Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Cancers (Basel) ; 16(8)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38672606

RESUMO

This study aimed to develop a rapid, 1 mm3 isotropic resolution, whole-brain MRI technique for automatic lesion segmentation and multi-parametric mapping without using contrast by continuously applying balanced steady-state free precession with inversion pulses throughout incomplete inversion recovery in a single 6 min scan. Modified k-means clustering was performed for automatic brain tissue and lesion segmentation using distinct signal evolutions that contained mixed T1/T2/magnetization transfer properties. Multi-compartment modeling was used to derive quantitative multi-parametric maps for tissue characterization. Fourteen patients with contrast-enhancing gliomas were scanned with this sequence prior to the injection of a contrast agent, and their segmented lesions were compared to conventionally defined manual segmentations of T2-hyperintense and contrast-enhancing lesions. Simultaneous T1, T2, and macromolecular proton fraction maps were generated and compared to conventional 2D T1 and T2 mapping and myelination water fraction mapping acquired with MAGiC. The lesion volumes defined with the new method were comparable to the manual segmentations (r = 0.70, p < 0.01; t-test p > 0.05). The T1, T2, and macromolecular proton fraction mapping values of the whole brain were comparable to the reference values and could distinguish different brain tissues and lesion types (p < 0.05), including infiltrating tumor regions within the T2-lesion. Highly efficient, whole-brain, multi-contrast imaging facilitated automatic lesion segmentation and quantitative multi-parametric mapping without contrast, highlighting its potential value in the clinic when gadolinium is contraindicated.

2.
Magn Reson Med ; 91(6): 2204-2228, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38441968

RESUMO

MRI with hyperpolarized (HP) 13C agents, also known as HP 13C MRI, can measure processes such as localized metabolism that is altered in numerous cancers, liver, heart, kidney diseases, and more. It has been translated into human studies during the past 10 years, with recent rapid growth in studies largely based on increasing availability of HP agent preparation methods suitable for use in humans. This paper aims to capture the current successful practices for HP MRI human studies with [1-13C]pyruvate-by far the most commonly used agent, which sits at a key metabolic junction in glycolysis. The paper is divided into four major topic areas: (1) HP 13C-pyruvate preparation; (2) MRI system setup and calibrations; (3) data acquisition and image reconstruction; and (4) data analysis and quantification. In each area, we identified the key components for a successful study, summarized both published studies and current practices, and discuss evidence gaps, strengths, and limitations. This paper is the output of the "HP 13C MRI Consensus Group" as well as the ISMRM Hyperpolarized Media MR and Hyperpolarized Methods and Equipment study groups. It further aims to provide a comprehensive reference for future consensus, building as the field continues to advance human studies with this metabolic imaging modality.


Assuntos
Imageamento por Ressonância Magnética , Ácido Pirúvico , Humanos , Ácido Pirúvico/metabolismo , Imageamento por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador , Coração , Fígado/diagnóstico por imagem , Fígado/metabolismo , Isótopos de Carbono/metabolismo
3.
J Magn Reson Imaging ; 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38206986

RESUMO

BACKGROUND: Pathophysiological changes of Huntington's disease (HD) can precede symptom onset by decades. Robust imaging biomarkers are needed to monitor HD progression, especially before the clinical onset. PURPOSE: To investigate iron dysregulation and microstructure alterations in subcortical regions as HD imaging biomarkers, and to associate such alterations with motor and cognitive impairments. STUDY TYPE: Prospective. POPULATION: Fourteen individuals with premanifest HD (38.0 ± 11.0 years, 9 females; far-from-onset N = 6, near-onset N = 8), 21 manifest HD patients (49.1 ± 12.1 years, 11 females), and 33 age-matched healthy controls (43.9 ± 12.2 years, 17 females). FIELD STRENGTH/SEQUENCE: 7 T, T1 -weighted imaging, quantitative susceptibility mapping, and diffusion tensor imaging. ASSESSMENT: Volume, susceptibility, fractional anisotropy (FA), and mean diffusivity (MD) within subcortical brain structures were compared across groups, used to establish HD classification models, and correlated to clinical measures and cognitive assessments. STATISTICAL TESTS: Generalized linear model, multivariate logistic regression, receiver operating characteristics with the area under the curve (AUC), and likelihood ratio test comparing a volumetric model to one that also includes susceptibility and diffusion metrics, Wilcoxon paired signed-rank test, and Pearson's correlation. A P-value <0.05 after Benjamini-Hochberg correction was considered statistically significant. RESULTS: Significantly higher striatal susceptibility and FA were found in premanifest and manifest HD preceding atrophy, even in far-from-onset premanifest HD compared to controls (putamen susceptibility: 0.027 ± 0.022 vs. 0.018 ± 0.013 ppm; FA: 0.358 ± 0.048 vs. 0.313 ± 0.039). The model with additional susceptibility, FA, and MD features showed higher AUC compared to volume features alone when differentiating premanifest HD from HC (0.83 vs. 0.66), and manifest from premanifest HD (0.94 vs. 0.83). Higher striatal susceptibility significantly correlated with cognitive deterioration in HD (executive function: r = -0.600; socioemotional function: r = -0.486). DATA CONCLUSION: 7 T MRI revealed iron dysregulation and microstructure alterations with HD progression, which could precede volume loss, provide added value to HD differentiation, and might be associated with cognitive changes. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 2.

4.
Cancers (Basel) ; 16(2)2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38254844

RESUMO

This study aimed to implement a multimodal 1H/HP-13C imaging protocol to augment the serial monitoring of patients with glioma, while simultaneously pursuing methods for improving the robustness of HP-13C metabolic data. A total of 100 1H/HP [1-13C]-pyruvate MR examinations (104 HP-13C datasets) were acquired from 42 patients according to the comprehensive multimodal glioma imaging protocol. Serial data coverage, accuracy of frequency reference, and acquisition delay were evaluated using a mixed-effects model to account for multiple exams per patient. Serial atlas-based HP-13C MRI demonstrated consistency in volumetric coverage measured by inter-exam dice coefficients (0.977 ± 0.008, mean ± SD; four patients/11 exams). The atlas-derived prescription provided significantly improved data quality compared to manually prescribed acquisitions (n = 26/78; p = 0.04). The water-based method for referencing [1-13C]-pyruvate center frequency significantly reduced off-resonance excitation relative to the coil-embedded [13C]-urea phantom (4.1 ± 3.7 Hz vs. 9.9 ± 10.7 Hz; p = 0.0007). Significantly improved capture of tracer inflow was achieved with the 2-s versus 5-s HP-13C MRI acquisition delay (p = 0.007). This study demonstrated the implementation of a comprehensive multimodal 1H/HP-13C MR protocol emphasizing the monitoring of steady-state/dynamic metabolism in patients with glioma.

5.
Magn Reson Med ; 91(3): 1030-1042, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38013217

RESUMO

PURPOSE: This study aimed to quantify T 2 * $$ {T}_2^{\ast } $$ for hyperpolarized [1-13 C]pyruvate and metabolites in the healthy human brain and renal cell carcinoma (RCC) patients at 3 T. METHODS: Dynamic T 2 * $$ {T}_2^{\ast } $$ values were measured with a metabolite-specific multi-echo spiral sequence. The dynamic T 2 * $$ {T}_2^{\ast } $$ of [1-13 C]pyruvate, [1-13 C]lactate, and 13 C-bicarbonate was estimated in regions of interest in the whole brain, sinus vein, gray matter, and white matter in healthy volunteers, as well as in kidney tumors and the contralateral healthy kidneys in a separate group of RCC patients. T 2 * $$ {T}_2^{\ast } $$ was fit using a mono-exponential function; and metabolism was quantified using pyruvate-to-lactate conversion rate maps and lactate-to-pyruvate ratio maps, which were compared with and without an estimated T 2 * $$ {T}_2^{\ast } $$ correction. RESULTS: The T 2 * $$ {T}_2^{\ast } $$ of pyruvate was shown to vary during the acquisition, whereas the T 2 * $$ {T}_2^{\ast } $$ of lactate and bicarbonate were relatively constant through time and across the organs studied. The T 2 * $$ {T}_2^{\ast } $$ of lactate was similar in gray matter (29.75 ± 1.04 ms), white matter (32.89 ± 0.9 ms), healthy kidney (34.61 ± 4.07 ms), and kidney tumor (33.01 ± 2.31 ms); and the T 2 * $$ {T}_2^{\ast } $$ of bicarbonate was different between whole-brain (108.17 ± 14.05 ms) and healthy kidney (58.45 ± 6.63 ms). The T 2 * $$ {T}_2^{\ast } $$ of pyruvate had similar trends in both brain and RCC studies, reducing from 75.56 ± 2.23 ms to 22.24 ± 1.24 ms in the brain and reducing from 122.72 ± 9.86 ms to 57.38 ± 7.65 ms in the kidneys. CONCLUSION: Multi-echo dynamic imaging can quantify T 2 * $$ {T}_2^{\ast } $$ and metabolism in a single integrated acquisition. Clear differences were observed in the T 2 * $$ {T}_2^{\ast } $$ of metabolites and in their behavior throughout the timecourse.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Ácido Pirúvico/metabolismo , Carcinoma de Células Renais/diagnóstico por imagem , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Bicarbonatos/metabolismo , Imageamento por Ressonância Magnética/métodos , Encéfalo/metabolismo , Rim/diagnóstico por imagem , Rim/metabolismo , Neoplasias Renais/diagnóstico por imagem , Neoplasias Renais/patologia , Lactatos/metabolismo , Isótopos de Carbono/metabolismo
6.
Quant Imaging Med Surg ; 13(12): 7987-7995, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38106288

RESUMO

Background: T2-weighted Single Shot Fast Spin Echo (SSFSE) scans at 3 Tesla (3T) are increasingly used to image fetal pathology due to their excellent tissue contrast resolution and signal-to-noise ratio (SNR). Temperature changes that may occur in response to radio frequency (RF) pulses used for these sequences at 3T have not been studied in human fetal brains. To evaluate the safety of T2-weighted SSFSE for fetal brains at 3T, magnetic resonance (MR) thermometry was used to measure relative temperature changes in a typical clinical fetal brain MR exam. Methods: Relative temperature was estimated using sets of gradient recalled echo (GRE) images acquired before and after T2-weighted SSFSE images which lasted 27.47±8.19 minutes. Thirty-one fetuses with cardiac abnormalities, and 20 healthy controls were included in this study. Fetal brain temperature was estimated by proton resonance frequency (PRF) thermometry and compared to the estimated temperature in the gluteal muscle of the mother. Seven scans with excessive motion were excluded. Local outlier factor (LOF) was performed to remove 12 additional scans with spurious phase measurements due to motion degradation and potential field drift. Linear regression was performed to determine if temperature changes are dependent on the rate of energy deposition during the scan. Results: For the 32 participants used in the analysis, 17 with cardiac abnormalities and 15 healthy controls, the average relative fetal temperate change was 0.19±0.73 ℃ higher than the mother, with no correlation between relative temperature change and the rate of images acquired during the scans (regression coefficient =-0.05, R-squared =0.05, P=0.22, F-statistic =1.60). The difference in the relative temperature changes between the fetal brain and mother's gluteal tissue in the healthy controls was on average 0.08 ℃ lower and found not to be statistically different (P=0.76) to the group with cardiac abnormalities. Conclusions: Our results indicate that the estimated relative temperature changes of the fetal brain compared to the mother's gluteal tissue from RF pulses during the course of the T2-weighted SSFSE fetal MR exam are minimal. The differences in acquired phase between these regions through the exam were found not to be statistically different. These findings support that fetal brain imaging at 3T is within FDA limits and safe.

7.
ArXiv ; 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37731660

RESUMO

MRI with hyperpolarized (HP) 13C agents, also known as HP 13C MRI, can measure processes such as localized metabolism that is altered in numerous cancers, liver, heart, kidney diseases, and more. It has been translated into human studies during the past 10 years, with recent rapid growth in studies largely based on increasing availability of hyperpolarized agent preparation methods suitable for use in humans. This paper aims to capture the current successful practices for HP MRI human studies with [1-13C]pyruvate - by far the most commonly used agent, which sits at a key metabolic junction in glycolysis. The paper is divided into four major topic areas: (1) HP 13C-pyruvate preparation, (2) MRI system setup and calibrations, (3) data acquisition and image reconstruction, and (4) data analysis and quantification. In each area, we identified the key components for a successful study, summarized both published studies and current practices, and discuss evidence gaps, strengths, and limitations. This paper is the output of the "HP 13C MRI Consensus Group" as well as the ISMRM Hyperpolarized Media MR and Hyperpolarized Methods & Equipment study groups. It further aims to provide a comprehensive reference for future consensus building as the field continues to advance human studies with this metabolic imaging modality.

8.
Front Neurosci ; 17: 1219343, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37706154

RESUMO

Purpose: While 3D MR spectroscopic imaging (MRSI) provides valuable spatial metabolic information, one of the hurdles for clinical translation is its interpretation, with voxel-wise quality control (QC) as an essential and the most time-consuming step. This work evaluates the accuracy of machine learning (ML) models for automated QC filtering of individual spectra from 3D healthy control and patient datasets. Methods: A total of 53 3D MRSI datasets from prior studies (30 neurological diseases, 13 brain tumors, and 10 healthy controls) were included in the study. Three ML models were evaluated: a random forest classifier (RF), a convolutional neural network (CNN), and an inception CNN (ICNN) along with two hybrid models: CNN + RF, ICNN + RF. QC labels used for training were determined manually through consensus of two MRSI experts. Normalized and cropped real-valued spectra was used as input. A cross-validation approach was used to separate datasets into training/validation/testing sets of aggregated voxels. Results: All models achieved a minimum AUC of 0.964 and accuracy of 0.910. In datasets from neurological disease and controls, the CNN model produced the highest AUC (0.982), while the RF model achieved the highest AUC in patients with brain tumors (0.976). Within tumor lesions, which typically exhibit abnormal metabolism, the CNN AUC was 0.973 while that of the RF was 0.969. Data quality inference times were on the order of seconds for an entire 3D dataset, offering drastic time reduction compared to manual labeling. Conclusion: ML methods accurately and rapidly performed automated QC. Results in tumors highlights the applicability to a variety of metabolic conditions.

9.
Neuroimage Clin ; 39: 103501, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37611371

RESUMO

BACKGROUND: Dynamic hyperpolarized (HP)-13C MRI has enabled real-time, non-invasive assessment of Warburg-related metabolic dysregulation in glioma using a [1-13C]pyruvate tracer that undergoes conversion to [1-13C]lactate and [13C]bicarbonate. Using a multi-parametric 1H/HP-13C imaging approach, we investigated dynamic and steady-state metabolism, together with physiological parameters, in high-grade gliomas to characterize active tumor. METHODS: Multi-parametric 1H/HP-13C MRI data were acquired from fifteen patients with progressive/treatment-naïve glioblastoma [prog/TN GBM, IDH-wildtype (n = 11)], progressive astrocytoma, IDH-mutant, grade 4 (G4AIDH+, n = 2) and GBM manifesting treatment effects (n = 2). Voxel-wise regional analysis of the cohort with prog/TN GBM assessed imaging heterogeneity across contrast-enhancing/non-enhancing lesions (CEL/NEL) and normal-appearing white matter (NAWM) using a mixed effects model. To enable cross-nucleus parameter association, normalized perfusion, diffusion, and dynamic/steady-state (HP-13C/spectroscopic) metabolic data were collectively examined at the 13C resolution. Prog/TN GBM were similarly compared against progressive G4AIDH+ and treatment effects. RESULTS: Regional analysis of Prog/TN GBM metabolism revealed statistically significant heterogeneity in 1H choline-to-N-acetylaspartate index (CNI)max, [1-13C]lactate, modified [1-13C]lactate-to-[1-13C]pyruvate ratio (CELval > NELval > NAWMval); [1-13C]lactate-to-[13C]bicarbonate ratio (CELval > NELval/NAWMval); and 1H-lactate (CELval/NELval > NAWMundetected). Significant associations were found between normalized perfusion (cerebral blood volume, nCBV; peak height, nPH) and levels of [1-13C]pyruvate and [1-13C]lactate, as well as between CNImax and levels of [1-13C]pyruvate, [1-13C]lactate and modified ratio. GBM, by comparison to G4AIDH+, displayed lower perfusion %-recovery and modeled rate constants for [1-13C]pyruvate-to-[1-13C]lactate conversion (kPL), and higher 1H-lactate and [1-13C]pyruvate levels, while having higher nCBV, %-recovery, kPL, [1-13C]pyruvate-to-[1-13C]lactate and modified ratios relative to treatment effects. CONCLUSIONS: GBM consistently displayed aberrant, Warburg-related metabolism and regional heterogeneity detectable by novel HP-13C/1H imaging techniques.


Assuntos
Glioblastoma , Glioma , Humanos , Bicarbonatos , Glioma/diagnóstico por imagem , Ácido Láctico , Glioblastoma/diagnóstico por imagem , Ácido Pirúvico
10.
J Am Coll Cardiol ; 81(3): 253-266, 2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36653093

RESUMO

BACKGROUND: Brain injury is common in neonates with complex neonatal congenital heart disease (CHD) and affects neurodevelopmental outcomes. OBJECTIVES: Given advancements in perioperative care, we sought to determine if the rate of preoperative and postoperative brain injury detected by using brain magnetic resonance imaging (MRI) and associated clinical risk factors have changed over time in complex CHD. METHODS: A total of 270 term newborns with complex CHD were prospectively enrolled for preoperative and postoperative brain MRIs between 2001 and 2021 with a total of 466 MRI scans. Brain injuries in the form of white matter injury (WMI) or focal stroke and clinical factors were compared across 4 epochs of 5-year intervals with logistic regression. RESULTS: Rates of preoperative WMI and stroke did not change over time. After adjusting for timing of the postoperative MRI, site, and cardiac group, the odds of newly acquired postoperative WMI were significantly lower in Epoch 4 compared with Epoch 1 (OR: 0.29; 95% CI: 0.09-1.00; P = 0.05). The adjusted probability of postoperative WMI declined significantly by 18.7% from Epoch 1 (24%) to Epoch 4 (6%). Among clinical risk factors, lowest systolic, mean, and diastolic blood pressures in the first 24 hours after surgery were significantly higher in the most recent epoch. CONCLUSIONS: The prevalence of postoperative WMI has declined, whereas preoperative WMI rates remain constant. More robust postoperative blood pressures may explain these findings by minimizing periods of ischemia and supporting cerebral perfusion. These results suggest potential modifiable clinical targets in the postoperative time period to minimize the burden of WMI.


Assuntos
Lesões Encefálicas , Cardiopatias Congênitas , Complicações Pós-Operatórias , Humanos , Recém-Nascido , Lesões Encefálicas/diagnóstico por imagem , Lesões Encefálicas/epidemiologia , Cardiopatias Congênitas/epidemiologia , Cardiopatias Congênitas/cirurgia , Incidência , Imageamento por Ressonância Magnética , Acidente Vascular Cerebral/epidemiologia , Complicações Pós-Operatórias/diagnóstico por imagem , Complicações Pós-Operatórias/epidemiologia
11.
Neuroimage Clin ; 36: 103155, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36007439

RESUMO

BACKGROUND: Real-time metabolic conversion of intravenously-injected hyperpolarized [1-13C]pyruvate to [1-13C]lactate and [13C]bicarbonate in the brain can be measured using dynamic hyperpolarized carbon-13 (HP-13C) MRI. However, voxel-wise evaluation of metabolism in patients with glioma is challenged by the limited signal-to-noise ratio (SNR) of downstream 13C metabolites, especially within lesions. The purpose of this study was to evaluate the ability of higher-order singular value decomposition (HOSVD) denoising methods to enhance dynamic HP [1-13C]pyruvate MRI data acquired from patients with glioma. METHODS: Dynamic HP-13C MRI were acquired from 14 patients with glioma. The effects of two HOSVD denoising techniques, tensor rank truncation-image enhancement (TRI) and global-local HOSVD (GL-HOSVD), on the SNR and kinetic modeling were analyzed in [1-13C]lactate data with simulated noise that matched the levels of [13C]bicarbonate signals. Both methods were then evaluated in patient data based on their ability to improve [1-13C]pyruvate, [1-13C]lactate and [13C]bicarbonate SNR. The effects of denoising on voxel-wise kinetic modeling of kPL and kPB was also evaluated. The number of voxels with reliable kinetic modeling of pyruvate-to-lactate (kPL) and pyruvate-to-bicarbonate (kPB) conversion rates within regions of interest (ROIs) before and after denoising was then compared. RESULTS: Both denoising methods improved metabolite SNR and regional signal coverage. In patient data, the average increase in peak dynamic metabolite SNR was 2-fold using TRI and 4-5 folds using GL-HOSVD denoising compared to acquired data. Denoising reduced kPL modeling errors from a native average of 23% to 16% (TRI) and 15% (GL-HOSVD); and kPB error from 42% to 34% (TRI) and 37% (GL-HOSVD) (values were averaged voxelwise over all datasets). In contrast-enhancing lesions, the average number of voxels demonstrating within-tolerance kPL modeling error relative to the total voxels increased from 48% in the original data to 84% (TRI) and 90% (GL-HOSVD), while the number of voxels showing within-tolerance kPB modeling error increased from 0% to 15% (TRI) and 8% (GL-HOSVD). CONCLUSION: Post-processing denoising methods significantly improved the SNR of dynamic HP-13C imaging data, resulting in a greater number of voxels satisfying minimum SNR criteria and maximum kinetic modeling errors in tumor lesions. This enhancement can aid in the voxel-wise analysis of HP-13C data and thereby improve monitoring of metabolic changes in patients with glioma following treatment.


Assuntos
Glioma , Ácido Pirúvico , Humanos , Ácido Pirúvico/metabolismo , Bicarbonatos , Glioma/diagnóstico por imagem , Glioma/metabolismo , Imageamento por Ressonância Magnética/métodos , Ácido Láctico/metabolismo
12.
Magn Reson Med ; 86(5): 2402-2411, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34216051

RESUMO

PURPOSE: To develop a novel post-processing pipeline for hyperpolarized (HP) 13 C MRSI that integrates tensor denoising and B1+ correction to measure pyruvate-to-lactate conversion rates (kPL ) in patients with liver tumors. METHODS: Seven HP 13 C MR scans of progressing liver tumors were acquired using a custom 13 C surface transmit/receive coil and the echo-planar spectroscopic imaging (EPSI) data analysis included B0 correction, tensor rank truncation, and zero- and first-order phase corrections to recover metabolite signals that would otherwise be obscured by spectral noise as well as a correction for inhomogeneous transmit ( B1+ ) using a B1+ map aligned to the coil position for each patient scan. Processed HP data and corrected flip angles were analyzed with an inputless two-site exchange model to calculate kPL . RESULTS: Denoising averages SNR increases of pyruvate, lactate, and alanine were 37.4-, 34.0-, and 20.1-fold, respectively, with lactate and alanine dynamics most noticeably recovered and better defined. In agreement with Monte Carlo simulations, over-flipped regions underestimated kPL and under-flipped regions overestimated kPL . B1+ correction addressed this issue. CONCLUSION: The new HP 13 C EPSI post-processing pipeline integrated tensor denoising and B1+ correction to measure kPL in patients with liver tumors. These technical developments not only recovered metabolite signals in voxels that did not receive the prescribed flip angle, but also increased the extent and accuracy of kPL estimations throughout the tumor and adjacent regions including normal-appearing tissue and additional lesions.


Assuntos
Neoplasias Hepáticas , Imageamento por Ressonância Magnética , Isótopos de Carbono , Imagem Ecoplanar , Humanos , Cinética , Neoplasias Hepáticas/diagnóstico por imagem , Ácido Pirúvico
13.
NMR Biomed ; 34(5): e4280, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32189442

RESUMO

Based on the expanding set of applications for hyperpolarized carbon-13 (HP-13 C) MRI, this work aims to communicate standardized methodology implemented at the University of California, San Francisco, as a primer for conducting reproducible metabolic imaging studies of the prostate and brain. Current state-of-the-art HP-13 C acquisition, data processing/reconstruction and kinetic modeling approaches utilized in patient studies are presented together with the rationale underpinning their usage. Organized around spectroscopic and imaging-based methods, this guide provides an extensible framework for handling a variety of HP-13 C applications, which derives from two examples with dynamic acquisitions: 3D echo-planar spectroscopic imaging of the human prostate and frequency-specific 2D multislice echo-planar imaging of the human brain. Details of sequence-specific parameters and processing techniques contained in these examples should enable investigators to effectively tailor studies around individual-use cases. Given the importance of clinical integration in improving the utility of HP exams, practical aspects of standardizing data formats for reconstruction, analysis and visualization are also addressed alongside open-source software packages that enhance institutional interoperability and validation of methodology. To facilitate the adoption and further development of this methodology, example datasets and analysis pipelines have been made available in the supporting information.


Assuntos
Encéfalo/diagnóstico por imagem , Isótopos de Carbono/química , Imageamento por Ressonância Magnética , Próstata/diagnóstico por imagem , Imagem Ecoplanar , Humanos , Masculino , Imagem Molecular , São Francisco , Razão Sinal-Ruído , Universidades
14.
Pediatr Res ; 90(2): 359-365, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-32937647

RESUMO

BACKGROUND: Cumulative supplemental oxygen (CSO) and cumulative mean airway pressure (CMAP) are associated with bronchopulmonary dysplasia (BPD) in preterm infants, but their relationships to white matter injury (WMI) and neurodevelopment have not been evaluated. METHODS: Preterm infants <32 weeks' gestation were prospectively imaged with 3 T MRI near term. CSO and CMAP were retrospectively summed over the first 14 and 28 days. Neurodevelopment was assessed at 30 months adjusted using the Bayley-III. ROC and linear regression were used to evaluate the relationship between CSO, CMAP, and BPD with WMI and neurodevelopmental performance, respectively. RESULTS: Of the 87 infants, 30 (34.5%) had moderate-severe BPD, which was associated with WMI (OR 5.5, 95% CI 1.1-34.9, p = 0.012). CSO and CMAP predicted WMI as well as BPD (AUC 0.68-0.77). CSO was independently associated with decreased language and cognitive performance (mean difference at 14 days: -11.0, 95% CI -19.8 to -2.2, p = 0.015 and -9.8, 95% CI -18.9 to -0.7, p = 0.035, respectively) at 30 months adjusted. CONCLUSIONS: BPD precursors predict WMI as well as BPD. Cumulative supplemental oxygen over the first 14 days of life is independently associated with lower language and cognitive performances. These data suggest that early respiratory status influences the risk of adverse neurodevelopment in preterm infants. IMPACT: Respiratory precursors to bronchopulmonary dysplasia (BPD), cumulative supplemental oxygen and mean airway pressure, over the first 14-28 days performed as well as BPD for the prediction of white matter injury on MRI in preterm infants. Cumulative supplemental oxygen was independently associated with lower language and cognitive performance on the Bayley-III at 30 months adjusted. These data suggest that early respiratory status may help explain why BPD is independently associated with adverse neurodevelopmental outcomes in the preterm population and highlights the importance of interventions targeting respiratory status as a potential avenue to improve neurodevelopmental outcomes.


Assuntos
Displasia Broncopulmonar/etiologia , Desenvolvimento Infantil , Leucoencefalopatias/etiologia , Pulmão/fisiopatologia , Sistema Nervoso/crescimento & desenvolvimento , Oxigenoterapia/efeitos adversos , Respiração , Fatores Etários , Displasia Broncopulmonar/diagnóstico , Displasia Broncopulmonar/fisiopatologia , Linguagem Infantil , Pré-Escolar , Cognição , Estudos Transversais , Idade Gestacional , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Leucoencefalopatias/diagnóstico por imagem , Leucoencefalopatias/fisiopatologia , Imageamento por Ressonância Magnética , Atividade Motora , Sistema Nervoso/diagnóstico por imagem , Valor Preditivo dos Testes , Pressão , Estudos Retrospectivos , Medição de Risco , Fatores de Risco , Fatores de Tempo
15.
J Thorac Cardiovasc Surg ; 162(3): 1007-1014.e1, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33185192

RESUMO

OBJECTIVE: To test the hypothesis that delayed brain development in fetuses with d-transposition of the great arteries or hypoplastic left heart syndrome heightens their postnatal susceptibility to acquired white matter injury. METHODS: This is a cohort study across 3 sites. Subjects underwent fetal (third trimester) and neonatal preoperative magnetic resonance imaging of the brain to measure total brain volume as a measure of brain maturity and the presence of acquired white matter injury after birth. White matter injury was categorized as no-mild or moderate-severe based on validated grading criteria. Comparisons were made between the injury groups. RESULTS: A total of 63 subjects were enrolled (d-transposition of the great arteries: 37; hypoplastic left heart syndrome: 26). White matter injury was present in 32.4% (n = 12) of d-transposition of the great arteries and 34.6% (n = 8) of those with hypoplastic left heart syndrome. Overall total brain volume (taking into account fetal and neonatal scan) was significantly lower in those with postnatal moderate-severe white matter injury compared with no-mild white matter injury after adjusting for age at scan and site in d-transposition of the great arteries (coefficient: 14.8 mL, 95% confidence interval, -28.8 to -0.73, P = .04). The rate of change in total brain volume from fetal to postnatal life did not differ by injury group. In hypoplastic left heart syndrome, no association was noted between overall total brain volume and change in total brain volume with postnatal white matter injury. CONCLUSIONS: Lower total brain volume beginning in late gestation is associated with increased risk of postnatal moderate-severe white matter injury in d-transposition of the great arteries but not hypoplastic left heart syndrome. Rate of brain growth was not a risk factor for white matter injury. The underlying fetal and perinatal physiology has different implications for postnatal risk of white matter injury.


Assuntos
Encéfalo/crescimento & desenvolvimento , Síndrome do Coração Esquerdo Hipoplásico/complicações , Leucoencefalopatias/etiologia , Transposição dos Grandes Vasos/complicações , Encéfalo/diagnóstico por imagem , Canadá , Feminino , Desenvolvimento Fetal , Idade Gestacional , Humanos , Síndrome do Coração Esquerdo Hipoplásico/diagnóstico por imagem , Recém-Nascido , Leucoencefalopatias/diagnóstico por imagem , Estudos Longitudinais , Imageamento por Ressonância Magnética , Masculino , Tamanho do Órgão , Gravidez , Diagnóstico Pré-Natal , Estudos Prospectivos , Medição de Risco , Fatores de Risco , São Francisco , Transposição dos Grandes Vasos/diagnóstico por imagem
16.
Neuroimage Clin ; 27: 102323, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32623139

RESUMO

BACKGROUND: Hyperpolarized carbon-13 (HP-13C) MRI is a non-invasive imaging technique for probing brain metabolism, which may improve clinical cancer surveillance. This work aimed to characterize the consistency of serial HP-13C imaging in patients undergoing treatment for brain tumors and determine whether there is evidence of aberrant metabolism in the tumor lesion compared to normal-appearing tissue. METHODS: Serial dynamic HP [1-13C]pyruvate MRI was performed on 3 healthy volunteers (6 total examinations) and 5 patients (21 total examinations) with diffuse infiltrating glioma during their course of treatment, using a frequency-selective echo-planar imaging (EPI) sequence. HP-13C imaging at routine clinical timepoints overlapped treatment, including radiotherapy (RT), temozolomide (TMZ) chemotherapy, and anti-angiogenic/investigational agents. Apparent rate constants for [1-13C]pyruvate conversion to [1-13C]lactate (kPL) and [13C]bicarbonate (kPB) were simultaneously quantified based on an inputless kinetic model within normal-appearing white matter (NAWM) and anatomic lesions defined from 1H MRI. The inter/intra-subject consistency of kPL-NAWM and kPB-NAWM was measured in terms of the coefficient of variation (CV). RESULTS: When excluding scans following anti-angiogenic therapy, patient values of kPL-NAWM and kPB-NAWM were 0.020 s-1 ± 23.8% and 0.0058 s-1 ± 27.7% (mean ± CV) across 17 HP-13C MRIs, with intra-patient serial kPL-NAWM/kPB-NAWM CVs ranging 6.8-16.6%/10.6-40.7%. In 4/5 patients, these values (0.018 s-1 ± 13.4% and 0.0058 s-1 ± 24.4%; n = 13) were more similar to those from healthy volunteers (0.018 s-1 ± 5.0% and 0.0043 s-1 ± 12.6%; n = 6) (mean ± CV). The anti-angiogenic agent bevacizumab was associated with global elevations in apparent rate constants, with maximum kPL-NAWM in 2 patients reaching 0.047 ± 0.001 and 0.047 ± 0.003 s-1 (±model error). In 3 patients with progressive disease, anatomic lesions showed elevated kPL relative to kPL-NAWM of 0.024 ± 0.001 s-1 (±model error) in the absence of gadolinium enhancement, and 0.032 ± 0.008, 0.040 ± 0.003 and 0.041 ± 0.009 s-1 with gadolinium enhancement. The lesion kPB in patients was reduced to unquantifiable values compared to kPB-NAWM. CONCLUSION: Serial measures of HP [1-13C]pyruvate metabolism displayed consistency in the NAWM of healthy volunteers and patients. Both kPL and kPB were globally elevated following bevacizumab treatment, while progressive disease demonstrated elevated kPL in gadolinium-enhancing and non-enhancing lesions. Larger prospective studies with homogeneous patient populations are planned to evaluate metabolic changes following treatment.


Assuntos
Meios de Contraste , Glioma , Gadolínio , Glioma/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Estudos Prospectivos , Ácido Pirúvico
17.
Medicine (Baltimore) ; 99(27): e20994, 2020 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-32629716

RESUMO

INTRODUCTION: Acute myocardial infarction with simultaneous coronary thrombosis has been rarely reported. This combination induces various arrhythmias and is a high-risk factor for cardiogenic shock. PATIENT CONCERNS: A 65-year-old man presented with sweating and a 3-h abrupt persistent back pain that radiated to the anterior. DIAGNOSIS: Multisite myocardial infarction, coronary thrombosis with and complex malignant arrhythmia INTERVENTIONS:: Prompt intervention includes cardiac pacing, percutaneous coronary intervention (PCI), thrombus aspiration and intra-aortic balloon pump (IABP). OUTCOMES: The patient was successfully rescued after PCI and thrombus aspiration. CONCLUSIONS: Recognition of dynamic electrocardiographic changes enhances our understanding of the pathogenesis of myocardial infarction.


Assuntos
Arritmias Cardíacas/complicações , Trombose Coronária/complicações , Infarto do Miocárdio/complicações , Idoso , Arritmias Cardíacas/cirurgia , Trombose Coronária/cirurgia , Eletrocardiografia , Humanos , Masculino , Intervenção Coronária Percutânea/métodos , Choque Cardiogênico/etiologia
18.
Magn Reson Med ; 84(6): 3351-3365, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32501614

RESUMO

PURPOSE: With the initiation of human hyperpolarized 13 C (HP-13 C) trials at multiple sites and the development of improved acquisition methods, there is an imminent need to maximally extract diagnostic information to facilitate clinical interpretation. This study aims to improve human HP-13 C MR spectroscopic imaging through means of Tensor Rank truncation-Image enhancement (TRI) and optimal receiver combination (ORC). METHODS: A data-driven processing framework for dynamic HP 13 C MR spectroscopic imaging (MRSI) was developed. Using patient data sets acquired with both multichannel arrays and single-element receivers from the brain, abdomen, and pelvis, we examined the theory and application of TRI, as well as 2 ORC techniques: whitened singular value decomposition (WSVD) and first-point phasing. Optimal conditions for TRI were derived based on bias-variance trade-off. RESULTS: TRI and ORC techniques together provided a 63-fold mean apparent signal-to-noise ratio (aSNR) gain for receiver arrays and a 31-fold gain for single-element configurations, which particularly improved quantification of the lower-SNR-[13 C]bicarbonate and [1-13 C]alanine signals that were otherwise not detectable in many cases. Substantial SNR enhancements were observed for data sets that were acquired even with suboptimal experimental conditions, including delayed (114 s) injection (8× aSNR gain solely by TRI), or from challenging anatomy or geometry, as in the case of a pediatric patient with brainstem tumor (597× using combined TRI and WSVD). Improved correlation between elevated pyruvate-to-lactate conversion, biopsy-confirmed cancer, and mp-MRI lesions demonstrated that TRI recovered quantitative diagnostic information. CONCLUSION: Overall, this combined approach was effective across imaging targets and receiver configurations and could greatly benefit ongoing and future HP 13 C MRI research through major aSNR improvements.


Assuntos
Aumento da Imagem , Imageamento por Ressonância Magnética , Isótopos de Carbono , Criança , Humanos , Espectroscopia de Ressonância Magnética , Ácido Pirúvico , Razão Sinal-Ruído
19.
IEEE Trans Med Imaging ; 39(2): 320-327, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31283497

RESUMO

Kinetic modeling of the in vivo pyruvate-to-lactate conversion is crucial to investigating aberrant cancer metabolism that demonstrates Warburg effect modifications. Non-invasive detection of alterations to metabolic flux might offer prognostic value and improve the monitoring of response to treatment. In this clinical research project, hyperpolarized [1-13C] pyruvate was intravenously injected in a total of 10 brain tumor patients to measure its rate of conversion to lactate ( kPL ) and bicarbonate ( kPB ) via echo-planar imaging. Our aim was to investigate new methods to provide kPL and kPB maps with whole-brain coverage. The approach was data-driven and addressed two main issues: selecting the optimal model for fitting our data and determining an appropriate goodness-of-fit metric. The statistical analysis suggested that an input-less model had the best agreement with the data. It was also found that selecting voxels based on post-fitting error criteria provided improved precision and wider spatial coverage compared to using signal-to-noise cutoffs alone.


Assuntos
Neoplasias Encefálicas , Encéfalo , Imagem Ecoplanar/métodos , Ácido Pirúvico , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/metabolismo , Isótopos de Carbono/análise , Isótopos de Carbono/farmacocinética , Humanos , Interpretação de Imagem Assistida por Computador , Cinética , Ácido Láctico/análise , Ácido Láctico/metabolismo , Ácido Pirúvico/análise , Ácido Pirúvico/farmacocinética
20.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 27(6): 1862-1868, 2019 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-31839051

RESUMO

OBJECTIVE: To analyze the effect of serum free light chain (sFLC) on renal function and prognosis in patients with newly diagnosed multiple myeloma (MM). METHODS: The clinical data of 70 newly diagnosed MM patients who received sFLC examination in Fujian Medical University Union Hospital were retrospectively analyzed from April 2012 to November 2016. Univariate analysis was used to analyze the risk factors that associated with renal impairment (RI) and prognosis. Logistic regression and Kaplan-Meier analyze were used to analyze the roles of sFLC in RI and the prognosis. RESULTS: Out of the 70 patients, 20 patients had RI at the initial diagnosis. Compared to normal renal function group, RI group had lower level of hemoglobin, elevated levels of serum uric acid, corrected calcium, serum creatinine, serum ß2 microglobulin, and involved sFLC, higher proportion of patients with ISS stage III, involved sFLC≥500 mg/L, hemodialysis (all P<0.05). Multivariate logistic regression analysis showed that serum uric acid≥430 µmol/L, ISS stage III and a involved sFLC≥500 mg/L were all the independent risk factors for RI in patients with newly diagnosed MM patients (all P<0.05). Receiver operating characteristic (ROC) curves analysis showed that the involved sFLC was 705.0 mg/L, which was a best cut-off value area under curve (AUC) for prediting RI in patients with MM was 0.727 (P=0.003), sensitivity was 65.0% and specificity was 82.0%). After a median follow-up period of 31 (1-84) months, the median overall survival (OS) of patients with involved sFLC≥500mg/L and involved sFLC<500 mg/L were 52.0 and 27.0 months, respectively, there was no statistically significant difference (P=0.137). There was also no statistically significant difference in median OS between the high sFLC ratio group (κ/λ>32 or <0.03) and the low sFLC ratio group (0.03≤κ/λ≤32) (27 months vs 40 months, P=0.436). CONCLUSION: The involved sFLC in the RI group is significantly higher than that in the normal renal function group in newly diagnosed MM patients. Serum uric acid≥430 µmol/L, ISS stage III and involved sFLC≥500 mg/L are the independent risk factors for RI. Monitoring sFLC in newly diagnosed MM patients is helpful to the prediction of RI, and the involved sFLC level or sFLC ratio may not affect the prognosis of newly diagnosed MM patients.


Assuntos
Mieloma Múltiplo , Humanos , Cadeias Leves de Imunoglobulina , Prognóstico , Estudos Retrospectivos , Ácido Úrico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA