High DHS subtypes were robustly associated with stemness, proliferation, hyperactivated oncogenic signaling, longer telomeres, total mutation burden, copy number alterations (CNAs) and shorter survival. Importantly, tumors with high DHSs exhibited stronger expression of alternative end-join (alt-EJ) factors, indicative of sensitivity to chemo- and radio-therapies. High DHSs were also associated with homologous recombination deficiency (HRD), BRCA1/2 mutations and sensitivity to PARP inhibitors. Moreover, several drugs are identified to inhibit DNA helicases, with the Auror A kinase inhibitor Danusertib as the strongest candidate that was confirmed experimentally. The aberrant expression of DNA helicases was associated with CNAs, DNA methylation and m6A regulators. Our findings thus reveal widespread dysregulation of DNA helicases and their broad connection with featured oncogenic aberrations across human cancers. The close association of DHS with the alt-EJ pathway and HRD, and identification of Danusertib as a putative DNA helicase inhibitor have translational significance. Taken together, these findings will contribute to DNA helicase-based cancer therapy.


Assuntos
DNA Helicases , Neoplasias , Humanos , Benzamidas , DNA Helicases/genética , DNA Helicases/metabolismo , Instabilidade Genômica , Neoplasias/tratamento farmacológico , Neoplasias/genética
16.
Mol Oncol ; 17(1): 150-172, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36239411

RESUMO

Telomerase activation is required for malignant transformation. Recent advances in high-throughput technologies have enabled the generation of complex datasets, thus providing alternative approaches to exploring telomerase biology more comprehensively, which has proven to be challenging due to the need for laborious assays required to test for telomerase activity. To solve these issues, several groups have analyzed TCGA pan-cancer tumor datasets by investigating telomerase reverse transcriptase (TERT), the catalytic subunit for telomerase activity, or its surrogates. However, telomerase is a multiunit complex containing not only TERT, but also numerus cofactors required for telomerase function. Here we determined genomic and molecular alterations of 10 well-characterized telomerase components in the TCGA and CCLE datasets. We calculated a telomerase score (TS) based on their expression profiles and clustered tumors into low, high, and intermediate subtypes. To validate the in silico analysis result, we used immunoblotting and telomerase assays. High TS subtypes were significantly associated with stemness, proliferation, epithelial to mesenchymal transition, hyperactivation of oncogenic signaling pathways, shorter patient survival, and infiltration of dysfunctional T-cells or poor response to immunotherapy. Copy number alterations in 10 telomerase components were widespread and associated with the level of their expression. Surprisingly, primary tumors and cancer cell lines frequently displayed a homozygous deletion of the TCAB1 gene, encoding a telomerase protein essential for telomerase trafficking, assembling, and function, as previously reported. However, tumors or cells carrying a TCAB1 deletion still exhibited telomerase activity comparable to or even higher than their wildtype counterparts. Collectively, applying telomerase component-based TS in complex datasets provided a robust tool for telomerase analyses. Our findings also reveal a tight connection between telomerase and other oncogenic signaling pathways; TCAB1 may acts as a dispensable telomerase component. Moreover, TS may serve as a useful biomarker to predict patient outcomes and response to immunotherapy.


Assuntos
Neoplasias , Telomerase , Humanos , Epigenômica , Transição Epitelial-Mesenquimal , Genômica , Homozigoto , Neoplasias/genética , Deleção de Sequência , Telomerase/genética , Telomerase/metabolismo , Transcriptoma/genética
17.
Clin Transl Med ; 12(11): e1111, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36394204

RESUMO

BACKGROUND: Telomerase is a ribonucleoprotein complex consisting of a catalytic component telomerase reverse transcriptase (TERT), internal RNA template and other co-factors, and its essential function is to synthesize telomeric DNA, repetitive TTAGGG sequences at the termini of linear chromosomes. Telomerase is silent in normal human follicular thyroid cells, primarily due to the TERT gene being tightly repressed. During the development and progression of thyroid carcinomas (TCs), TERT induction and telomerase activation is in general required to maintain telomere length, thereby conferring TC cells with immortal and aggressive phenotypes. METHODS: The genomic alterations of the TERT loci including TERT promoter's gain-of-function mutations, copy number gain, fusion and rearrangements, have recently been identified in TCs as mechanisms to induce TERT expression and to activate telomerase. Importantly, numerous studies have consistently shown that TERT promoter mutations and TERT expression occur in all TC subtypes, and are robustly associated with TC malignancy, aggressiveness, treatment failure and poor outcomes. Therefore, the assessment of TERT promoter mutations and TERT expression is highly valuable in TC diagnostics, prognosis, treatment decision, and follow-up design. In addition, the TERT promoter is frequently hypermethylated in TC cells and tumors, which is required to activate TERT transcription and telomerase. Dysregulation of other components in the telomerase complex similarly upregulate telomerase. Moreover, shortened telomeres lead to altered gene expression and metabolism, thereby actively promoting TC aggressiveness. Here we summarize recent findings in TCs to provide the landscape of TC-featured telomere/telomerase biology and discuss underlying implications in TC precision medicine. CONCLUSION: Mechanistic insights into telomerase activation and TERT induction in TCs are important both biologically and clinically. The TERT gene aberration and expression-based molecular classification of TCs is proposed, and for such a purpose, the standardization of the assay and evaluation system is required. Moreover, the TERT-based system and 2022 WHO TC classification may be combined to improve TC care.


Assuntos
Telomerase , Neoplasias da Glândula Tireoide , Humanos , Telomerase/genética , Telomerase/metabolismo , Neoplasias da Glândula Tireoide/diagnóstico , Neoplasias da Glândula Tireoide/genética , Telômero/genética , Telômero/metabolismo , Homeostase do Telômero/genética , Biologia
18.
Bioorg Med Chem ; 74: 117052, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36288657

RESUMO

Three types of 2-arylamino-4-(piperidin-4-yloxy)pyrimidines (I-III) were designed and synthesized as covalent EGFR(epidermal growth factor receptor)T790M/L858R inhibitors by replacement of the common reported 4-(3-amino)phenoxyl moiety with 4-(4-hydroxy)piperidine-4-oxyl, and the introduction of fused-thiophene or -pyrrole on the pyrimidine core to strategically achieve conformational restriction. According to our biological evaluation, it was found that compound 9i could potently suppress EGFRT790M/L858R kinase and H1975 cell proliferation, with IC50 values of 4.902 nM and 0.6210 µM, respectively. Further study showed that 9i not only demonstrated highly selective inhibitory effects toward EGFRT790M/L858R over wild-type EGFR (EGFRWT), but it also had low cytotoxicity against normal HBE(human bronchial epithelial) and L-02 cells. Action mechanism studies showed that 9i effectively hindered cell migration and promoted apoptosis by AO(Acridine Orange)/EB(Ethidium Bromide) staining. These data would provide important clues for the screening of novel covalent EGFRT790M/L858R inhibitors for non-small cell lung cancer (NSCLC) treatment.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Receptores ErbB , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Inibidores de Proteínas Quinases , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Linhagem Celular Tumoral , Mutação , Pirimidinas , Proliferação de Células
19.
Front Immunol ; 13: 971142, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36131921

RESUMO

Cuproptosis, the newly identified form of regulatory cell death (RCD), results from mitochondrial proteotoxic stress mediated by copper and FDX1. Little is known about significances of cuproptosis in oncogenesis. Here we determined clinical implications of cuproptosis in clear cell renal cell carcinoma (ccRCC). Based on the correlation and survival analyses of cuproptosis-correlated genes in TCGA ccRCC cohort, we constructed a cuproptosis-associated 13 gene signature (CuAGS-13) score system. In both TCGA training and two validation cohorts, when patients were categorized into high- and low-risk groups according to a median score as the cutoff, the CuAGS-13 high-risk group was significantly associated with shorter overall survival (OS) and/or progression-free survival (PFS) independently (P<0.001 for all). The CuAGS-13 score assessment could also predict recurrence and recurrence-free survival of patients at stage I - III with a high accuracy, which outperformed the ccAccB/ClearCode34 model, a well-established molecular predictor for ccRCC prognosis. Moreover, patients treated with immune checkpoint inhibitors (ICIs) acquired complete/partial remissions up to 3-time higher coupled with significantly longer PFS in the CuAGS-13 low- than high-risk groups in both training and validation cohorts of ccRCCs (7.2 - 14.1 vs. 2.1 - 3.0 months, P<0.001). The combination of ICI with anti-angiogenic agent Bevacizumab doubled remission rates in CuAGS-13 high-risk patients while did not improve the efficacy in the low-risk group. Further analyses showed a positive correlation between CuAGS-13 and TIDE scores. We also observed that the CuAGS-13 score assessment accurately predicted patient response to Sunitinib, and higher remission rates in the low-risk group led to longer PFS (Low- vs. high-risk, 13.9 vs. 5.8 months, P = 5.0e-12). Taken together, the CuAGS-13 score assessment serves as a robust predictor for survival, recurrence, and response to ICIs, ICI plus anti-angiogenic drugs and Sunitinib in ccRCC patients, which significantly improves patient stratifications for precision medicine of ccRCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Inibidores da Angiogênese/uso terapêutico , Bevacizumab/uso terapêutico , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/terapia , Cobre , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/terapia , Sunitinibe , Apoptose
20.
J Exp Clin Cancer Res ; 41(1): 173, 2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35549739

RESUMO

BACKGROUND: The ETS transcription factor GABPA has long been thought of as an oncogenic factor and recently suggested as a target for cancer therapy due to its critical effect on telomerase activation, but the role of GABPA in clear cell renal cell carcinoma (ccRCC) is unclear. In addition, ccRCC is characterized by metabolic reprograming with aberrant accumulation of L-2-hydroxyglurate (L-2HG), an oncometabolite that has been shown to promote ccRCC development and progression by inducing DNA methylation, however, its downstream effectors remain poorly defined. METHODS: siRNAs and expression vectors were used to manipulate the expression of GABPA and other factors and to determine cellular/molecular and phenotypic alterations. RNA sequencing and ChIP assays were performed to identify GABPA target genes. A human ccRCC xenograft model in mice was used to evaluate the effect of GABPA overexpression on in vivo tumorigenesis and metastasis. ccRCC cells were incubated with L-2-HG to analyze GABPA expression and methylation. We carried out immunohistochemistry on patient specimens and TCGA dataset analyses to assess the effect of GABPA on ccRCC survival. RESULTS: GABPA depletion, although inhibiting telomerase expression, robustly enhanced proliferation, invasion and stemness of ccRCC cells, whereas GABPA overexpression exhibited opposite effects, strongly inhibiting in vivo metastasis and carcinogenesis. TGFBR2 was identified as the GABPA target gene through which GABPA governed the TGFß signaling to dictate ccRCC phenotypes. GABPA and TGFBR2 phenocopies each other in ccRCC cells. Higher GABPA or TGFBR2 expression predicted longer survival in patients with ccRCC. Incubation of ccRCC cells with L-2-HG mimics GABPA-knockdown-mediated phenotypic alterations. L-2-HG silenced the expression of GABPA in ccRCC cells by increasing its methylation. CONCLUSIONS: GABPA acts as a tumor suppressor by stimulating TGFBR2 expression and TGFß signaling, while L-2-HG epigenetically inhibits GABPA expression, disrupting the GABPA-TGFß loop to drive ccRCC aggressiveness. These results exemplify how oncometabolites erase tumor suppressive function for cancer development/progression. Restoring GABPA expression using DNA methylation inhibitors or other approaches, rather than targeting it, may be a novel strategy for ccRCC therapy.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Telomerase , Animais , Carcinogênese/genética , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Epigênese Genética , Fator de Transcrição de Proteínas de Ligação GA/genética , Fator de Transcrição de Proteínas de Ligação GA/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Renais/patologia , Camundongos , Receptor do Fator de Crescimento Transformador beta Tipo II/genética , Receptor do Fator de Crescimento Transformador beta Tipo II/metabolismo , Telomerase/genética , Telomerase/metabolismo , Fator de Crescimento Transformador beta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA