Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
1.
Redox Biol ; 73: 103179, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38733909

RESUMO

Increasing evidences demonstrate that environmental stressors are important inducers of acute kidney injury (AKI). This study aimed to investigate the impact of exposure to Cd, an environmental stressor, on renal cell ferroptosis. Transcriptomics analyses showed that arachidonic acid (ARA) metabolic pathway was disrupted in Cd-exposed mouse kidneys. Targeted metabolomics showed that renal oxidized ARA metabolites were increased in Cd-exposed mice. Renal 4-HNE, MDA, and ACSL4, were upregulated in Cd-exposed mouse kidneys. Consistent with animal experiments, the in vitro experiments showed that mitochondrial oxidized lipids were elevated in Cd-exposed HK-2 cells. Ultrastructure showed mitochondrial membrane rupture in Cd-exposed mouse kidneys. Mitochondrial cristae were accordingly reduced in Cd-exposed mouse kidneys. Mitochondrial SIRT3, an NAD+-dependent deacetylase that regulates mitochondrial protein stability, was reduced in Cd-exposed mouse kidneys. Subsequently, mitochondrial GPX4 acetylation was elevated and mitochondrial GPX4 protein was reduced in Cd-exposed mouse kidneys. Interestingly, Cd-induced mitochondrial GPX4 acetylation and renal cell ferroptosis were exacerbated in Sirt3-/- mice. Conversely, Cd-induced mitochondrial oxidized lipids were attenuated in nicotinamide mononucleotide (NMN)-pretreated HK-2 cells. Moreover, Cd-evoked mitochondrial GPX4 acetylation and renal cell ferroptosis were alleviated in NMN-pretreated mouse kidneys. These results suggest that mitochondrial GPX4 acetylation, probably caused by SIRT3 downregulation, is involved in Cd-evoked renal cell ferroptosis.

2.
Sci Total Environ ; 931: 172938, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38703850

RESUMO

Cadmium (Cd) is a widely distributed typical environmental pollutant and one of the most toxic heavy metals. It is well-known that environmental Cd causes testicular damage by inducing classic types of cell death such as cell apoptosis and necrosis. However, as a new type of cell death, the role and mechanism of pyroptosis in Cd-induced testicular injury remain unclear. In the current study, we used environmental Cd to generate a murine model with testicular injury and AIM2-dependent pyroptosis. Based on the model, we found that increased cytoplasmic mitochondrial DNA (mtDNA), activated mitochondrial proteostasis stress occurred in Cd-exposed testes. We used ethidium bromide to generate mtDNA-deficient testicular germ cells and further confirmed that increased cytoplasmic mtDNA promoted AIM2-dependent pyroptosis in Cd-exposed cells. Uracil-DNA glycosylase UNG1 overexpression indicated that environmental Cd blocked UNG-dependent repairment of damaged mtDNA to drive the process in which mtDNA releases to cytoplasm in the cells. Interestingly, we found that environmental Cd activated mitochondrial proteostasis stress by up-regulating protein expression of LONP1 in testes. Testicular specific LONP1-knockdown significantly reversed Cd-induced UNG1 protein degradation and AIM2-dependent pyroptosis in mouse testes. In addition, environmental Cd significantly enhanced the m6A modification of Lonp1 mRNA and its stability in testicular germ cells. Knockdown of IGF2BP1, a reader of m6A modification, reversed Cd-induced upregulation of LONP1 protein expression and pyroptosis activation in testicular germ cells. Collectively, environmental Cd induces m6A modification of Lonp1 mRNA to activate mitochondrial proteostasis stress, increase cytoplasmic mtDNA content, and trigger AIM2-dependent pyroptosis in mouse testes. These findings suggest that mitochondrial proteostasis stress is a potential target for the prevention of testicular injury.


Assuntos
Cádmio , Mitocôndrias , Piroptose , Testículo , Animais , Cádmio/toxicidade , Masculino , Camundongos , Testículo/efeitos dos fármacos , Testículo/metabolismo , Piroptose/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Proteostase , Proteínas Mitocondriais/metabolismo , Exposição Ambiental/efeitos adversos , DNA Mitocondrial , Proteases Dependentes de ATP/metabolismo , Estresse Proteotóxico
3.
Toxicol Appl Pharmacol ; 486: 116914, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522585

RESUMO

Ferroptosis has been shown to be involved in carbon tetrachloride (CCl4)-induced acute liver injury (ALI). The mitochondrion-targeted antioxidant MitoQ can eliminate the production of mitochondrial reactive oxygen species (mtROS). This study investigated the role of MitoQ in CCl4-induced hepatocytic ferroptosis and ALI. MDA and 4HNE were elevated in CCl4-induced mice. In vitro, CCl4 exposure elevated the levels of oxidized lipids in HepG2 cells. Alterations in the mitochondrial ultrastructure of hepatocytes were observed in the livers of CCl4-evoked mice. Ferrostatin-1 (Fer-1) attenuated CCl4-induced hepatic lipid peroxidation, mitochondrial ultrastructure alterations and ALI. Mechanistically, acyl-CoA synthetase long-chain family member 4 (ACSL4) was upregulated in CCl4-exposed human hepatocytes and mouse livers. The ACSL4 inhibitor rosiglitazone alleviated CCl4-induced hepatic lipid peroxidation and ALI. ACSL4 knockdown inhibited oxidized lipids in CCl4-exposed human hepatocytes. Moreover, CCl4 exposure decreased the mitochondrial membrane potential and OXPHOS subunit levels and increased the mtROS level in HepG2 cells. Correspondingly, MitoQ pretreatment inhibited the upregulation of ACSL4 in CCl4-evoked mouse livers and HepG2 cells. MitoQ attenuated lipid peroxidation in vivo and in vitro after CCl4 exposure. Finally, MitoQ pretreatment alleviated CCl4-induced hepatocytic ferroptosis and ALI. These findings suggest that MitoQ protects against hepatocyte ferroptosis in CCl4-induced ALI via the mtROS-ACSL4 pathway.


Assuntos
Tetracloreto de Carbono , Doença Hepática Induzida por Substâncias e Drogas , Coenzima A Ligases , Ferroptose , Hepatócitos , Camundongos Endogâmicos C57BL , Compostos Organofosforados , Espécies Reativas de Oxigênio , Regulação para Cima , Animais , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Regulação para Cima/efeitos dos fármacos , Células Hep G2 , Coenzima A Ligases/metabolismo , Coenzima A Ligases/genética , Camundongos , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Doença Hepática Induzida por Substâncias e Drogas/patologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Ferroptose/efeitos dos fármacos , Tetracloreto de Carbono/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Masculino , Compostos Organofosforados/farmacologia , Ubiquinona/análogos & derivados , Ubiquinona/farmacologia , Antioxidantes/farmacologia , Peroxidação de Lipídeos/efeitos dos fármacos
4.
Ecotoxicol Environ Saf ; 274: 116191, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38460408

RESUMO

The reproduction toxicity of pubertal exposure to Microcystin-LR (MC-LR) and the underlying mechanism needs to be further investigated. In the current study, pubertal male ICR mice were intraperitoneally injected with 2 µg/kg MC-LR for four weeks. Pubertal exposure to MC-LR decreased epididymal sperm concentration and blocked spermatogonia proliferation. In-vitro studies found MC-LR inhibited cell proliferation of GC-1 cells and arrested cell cycle in G2/M phase. Mechanistically, MC-LR exposure evoked excessive reactive oxygen species (ROS) and induced DNA double-strand break in GC-1 cells. Besides, MC-LR inhibited DNA repair by reducing PolyADP-ribosylation (PARylation) activity of PARP1. Further study found MC-LR caused proteasomal degradation of SIRT6, a monoADP-ribosylation enzyme which is essential for PARP1 PARylation activity, due to destruction of SIRT6-USP10 interaction. Additionally, MG132 pretreatment alleviated MC-LR-induced SIRT6 degradation and promoted DNA repair, leading to the restoration of cell proliferation inhibition. Correspondingly, N-Acetylcysteine (NAC) pre-treatment mitigated the disturbed SIRT6-USP10 interaction and SIRT6 degradation, causing recovered DNA repair and subsequently restoration of cell proliferation inhibition in MC-LR treated GC-1 cells. Together, pubertal exposure to MC-LR induced spermatogonia cell cycle arrest and sperm count reduction by oxidative DNA damage and simultaneous SIRT6-mediated DNA repair failing. This study reports the effect of pubertal exposure to MC-LR on spermatogenesis and complex mechanism how MC-LR induces spermatogonia cell proliferation inhibition.


Assuntos
Toxinas Marinhas , Microcistinas , Sirtuínas , Espermatogônias , Animais , Masculino , Camundongos , Apoptose , Proliferação de Células , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Reparo do DNA , Toxinas Marinhas/metabolismo , Toxinas Marinhas/toxicidade , Camundongos Endogâmicos ICR , Microcistinas/metabolismo , Microcistinas/toxicidade , Sêmen , Sirtuínas/efeitos dos fármacos , Sirtuínas/metabolismo , Espermatogônias/efeitos dos fármacos , Espermatogônias/metabolismo
5.
Nat Commun ; 15(1): 1353, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355624

RESUMO

There is strong evidence that obesity is a risk factor for poor semen quality. However, the effects of multigenerational paternal obesity on the susceptibility to cadmium (a reproductive toxicant)-induced spermatogenesis disorders in offspring remain unknown. Here, we show that, in mice, spermatogenesis and retinoic acid levels become progressively lower as the number of generations exposed to a high-fat diet increase. Furthermore, exposing several generations of mice to a high fat diet results in a decrease in the expression of Wt1, a transcription factor upstream of the enzymes that synthesize retinoic acid. These effects can be rescued by injecting adeno-associated virus 9-Wt1 into the mouse testes of the offspring. Additionally, multigenerational paternal high-fat diet progressively increases METTL3 and Wt1 N6-methyladenosine levels in the testes of offspring mice. Mechanistically, treating the fathers with STM2457, a METTL3 inhibitor, restores obesity-reduced sperm count, and decreases Wt1 N6-methyladenosine level in the mouse testes of the offspring. A case-controlled study shows that human donors who are overweight or obese exhibit elevated N6-methyladenosine levels in sperm and decreased sperm concentration. Collectively, these results indicate that multigenerational paternal obesity enhances the susceptibility of the offspring to spermatogenesis disorders by increasing METTL3-mediated Wt1 N6-methyladenosine modification.


Assuntos
Infertilidade Masculina , Análise do Sêmen , Animais , Humanos , Masculino , Camundongos , Dieta Hiperlipídica/efeitos adversos , Pai , Infertilidade Masculina/genética , Metiltransferases , Obesidade/metabolismo , Sêmen/metabolismo , Tretinoína
6.
Sci Total Environ ; 908: 168383, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37951264

RESUMO

Intrauterine growth retardation (IUGR) is a major cause of perinatal morbidity and mortality. Previous studies showed that 1-nitropyrene (1-NP), an atmospheric pollutant, induces placental dysfunction and IUGR, but the exact mechanisms remain uncertain. In this research, we aimed to explore the role of mitophagy on 1-NP-evoked placental progesterone (P4) synthesis inhibition and IUGR in a mouse model. As expected, P4 levels were decreased in 1-NP-exposed mouse placentas and maternal sera. Progesterone synthases, CYP11A1 and 3ßHSD1, were correspondingly declined in 1-NP-exposed mouse placentas and JEG-3 cells. Mitophagy, as determined by LC3B-II elevation and TOM20 reduction, was evoked in 1-NP-exposed JEG-3 cells. Mdivi-1, a specific mitophagy inhibitor, relieved 1-NP-evoked downregulation of progesterone synthases in JEG-3 cells. Additional experiments showed that ULK1/FUNDC1 signaling was activated in 1-NP-exposed JEG-3 cells. ULK1 inhibitor or FUNDC1-targeted siRNA blocked 1-NP-induced mitophagy and progesterone synthase downregulation in JEG-3 cells. Further analysis found that mitochondrial reactive oxygen species (ROS) were increased and GCN2 was activated in 1-NP-exposed JEG-3 cells. GCN2iB, a selective GCN2 inhibitor, and MitoQ, a mitochondria-targeted antioxidant, attenuated GCN2 activation, FUNDC1-mediated mitophagy, and downregulation of progesterone synthases in JEG-3 cells. In vivo, gestational MitoQ supplement alleviated 1-NP-evoked reduction of placental P4 synthesis and IUGR. These results suggest that FUNDC1-mediated mitophagy triggered by mitochondrial ROS may contribute partially to 1-NP-induced placental P4 synthesis inhibition and IUGR.


Assuntos
Mitofagia , Placenta , Humanos , Camundongos , Feminino , Gravidez , Animais , Progesterona , Espécies Reativas de Oxigênio , Linhagem Celular Tumoral , Retardo do Crescimento Fetal , Mitocôndrias/fisiologia , Proteínas de Membrana/genética , Proteínas Mitocondriais/genética
7.
Environ Health Perspect ; 131(11): 117011, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37995155

RESUMO

BACKGROUND: Perfluorohexane sulfonate (PFHxS) is a frequently detected per- and polyfluoroalkyl substance in most populations, including in individuals who are pregnant, a period critical for early life development. Despite epidemiological evidence of exposure, developmental toxicity, particularly at realistic human exposures, remains understudied. OBJECTIVES: We evaluated the effect of gestational exposure to human-relevant body burden of PFHxS on fetal and placental development and explored mechanisms of action combining alternative splicing (AS) and gene expression (GE) analyses. METHODS: Pregnant ICR mice were exposed to 0, 0.03, and 0.3µg/kg/day from gestational day 7 to day 17 via oral gavage. Upon euthanasia, PFHxS distribution was measured using liquid chromatography-tandem mass spectrometry. Maternal and fetal phenotypes were recorded, and histopathology was examined for placenta impairment. Multiomics was adopted by combining AS and GE analyses to unveil disruptions in mRNA quality and quantity. The key metabolite transporters were validated by quantitative real-time PCR (qRT-PCR) for quantification and three-dimensional (3D) structural simulation by AlphaFold2. Targeted metabolomics based on liquid chromatography-tandem mass spectrometry was used to detect amino acid and amides levels in the placenta. RESULTS: Pups developmentally exposed to PFHxS exhibited signs of intrauterine growth restriction (IUGR), characterized by smaller fetal weight and body length (p<0.01) compared to control mice. PFHxS concentration in maternal plasma was 5.01±0.54 ng/mL. PFHxS trans-placenta distribution suggested dose-dependent transfer through placental barrier. Histopathology of placenta of exposed dams showed placental dysplasia, manifested with an attenuated labyrinthine layer area and deescalated blood sinus counts and placental vascular development index marker CD34. Combined GE and AS analyses pinpointed differences in genes associated with key biological processes of placental development, proliferation, metabolism, and transport in placenta of exposed dams compared to that of control dams. Further detection of placental key transporter gene expression, protein structure simulation, and amino acid and amide metabolites levels suggested that PFHxS exposure during pregnancy led to impairment of placental amino acid transportation. DISCUSSION: The findings from this study suggest that exposure to human-relevant very-low-dose PFHxS during pregnancy in mice caused IUGR, likely via downregulating of placental amino acid transporters, thereby impairing placental amino acid transportation, resulting in impairment of placental development. Our findings confirm epidemiological findings and call for future attention on the health risk of this persistent yet ubiquitous chemical in the early developmental stage and provide a new approach for understanding gene expression from both quantitative and qualitative omics approaches in toxicological studies. https://doi.org/10.1289/EHP13217.


Assuntos
Fluorocarbonos , Placentação , Humanos , Gravidez , Camundongos , Animais , Feminino , Placenta , Processamento Alternativo , Camundongos Endogâmicos ICR , Fluorocarbonos/toxicidade , Fluorocarbonos/metabolismo , Alcanossulfonatos/metabolismo , Alcanossulfonatos/farmacologia , Retardo do Crescimento Fetal/metabolismo , Retardo do Crescimento Fetal/patologia , Aminoácidos/metabolismo , Aminoácidos/farmacologia , Perfilação da Expressão Gênica
8.
Environ Health Perspect ; 131(9): 97004, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37682722

RESUMO

BACKGROUND: Several epidemiological investigations demonstrated that maternal arsenic (As) exposure elevated risk of fetal growth restriction (FGR), but the mechanism remains unclear. OBJECTIVES: This study aimed to investigate the effects of gestational As exposure on placental and fetal development and its underlying mechanism. METHODS: Dams were exposed to 0.15, 1.5, and 15mg/L NaAsO2 throughout pregnancy via drinking water. Sizes of fetuses and placentas, placental histopathology, and glycogen content were measured. Placental RNA sequencing was conducted. Human trophoblasts were exposed to NaAsO2 (2µM) to establish an in vitro model of As exposure. The mRNA stability and protein level of genes identified through RNA sequencing were measured. N6-Methyladenosine (m6A) modification was detected by methylated RNA immunoprecipitation-quantitative real-time polymerase chain reason (qPCR). The binding ability of insulin-like growth factor 2 binding protein 2 to the gene of interest was detected by RNA-binding protein immunoprecipitation-qPCR. Intracellular S-adenosylmethionine (SAM) and methyltransferase activity were determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and colorimetry, respectively. In vitro As+3 methyltransferase (As3MT) knockdown or SAM supplementation and in vivo folic acid (FA) supplementation were used to evaluate the protective effect. A case-control study verified the findings. RESULTS: Sizes of fetuses (exposed to 1.5 and 15mg/L NaAsO2) and placentas (exposed to 15mg/L NaAsO2) were lower in As-exposed mice. More glycogen+ trophoblasts accumulated and the expression of markers of interstitial invasion was lower in the 15mg/L NaAsO2-exposed mouse group in comparison with control. Placental RNA sequencing identified cysteine-rich angiogenic inducer 61 (Cyr61) as a candidate gene of interest. Mechanistically, mice and cells exposed to As had lower protein expression of CYR61, and this was attributed to a lower incidence of Cyr61 m6A. Furthermore, cells exposed to As had lower methyltransferase activity, suggesting that this could be the mechanism by which Cyr61 m6A was affected. Depletion of intracellular SAM, a cofactor for m6A methyltransferase catalytic domain, partially contributed to As-induced methyltransferase activity reduction. Either As3MT knockdown or SAM supplementation attenuated As-induced Cyr61 m6A down-regulation. In mice, FA supplementation rescued As-induced defective trophoblastic invasion and FGR. In humans, a negative correlation between maternal urinary As and plasma CYR61 was observed in infants who were small for gestational age. DISCUSSION: Using in vitro and in vivo models, we found that intracellular SAM depletion-mediated Cyr61 m6A down-regulation partially contributed to As-induced defective trophoblastic invasion and FGR. https://doi.org/10.1289/EHP12207.


Assuntos
Arsênio , Placenta , Gravidez , Lactente , Humanos , Feminino , Animais , Camundongos , Arsênio/toxicidade , Estudos de Casos e Controles , Cromatografia Líquida , Espectrometria de Massas em Tandem , Desenvolvimento Fetal , Glicogênio
9.
Arch Toxicol ; 97(11): 2929-2941, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37603095

RESUMO

Maternal lipopolysaccharide (LPS) exposure during pregnancy has been related to IUGR. Here, we explored whether paternal LPS exposure before mating impaired fetal development. All male mice except controls were intraperitoneally injected with LPS every other day for a total of five injections. The next day after the last LPS, male mice were mated with untreated female mice. Interestingly, fetal weight and crown-rump length were reduced, while the incidence of IUGR was increased in paternal LPS exposure group. Additionally, paternal LPS exposure leaded to poor placental development through causing cell proliferation inhibition and apoptosis. Additional experiment demonstrated that the inactivation of placental PI3K/AKT pathway might be involved in paternal LPS-induced cell proliferation inhibition and apoptosis of trophoblast cells. Furthermore, the mRNA and protein levels of mesoderm specific transcript (MEST), a maternally imprinted gene with paternal expression, were significantly decreased in mouse placentas from paternal LPS exposure. Further analysis showed that paternal LPS exposure caused the inactivation of placental PI3K/AKT pathway and then cell proliferation inhibition and apoptosis might be via down-regulating placental MEST. Overall, our results provide evidence that paternal LPS exposure causes poor placental development and subsequently IUGR may be via down-regulating MEST/PI3K/AKT pathway, and then inducing cell proliferation inhibition and apoptosis in placentas.


Assuntos
Retardo do Crescimento Fetal , Lipopolissacarídeos , Feminino , Masculino , Gravidez , Animais , Camundongos , Humanos , Retardo do Crescimento Fetal/induzido quimicamente , Lipopolissacarídeos/toxicidade , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Placenta , Placentação
10.
Food Chem Toxicol ; 179: 113967, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37506864

RESUMO

Cadmium (Cd), one of the most common contaminants in diet and drinking water, impairs testicular germ cell development and spermatogenesis. Autophagy is essential for maintaining Sertoli cell function and Sertoli-germ cell communication. However, the role of Sertoli cell autophagy in Cd-caused spermatogenesis disorder remains unclear. Here, the mice of autophagy-related gene 5 (Atg5) knockouts in Sertoli cells were used to investigate the effect of autophagy deficiency on Cd-impaired spermatogenesis and its underlying mechanisms. Results showed that Sertoli cell-specific knockout of Atg5 exacerbated Cd-reduced sperm count and MVH (a specific marker for testicular germ cells) level in mice. Additionally, Sertoli cell Atg5 deficiency reduced the number of spermatocytes and decreased the level of meiosis-related proteins (SYCP3 and STRA8) in Cd-treated mouse testes. Loss of Atg5 in Sertoli cell exacerbated Cd-reduced the level of retinoic acid (RA) and retinal dehydrogenase (ALDH1A1 and ALDH1A) in mouse testes. Meanwhile, we found that the level of transcription factor WT1 was significantly downregulated in Atg5-/- plus Cd-treated testes. Further experiments showed that Wt1 overexpression restored Cd-decreased the levels of ALDH1A1 in Sertoli cells. Collectively, the above data suggest that knockout of Atg5 in Sertoli cell enhances the susceptibility of Cd-impaired testicular spermatogenesis. These findings provide new insights into autophagy of Sertoli cell preventing environmental toxicants-impaired testicular spermatogenesis.


Assuntos
Infertilidade Masculina , Testículo , Humanos , Masculino , Camundongos , Animais , Células de Sertoli , Cádmio/metabolismo , Sêmen , Espermatogênese , Camundongos Knockout , Proteína 5 Relacionada à Autofagia
11.
Environ Int ; 177: 108014, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37315490

RESUMO

Perfluorohexyl sulfonate (PFHxS) is the third most abundant per- and polyfluoroalkyl substances and its developmental toxicity remains very poorly understood. Here, pregnant mice exposed to PFHxS at human relevant dose showed increased fetal death incidence in the high-dose PFHxS-H group (P < 0.01). Body distribution analyses suggested that PFHxS crossed the placental barrier reaching the fetus in a dose-dependent manner. Histopathological data demonstrated impairment in the placenta with reduced blood sinus volume, placental labyrinth area as well as thickness of labyrinthine layer. Further lipidomic and transcriptomic data together showed that PFHxS exposure caused significant disruption in placental lipid homeostasis, including total lipid accumulation in the placenta, and dysregulation in phospholipid and glycerol lipid metabolism. Gene expression analyses uncovered elevation in key placental fatty acid transporters including fabp2, whereas protein expression showed transporter specific disruptions following exposure. Together, gestational exposure to human relevant level of PFHxS may increase the incidence of fetal deaths and caused placental dysplasia via disruption in lipid metabolism homeostasis. These findings raise the concern regarding the highly prevalent and persistent chemical towards early sensitive developing stages and provide basis for further understanding of its effects on lipid metabolism and underlying mechanisms.


Assuntos
Fluorocarbonos , Placenta , Humanos , Gravidez , Feminino , Camundongos , Animais , Placenta/metabolismo , Alcanossulfonatos , Fluorocarbonos/toxicidade , Ácidos Graxos , Homeostase
12.
Ecotoxicol Environ Saf ; 259: 115027, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37207578

RESUMO

Our previous study showed 1-Nitropyrene (1-NP) exposure disrupted testicular testosterone synthesis in mouse, but the exact mechanism needs further investigation. The present research found 4-phenylbutyric acid (4-PBA), an endoplasmic reticulum (ER) stress inhibitor, recovered 1-NP-induced ER stress and testosterone synthases reduction in TM3 cells. GSK2606414, a protein kinase-like ER kinase (PERK) kinase inhibitor, attenuated 1-NP-induced PERK-eukaryotic translation initiation factor 2α (eIF2α) signaling activation and downregulation of steroidogenic proteins in TM3 cells. Both 4-PBA and GSK2606414 attenuated 1-NP-induced steroidogenesis disruption in TM3 cells. Further studies used N-Acetyl-L-cysteine (NAC) as a classical antioxidant to explore whether oxidative stress-activated ER stress mediated 1-NP-induced testosterone synthases reduction and steroidogenesis disruption in TM3 cells and mouse testes. The results showed NAC pretreatment mitigated oxidative stress, and subsequently attenuated ER stress, particularly PERK-eIF2α signaling activation, and downregulation of testosterone synthases in 1-NP-treated TM3 cells. More importantly, NAC extenuated 1-NP-induced testosterone synthesis in vitro and in vivo. The current work indicated that oxidative stress-caused ER stress, particularly PERK-eIF2α pathway activation, mediates 1-NP-downregulated steroidogenic proteins and steroidogenesis disruption in TM3 cells and mouse testes. Significantly, the current study provides a theoretical basis and demonstrates the experimental evidence for the potential application of antioxidant, such as NAC, in public health prevention, particularly in 1-NP-induced endocrine disorder.


Assuntos
Antioxidantes , Testículo , Masculino , Camundongos , Animais , Testículo/metabolismo , Antioxidantes/metabolismo , Fator de Iniciação 2 em Eucariotos/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Testosterona/metabolismo , Estresse Oxidativo , Acetilcisteína/farmacologia , Acetilcisteína/metabolismo
13.
J Steroid Biochem Mol Biol ; 231: 106313, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37075986

RESUMO

Depression is a common mental disorder with an increasing incidence. Several studies have demonstrated that cortical DNA hypomethylation is associated with depression-like behaviors. This study aims to investigate whether maternal vitamin D deficiency (VDD) induces depression-like behaviors and to explore the effects of folic acid supplement on VDD-induced cortical DNA hypomethylation in adult offspring. Female mice were fed with a VDD diet, beginning at 5 weeks of age and throughout pregnancy. Depression-like behaviors were evaluated, and cortical 5-methylcytosine (5mC) content was detected in adult offspring. Results showed that depression-like behaviors were observed in adult offspring of the VDD group. Cortical Ache and Oxtr mRNAs were upregulated in female offspring of the VDD group. Cortical Cpt1a and Htr1b mRNAs were increased in male offspring of the VDD group. Moreover, cortical 5mC content was reduced in offspring of VDD-fed dams. The additional experiment showed that serum folate and cortical S-adenosylmethionine (SAM) contents were decreased in the offspring of the VDD group. Folic acid supplement attenuated VDD-induced SAM depletion and reversed cortical DNA methylation. Moreover, folic acid supplement attenuated VDD-induced upregulation of depression-related genes. In addition, folic acid supplement alleviated maternal VDD-induced depression-like behaviors in adult offspring. These results suggest that maternal VDD induces depression-like behavior in adult offspring by reducing cortical DNA methylation. The gestational folic acid supplement prevents VDD-induced depression-like behavior by reversing cortical DNA hypomethylation in adult offspring.


Assuntos
Ácido Fólico , Deficiência de Vitamina D , Gravidez , Animais , Masculino , Feminino , Camundongos , Ácido Fólico/farmacologia , Metilação de DNA , Depressão/etiologia , Depressão/prevenção & controle , DNA
14.
Environ Pollut ; 328: 121602, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37031847

RESUMO

Cadmium (Cd), an environmental contaminant, can result in placental non-selective autophagy activation and fetal growth restriction (FGR). However, the role of placental lipophagy, a selective autophagy, in Cd-induced FGR is unclear. This work uses case-control study, animal experiments and cultures of primary human placental trophoblast cells to explore the role of placental lipophagy in Cd-induced FGR. We found association of placental lipophagy and all-cause FGR. Meanwhile, pregnancy Cd exposure induced FGR and placental lipophgay. Inhibition of placental lipophagy by pharmacological and genetic means (Atg5-/- mice) exacerbated Cd-caused FGR. Inversely, activating of placental lipophagy relieved Cd-stimulated FGR. Subsequently, we found that activation of Atg5-dependent lipophagy degrades lipid droplets to produce free cholesterol, and promotes placental progesterone (P4) synthesis. Gestational P4 supplementation significantly reversed Cd-induced FGR. Altogether, activation of Atg5-dependent placental lipophagy ameliorates Cd-induced FGR.


Assuntos
Cádmio , Placenta , Gravidez , Feminino , Humanos , Animais , Camundongos , Placenta/metabolismo , Cádmio/toxicidade , Cádmio/metabolismo , Retardo do Crescimento Fetal/induzido quimicamente , Estudos de Casos e Controles , Autofagia , Proteína 5 Relacionada à Autofagia/genética , Proteína 5 Relacionada à Autofagia/metabolismo
15.
Food Chem Toxicol ; 176: 113807, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37121429

RESUMO

Cadmium (Cd), commonly found in diet and drinking water, is known to be harmful to the human liver. Nevertheless, the effects and mechanisms of gestational Cd exposure on fetal liver development remain unclear. Here, we reported that gestational Cd (150 mg/L) exposure obviously downregulated the expression of critical proteins including PCNA, Ki67 and VEGF-A in proliferation and angiogenesis in fetal livers, and lowered the estradiol concentration in fetal livers and placentae. Maternal estradiol supplement alleviated aforesaid impairments in fetal livers. Our data showed that the levels of pivotal estrogen synthases, such as CYP17A1 and 17ß-HSD, was markedly decreased in Cd-stimulated placentae but not fetal livers. Ground on ovariectomy (OVX), we found that maternal ovarian-derived estradiol had no major effects on Cd-impaired development in fetal liver. In addition, Cd exposure activated placental PERK signaling, and inhibited PERK activity could up-regulated the expressions of CYP17A1 and 17ß-HSD in placental trophoblasts. Collectively, gestational Cd exposure inhibited placenta-derived estrogen synthesis via activating PERK signaling, and therefore impaired fetal liver development. This study suggests a protective role for placenta-derived estradiol in fetal liver dysplasia shaped by toxicants, and provides a theoretical basis for toxicants to impede fetal liver development by disrupting the placenta-fetal-liver axis.


Assuntos
Cádmio , Trofoblastos , Gravidez , Feminino , Humanos , Cádmio/toxicidade , Cádmio/metabolismo , Trofoblastos/metabolismo , Placenta/metabolismo , Fígado/metabolismo , Estradiol , Estrogênios
16.
Toxicol Appl Pharmacol ; 465: 116452, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36894071

RESUMO

Mitochondrial oxidative stress has been a crucial mediator in acetaminophen (APAP)-induced hepatotoxicity. MitoQ, an analog of coenzyme Q10, is targeted towards mitochondria and acts as a potent antioxidant. This study aimed to explore the effect of MitoQ on APAP-induced liver injury and its possible mechanisms. To investigate this, CD-1 mice and AML-12 cells were treated with APAP. Hepatic MDA and 4-HNE, two markers of lipid peroxidation (LPO), were elevated as early as 2 h after APAP. Oxidized lipids were rapidly upregulated in APAP-exposed AML-12 cells. Hepatocyte death and mitochondrial ultrastructure alterations were observed in APAP-induced acute liver injury. The in vitro experiments showed that mitochondrial membrane potentials and OXPHOS subunits were downregulated in APAP-exposed hepatocytes. MtROS and oxidized lipids were elevated in APAP-exposed hepatocytes. We discovered that APAP-induced hepatocyte death and liver injury were ameliorated by attenuation of protein nitration and LPO in MitoQ-pretreated mice. Mechanistically, knockdown of GPX4, a key enzyme for LPO defense systems, exacerbated APAP-induced oxidized lipids, but did not influence the protective effect of MitoQ on APAP-induced LPO and hepatocyte death. Whereas knockdown of FSP1, another key enzyme for LPO defense systems, had little effect on APAP-induced lipid oxidation but partially weakened the protection of MitoQ on APAP-induced LPO and hepatocyte death. These results suggest that MitoQ may alleviate APAP-evoked hepatotoxicity by eliminating protein nitration and suppressing hepatic LPO. MitoQ prevents APAP-induced liver injury partially dependent of FSP1 and independent of GPX4.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Doença Hepática Induzida por Substâncias e Drogas , Leucemia Mieloide Aguda , Camundongos , Animais , Acetaminofen/toxicidade , Doença Hepática Crônica Induzida por Substâncias e Drogas/metabolismo , Fígado , Hepatócitos , Leucemia Mieloide Aguda/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Camundongos Endogâmicos C57BL , Estresse Oxidativo
17.
Sci Total Environ ; 879: 163073, 2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-36965727

RESUMO

Accumulating evidences demonstrate that long-term exposure to atmospheric fine particles and air pollutants elevates the risk of chronic obstructive pulmonary disease (COPD). Cadmium (Cd) is one of the important toxic substances in atmospheric fine particles and air pollutants. In this study, we aimed to establish a mouse model to evaluate whether respiratory Cd exposure induces COPD-like lung injury. Adult male C57BL/6 mice were exposed to CdCl2 (10 mg/L, 4 h per day) by inhaling aerosol for either 10 weeks (short-term) or 6 months (long-term). The mean serum Cd concentration was 6.26 µg/L in Cd-exposed mice. Lung weight and coefficient were elevated in long-term Cd-exposed mice. Pathological scores and alveolar destructive indices were increased in long-term Cd-exposed mouse lungs. Mean linear intercept and airway wall thickness were accordingly elevated in Cd-exposed mice. Inflammatory cell infiltration was obvious and inflammatory cytokines, including TNF-α, IL-1ß, IL-6, IL-8, IL-10 and TGF-ß, were up-regulated in Cd-exposed mouse lungs. α-SMA, N-cadherin and vimentin, epithelial-mesenchymal transition markers, and extracellular matrix collagen deposition around small airway, determined by Masson's trichrome staining, were shown in Cd-exposed mouse lungs. COPD-characteristic lung function decline was observed in long-term Cd-exposed mice. These outcomes show that long-term respiratory exposure to Cd induces COPD-like lung lesions for the first time.


Assuntos
Poluentes Atmosféricos , Doença Pulmonar Obstrutiva Crônica , Masculino , Camundongos , Animais , Cádmio/toxicidade , Camundongos Endogâmicos C57BL , Pulmão , Doença Pulmonar Obstrutiva Crônica/induzido quimicamente
18.
Ecotoxicol Environ Saf ; 255: 114799, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36933479

RESUMO

Increasing evidence have demonstrated that early-life exposure to environmental toxicants elevates risk of allergic asthma. Cadmium (Cd) is widely present in the environment. The purposes of this study were to evaluate the impact of early-life Cd exposure on susceptibility to ovalbumin (OVA)-evoked allergic asthma. Newly weaned mice were subjected to a low concentration of CdCl2 (1 mg/L) by drinking water for 5 consecutive weeks. Penh value, an index of airway obstruction, was increased in OVA-stimulated and challenged pups. Abundant inflammatory cells were observed in the lung of OVA-exposed pups. Goblet cell hyperplasia and mucus secretion were shown in the airway of OVA-stimulated and challenged pups. Early-life Cd exposure exacerbated OVA-evoked airway hyperreactivity, Goblet cell hyperplasia and mucus secretion. The in vitro experiments showed that mucoprotein gene MUC5AC mRNA was upregulated in Cd-exposed bronchial epithelial cells. Mechanistically, endoplasmic reticulum (ER) stress-related molecules GRP78, p-eIF2α, CHOP, p-IRE1α and spliced XBP-1 (sXBP-1) were elevated in Cd-subjected bronchial epithelial cells. The blockade of ER stress, using chemical inhibitor 4-PBA or sXBP-1 siRNA interference, attenuated Cd-induced MUC5AC upregulation in bronchial epithelial cells. These results indicate that early-life Cd exposure aggravates OVA-induced allergic asthma partially through inducing ER stress in bronchial epithelial cells.


Assuntos
Asma , Cádmio , Camundongos , Animais , Ovalbumina , Cádmio/toxicidade , Endorribonucleases , Hiperplasia/patologia , Proteínas Serina-Treonina Quinases , Asma/induzido quimicamente , Asma/patologia , Pulmão/patologia , Camundongos Endogâmicos BALB C
19.
Ecotoxicol Environ Saf ; 251: 114548, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36652742

RESUMO

BACKGROUND: Environmental cadmium (Cd) exposure is linked to pulmonary function injury in the general population. But, the association between blood Cd concentration and pulmonary function has not been investigated thoroughly in chronic obstructive pulmonary disease (COPD) patients, and the potential mechanisms are unclear. METHODS: All eligible 789 COPD patients were enrolled from Anhui COPD cohort. Blood specimens and clinical information were collected. Pulmonary function test was conducted. The subunit of telomerase, telomerase reverse transcriptase (TERT), was determined through enzyme linked immunosorbent assay (ELISA). Blood Cd was measured via inductively coupled-mass spectrometer (ICP-MS). RESULTS: Blood Cd was negatively and dose-dependently associated with pulmonary function. Each 1-unit increase of blood Cd was associated with 0.861 L decline in FVC, 0.648 L decline in FEV1, 5.938 % decline in FEV1/FVC %, and 22.098 % decline in FEV1 % among COPD patients, respectively. Age, current-smoking, self-cooking and higher smoking amount aggravated Cd-evoked pulmonary function decrease. Additionally, there was an inversely dose-response association between Cd concentration and TERT in COPD patients. Elevated TERT obviously mediated 29.53 %, 37.50 % and 19.48 % of Cd-evoked FVC, FEV1, and FEV1 % declines in COPD patients, respectively. CONCLUSION: Blood Cd concentration is strongly associated with the decline of pulmonary function and telomerase activity among COPD patients. Telomere attrition partially mediates Cd-induced pulmonary function decline, suggesting an underlying mechanistic role of telomere attrition in pulmonary function decline from Cd exposure in COPD patients.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Telomerase , Humanos , Cádmio/toxicidade , Volume Expiratório Forçado , Pulmão
20.
Environ Res ; 222: 115334, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36702192

RESUMO

Accumulating data demonstrate that polycyclic aromatic hydrocarbons (PAH) exposure is linked to compromised respiratory diseases. This study aimed to analyze urinary PAH metabolites and their associations with chronic obstructive pulmonary disease (COPD) in a sample size of 3015 subjects from a total population of 50,588 from the National Health and Nutrition Examination Survey (NHANES) in 2007-2016. Results showed that the most predominant metabolite was 1-Hydroxynaphthalene (1-NAP, 84%) with a geometric mean concentration of 50,265 ng/L, followed by its homologue 2-NAP (10%), both of which arose from sources including road emission, smoking and cooking. Multiple logistic regression showed that seven of the ten major PAH metabolites were correlated with increased COPD risk: including 1-NAP (OR: 1.83, 95%CI: 1.25, 2.69), 2-Hydroxyfluorene (2-FLU, OR: 2.29, 95%CI: 1.42, 3.68) and 1-Hydroxyphenanthrene (1-PHE, OR: 2.79, 95%CI: 1.85, 4.21), when compared to the lowest tertile after adjusted for covariates. Total exposure burden per PAH congener sub-group demonstrated persistent positive correlation with COPD for ∑PHE (OR: 1.80, 95%CI: 1.34, 2.43) and ∑FLU (OR: 2.74, 95%CI: 1.77, 4.23) after adjusted for covariates. To address the contribution of PAH exposure as mixture towards COPD, weighted quantile sum (WQS) regression analyses revealed that 1-NAP, 9-Hydroxyfluorene (9-FLU), 3-Hydroxyfluorene (3-FLU) and 1-PHE were among the top contributors in the associations with COPD. Our results demonstrate the contemporary yet ongoing exposure burden of PAH exposure for over a decade, particularly towards NAPs and FLUs that contribute significantly to COPD risk, calling for more timely environmental regulation.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Doença Pulmonar Obstrutiva Crônica , Humanos , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Inquéritos Nutricionais , Estudos Longitudinais , Modelos Logísticos , Biomarcadores/urina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA