Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39255065

RESUMO

The extensive use of single-use or disposable face masks has raised environmental concerns related to microfiber contamination. In contrast, research on the potential release and ecological impact of microfibers from washable masks (WMs), suggested as an eco-friendly alternative, is currently lacking. Here, we comprehensively investigated the release of microfibers from disposable and WMs of different types in simulated aquatic environments and real-life scenarios, including shaking, disinfection, hand washing, and machine washing. Using a combination of wide-field fluorescence microscopy, He-ion microscopy, and confocal µ-Raman spectroscopy, we revealed that disposable masks (DMs) released microfibers ranging from 18 to 3042 microfiber/piece, whereas WMs released 6.1 × 104-6.7 × 106 microfibers/piece depending on the simulated conditions above. Another noteworthy finding was the observed negative correlation between microfiber release and the proportion of reinforcement (embossing) on the DM surfaces. Microfibers from tested DMs primarily comprised polypropylene (PP), while WMs predominantly released poly(ethylene terephthalate) (PET) and cellulose microfibers. Furthermore, acute toxicological analyses unveiled that PP microfibers (0.01-50 mg/L) from DMs impacted zebrafish larval swimming behavior, while PET microfibers from WMs delayed early-stage zebrafish hatching. This study offers new insights into the source of microfiber contamination and raises concerns about the environmental implications linked to the use of washable face masks.

2.
Environ Sci Technol ; 58(1): 704-716, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38109774

RESUMO

With increasing water scarcity, many utilities are considering the potable reuse of wastewater as a source of drinking water. However, not all chemicals are removed in conventional wastewater treatment, and disinfection byproducts (DBPs) can form from these contaminants when disinfectants are applied during or after reuse treatment, especially if applied upstream of advanced treatment processes to control biofouling. We investigated the chlorination of seven priority emerging contaminants (17ß-estradiol, estrone, 17α-ethinylestradiol, bisphenol A (BPA), diclofenac, p-nonylphenol, and triclosan) in ultrapure water, and we also investigated the impact of chlorination on real samples from different treatment stages of an advanced reuse plant to evaluate the role of chlorination on the associated cytotoxicity and estrogenicity. Many DBPs were tentatively identified via liquid chromatography (LC)- and gas chromatography (GC)-high resolution mass spectrometry, including 28 not previously reported. These encompassed chlorinated, brominated, and oxidized analogs of the parent compounds as well as smaller halogenated molecules. Chlorinated BPA was the least cytotoxic of the DBPs formed but was highly estrogenic, whereas chlorinated hormones were highly cytotoxic. Estrogenicity decreased by ∼4-6 orders of magnitude for 17ß-estradiol and estrone following chlorination but increased 2 orders of magnitude for diclofenac. Estrogenicity of chlorinated BPA and p-nonylphenol were ∼50% of the natural/synthetic hormones. Potential seasonal differences in estrogen activity of unreacted vs reacted advanced wastewater treatment field samples were observed.


Assuntos
Desinfetantes , Água Potável , Poluentes Químicos da Água , Purificação da Água , Desinfecção , Halogenação , Águas Residuárias , Estrona , Diclofenaco/análise , Poluentes Químicos da Água/análise , Desinfetantes/análise , Desinfetantes/química , Estrogênios , Água Potável/análise , Água Potável/química , Estradiol , Purificação da Água/métodos
3.
Environ Sci Technol ; 57(22): 8225-8235, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37220346

RESUMO

Plastic cutting boards are a potentially significant source of microplastics in human food. Thus, we investigated the impact of chopping styles and board materials on microplastics released during chopping. As chopping progressed, the effects of chopping styles on microplastic release became evident. The mass and number of microplastics released from polypropylene chopping boards were greater than polyethylene by 5-60% and 14-71%, respectively. Chopping on polyethylene boards was associated with a greater release of microplastics with a vegetable (i.e., carrots) than chopping without carrots. Microplastics showed a broad, bottom-skewed normal distribution, dominated by <100 µm spherical-shaped microplastics. Based on our assumptions, we estimated a per-person annual exposure of 7.4-50.7 g of microplastics from a polyethylene chopping board and 49.5 g of microplastics from a polypropylene chopping board. We further estimated that a person could be exposed to 14.5 to 71.9 million polyethylene microplastics annually, compared to 79.4 million polypropylene microplastics from chopping boards. The preliminary toxicity study of the polyethylene microplastics did not show adverse effects on the viability of mouse fibroblast cells for 72 h. This study identifies plastic chopping boards as a substantial source of microplastics in human food, which requires careful attention.


Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Camundongos , Humanos , Plásticos , Polipropilenos , Poluentes Químicos da Água/análise , Polietileno/análise , Monitoramento Ambiental
4.
Sci Total Environ ; 880: 163304, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37030355

RESUMO

Antibiotics and nanoplastics (NPs) are among the two most concerned and studied marine emerging contaminants in recent years. Given the large number of different types of antibiotics and NPs, there is a need to apply efficient tools to evaluate their combined toxic effects. Using the thick-shelled mussel (Mytilus coruscus) as a marine ecotoxicological model, we applied a battery of fast enzymatic activity assays and 16S rRNA sequencing to investigate the biochemical and gut microbial response of mussels exposed to antibiotic norfloxacin (NOR) and NPs (80 nm polystyrene beads) alone and in combination at environmentally relevant concentrations. After 15 days of exposure, NPs alone significantly inhibited superoxide dismutase (SOD) and amylase (AMS) activities, while catalase (CAT) was affected by both NOR and NPs. The changes in lysozyme (LZM) and lipase (LPS) were increased over time during the treatments. Co-exposure to NPs and NOR significantly affected glutathione (GSH) and trypsin (Typ), which might be explained by the increased bioavailable NOR carried by NPs. The richness and diversity of the gut microbiota of mussels were both decreased by exposures to NOR and NPs, and the top functions of gut microbiota that were affected by the exposures were predicted. The data fast generated by enzymatic test and 16S sequencing allowed further variance and correlation analysis to understand the plausible driving factors and toxicity mechanisms. Despite the toxic effects of only one type of antibiotics and NPs being evaluated, the validated assays on mussels are readily applicable to other antibiotics, NPs, and their mixture.


Assuntos
Microbioma Gastrointestinal , Mytilus , Poluentes Químicos da Água , Animais , Microplásticos , Norfloxacino/toxicidade , Água do Mar , RNA Ribossômico 16S , Mytilus/fisiologia , Glutationa , Antibacterianos/toxicidade , Poluentes Químicos da Água/toxicidade
5.
Water Res ; 210: 118002, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34986458

RESUMO

Rivers have been recognized as major transport pathways for microplastics into the sea but large-scale quantitative data on the environmental fate of riverine microplastics remains limited, hindering proper risk assessment and development of regulatory measures. Microplastics in the whole Yangtze River Basin of China were systematically investigated by sampling the water, sediment, and soil. Microplastics were detected in all samples, with an average abundance of 1.27 items/L, 286.20 items/kg, and 338.09 items/kg for water, sediments, and soils, respectively, with polypropylene and polyethylene being the most abundant polymers. A generally increasing trend of microplastic abundance from upstream to downstream was identified, which were co-attributed by geographical and anthropogenic factors including elevation, longitude, distance from the nearest city, population density, urbanization rate, and land use. Microplastics in the sediments showed more prominent vertical migration than those in the soils, and the density and size of microplastics may be the key factors governing the migration of microplastics across different compartments. Community analysis showed that microplastics in different compartments were significantly different and highly correlated with geographical distance. Major cities at the middle and lower reaches were considered pivotal nodes of microplastic pollution in the Yangtze River Basin. Policy recommendations were also proposed towards better remediation of microplastic pollution involving riverine systems.


Assuntos
Microplásticos , Poluentes Químicos da Água , Efeitos Antropogênicos , Monitoramento Ambiental , Sedimentos Geológicos , Plásticos , Poluentes Químicos da Água/análise
6.
Sci Total Environ ; 808: 151988, 2022 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-34838918

RESUMO

Crude oil is known to induce developmental defects in teleost fish exposed during early life stages (ELSs). While most studies in recent years have focused on cardiac endpoints, evidence from whole-animal transcriptomic analyses and studies with individual polycyclic aromatic hydrocarbons (PAHs) indicate that the developing kidney (i.e., pronephros) is also at risk. Considering the role of the pronephros in osmoregulation, and the common observance of edema in oil-exposed ELS fish, surprisingly little is known regarding the effects of oil exposure on pronephros development and function. Using zebrafish (Danio rerio) ELSs, we assessed the transcriptional and morphological responses to two dilutions of high-energy water accommodated fractions (HEWAF) of oil from the Deepwater Horizon oil spill using a combination of qPCR and whole-mount in situ hybridization (WM-ISH) of candidate genes involved in pronephros development and function, and immunohistochemistry (WM-IHC). To assess potential functional impacts on the pronephros, three 24 h osmotic challenges (2 hypo-osmotic, 1 near iso-osmotic) were implemented at two developmental time points (48 and 96 h post fertilization; hpf) following exposure to HEWAF. Changes in transcript expression level and location specific to different regions of the pronephros were observed by qPCR and WM-ISH. Further, pronephros morphology was altered in crude oil exposed larvae, characterized by failed glomerulus and neck segment formation, and straightening of the pronephric tubules. The osmotic challenges at 96 hpf greatly exacerbated edema in both HEWAF-exposed groups regardless of osmolarity. By contrast, larvae at 48 hpf exhibited no edema prior to the osmotic challenge, but previous HEWAF exposure elicited a concentration-response increase in edema at hypo-osmotic conditions that appeared to have been largely alleviated under near iso-osmotic conditions. In summary, ELS HEWAF exposure impaired proper pronephros development in zebrafish, which coupled with cardiotoxic effects, most likely reduced or inhibited pronephros fluid clearance capacity and increased edema formation.


Assuntos
Poluição por Petróleo , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Animais , Rim , Larva , Petróleo/toxicidade , Poluição por Petróleo/efeitos adversos , Poluição por Petróleo/análise , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Poluentes Químicos da Água/toxicidade , Peixe-Zebra
7.
Front Physiol ; 12: 753999, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34621192

RESUMO

Compared with marine organisms, research on microplastics (MPs) in freshwater organisms is still less although MPs have been widely found in the freshwater ecosystem. Hypoxia is a ubiquitous issue in freshwater aquaculture, and under such scenarios, the toxic effects of MPs on typical aquaculture fish need to be clarified. In this study, we studied the effects of MPs (polystyrene) on specific growth rate (SGR), hypoxia-inducible factor-1α (HIF-1α), tumor necrosis factor-α (TNF-α), interleukin-8 (IL-8), and interferon (IFN) in the yellow catfish (Pelteobagrus fulvidraco) under hypoxic conditions. After 15 days of exposure, the SGR was not affected by MPs or hypoxia. MPs significantly increased the expressions of HIF-1α and TNF-α but inhibited the expression of IFN at high concentration MPs under normoxia. However, hypoxia significantly inhibited the expression of IL-8 and TNF-α under high MP concentration and low MP concentration, respectively. In addition, MPs had significant concentration-dependent inhibitory effects on IFN under hypoxia. Surprisingly, a positive correction between HIF-1α and TNF-α was found in fish. Although hypoxia might alleviate the effects of MPs with low concentrations, the interaction of hypoxia and MPs aggravated the negative effects of MPs on immune factors at high concentration MPs. This study provided new insight into the complex effects of hypoxia and MPs on aquatic organisms, and future studies should focus on the cellular pathways of immune cells in fish. Given that MPs could induce the immune response in fish, considerations should be paid to the impacts of MPs on freshwater aquaculture, and hypoxia should be taken into consideration when evaluating the effects of MPs.

8.
Chemosphere ; 261: 128186, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33113661

RESUMO

Although microplastics (MPs; < 5 mm) have been recognized as one of the most challenging environmental pollutants in the ocean, our understanding of the environmental fate of freshwater MPs falls far behind, particularly on smaller MPs (<0.1 mm). Here, we seek to reveal the latest MP pollution status in the largest freshwater lake of China, Poyang Lake, by comprehensively assessing the abundance, distribution, size, shape, polymer composition, and micro-morphology of MPs in water and sediment, covering a large geographic area of the Lake and its five main river tributaries. High levels of MPs were detected in water (up to 1064 ± 90 MP/m3) and sediment (up to 1936 ± 121 MP/kg), with the highest concentrations in the Gan River and the lowest in the national Nature Reserves. While a positive correlation was identified between MP abundance in water and sediment, the size distribution of MPs in between water and sediment was distinct. The dominant MP form in sediment and water was fragment and fiber, respectively. Infrared spectroscopy analysis confirmed the dominant polymer types including polypropylene, polyvinyl chloride, polyethylene, polystyrene, and polyvinyl alcohol. Moreover, both µ-FTIR and SEM results suggested significant features of weathering and fragmentation of MPs. This study provides comprehensive data to understand the environmental behavior and pollution magnitude of MPs in China's largest freshwater lake and highlights the significant contribution of smaller-size fractions (0.03-0.1 mm) to improve future MP studies in freshwater systems.


Assuntos
Lagos/análise , Microplásticos/análise , Poluentes Químicos da Água/análise , China , Monitoramento Ambiental/métodos , Sedimentos Geológicos/análise , Microplásticos/química , Microscopia Eletrônica de Varredura , Polietileno/análise , Polietileno/química , Polipropilenos/análise , Polipropilenos/química , Rios/química , Espectroscopia de Infravermelho com Transformada de Fourier
9.
Environ Sci Technol ; 54(5): 2843-2850, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32036658

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) present in crude oil are known to impair visual development in fish. However, the underlying mechanism of PAH-induced toxicity to the visual system of fish is not understood. Embryonic zebrafish (Danio rerio) at 4 h post fertilization were exposed to weathered crude oil and assessed for visual function using an optokinetic response, with subsequent samples taken for immunohistochemistry and gene expression analysis. Cardiotoxicity was also assessed by measuring the heart rate, stroke volume, and cardiac output, as cardiac performance has been proposed to be a contributing factor to eye-associated malformations following oil exposure. Larvae exposed to the highest concentrations of crude oil (89.8 µg/L) exhibited an increased occurrence of bradycardia, though no changes in stroke volume or cardiac output were observed. However, genes important in eye development and phototransduction were downregulated in oil-exposed larvae, with an increased occurrence of cellular apoptosis, reduced neuronal connection, and reduced optokinetic behavioral response in zebrafish larvae.


Assuntos
Poluição por Petróleo , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Animais , Apoptose , Peixe-Zebra
10.
Chem Res Toxicol ; 32(8): 1670-1679, 2019 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-31286770

RESUMO

Smoked cigarettes are the most prevalent form of litter worldwide, often finding their way into oceans and inland waterways. Cigarette smoke contains more than 4000 individual chemicals, some of them carcinogenic or otherwise toxic. We examined the cytotoxicity, genotoxicity, aryl hydrocarbon receptor (AhR), estrogen receptor (ER), and p53 response pathways of smoked cigarette leachate in vitro. Both seawater and freshwater leachates of smoked cigarettes were tested. Cytotoxicity and genotoxicity were negligible at 100 smoked cigarettes/L, while statistically significant AhR, ER, and p53 responses were observed in the extracts of both leachates, suggesting a potential risk to human health through exposure to cigarette litter in the environment. To identify responsible chemicals for the AhR response, an effect directed analysis approach was coupled with nontargeted chemical analysis based on comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC × GC/TOF-MS). Eleven compounds potentially responsible for the AhR response were identified. Among them, 2-methylindole was partially responsible for the AhR response.


Assuntos
Salmonella typhimurium/efeitos dos fármacos , Fumaça/efeitos adversos , Produtos do Tabaco/toxicidade , Poluentes Químicos da Água/química , Poluentes Químicos da Água/toxicidade , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Camundongos , Estrutura Molecular , Receptores de Hidrocarboneto Arílico/metabolismo , Receptores de Estrogênio/metabolismo , Salmonella typhimurium/genética , Fumaça/análise , Extração em Fase Sólida , Produtos do Tabaco/análise , Testes de Toxicidade , Proteína Supressora de Tumor p53/metabolismo , Poluentes Químicos da Água/análise
11.
Environ Sci Technol ; 53(6): 3296-3305, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30816040

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) present in crude oil can cause global gene dysregulation and developmental impairment in fish. However, the mechanisms that alter gene regulation are not well understood. In this study, larval red drum ( Sciaenops ocellatus) were exposed to water accommodated fractions of source oil (6.8, 13.7, and 35.9 µg/L total PAHs) and weathered slick oil (4.7, 8.1, and 18.0 µg/L total PAHs) from the Deepwater Horizon (DWH) oil spill. The global mRNA-microRNA functional networks associated with the toxicity of DWH oil were explored by next-generation sequencing and in-depth bioinformatics analyses. Both source and slick oil significantly altered the expression of miR-18a, miR-27b, and miR-203a across all exposure concentrations. Consistent with the observed concentration-dependent morphological changes, the target mRNAs of these microRNAs were predominantly involved in neuro-cardio system development processes and associated key signaling pathways such as axonal guidance signaling, cAMP-response-element-binding protein signaling in neurons, calcium signaling, and nuclear-factor-of-activated T cells signaling in cardiac hypertrophy. The results indicated that the developmental toxicity of crude oil may result from the abnormal expression of microRNAs and associated target genes, especially for the nervous system. Moreover, we provide a case study for systematic toxicity evaluation leveraging mRNA-microRNA-seq data using nonmodel species.


Assuntos
MicroRNAs , Poluição por Petróleo , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Animais , RNA Mensageiro
12.
Environ Sci Technol ; 52(22): 13501-13510, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30376307

RESUMO

In this study, we performed a systematic evaluation of global microRNA-mRNA interactions associated with the developmental toxicity of Deepwater Horizon oil using a combination of integrated mRNA and microRNA deep sequencing, expression profiling, gene ontology enrichment, and functional predictions by a series of advanced bioinformatic tools. After exposure to water accommodated fraction (WAF) of both weathered slick oil (0.5%, 1%, and 2%) and source oil (0.125%, 0.25%, and 0.5%) from the Deep Water Horizon oil spill, four dose-dependent miRNAs were identified, including three up-regulated (miR-23b, miR-34b, and miR-181b) and one down-regulated miRNAs (miR-203a) in mahi-mahi hatchings exposed from 6 h postfertilization (hpf) to 48 hpf. Consistent with morphological, physiological, and behavioral changes, the target genes of these miRNAs were largely involved in the development of the cardiovascular, visual, nervous system and associated toxicity pathways, suggesting that miRNAs play an essential role in regulating the responses to oil exposure. The results obtained from this study improve our understanding of the role of miRNAs and their target genes in relation to dose-dependent oil toxicity and provide the potential of using miRNAs as novel biomarkers in future oil studies.


Assuntos
MicroRNAs , Perciformes , Poluição por Petróleo , Petróleo , Poluentes Químicos da Água , Animais , Larva , RNA Mensageiro
13.
Environ Sci Technol ; 51(17): 10162-10172, 2017 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-28768411

RESUMO

The Deepwater Horizon (DWH) incident resulted in extensive oiling of the pelagic zone and shoreline habitats of many commercially important fish species. Exposure to the water-accommodated fraction (WAF) of oil from the spill causes developmental toxicity through cardiac defects in pelagic fish species. However, few studies have evaluated the effects of the oil on near-shore estuarine fish species such as red drum (Sciaenops ocellatus). Following exposure to a certified weathered slick oil (4.74 µg/L ∑PAH50) from the DWH event, significant sublethal impacts were observed ranging from impaired nervous system development [average 17 and 22% reductions in brain and eye area at 48 h postfertilization (hpf), respectively] to abnormal cardiac morphology (100% incidence at 24, 48, and 72 hpf) in red drum larvae. Consistent with the phenotypic responses, significantly differentially expressed transcripts, enriched gene ontology, and altered functions and canonical pathways predicted adverse outcomes in nervous and cardiovascular systems, with more pronounced changes at later larval stages. Our study demonstrated that the WAF of weathered slick oil of DWH caused morphological abnormalities predicted by a suite of advanced bioinformatic tools in early developing red drum and also provided the basis for a better understanding of molecular mechanisms of crude oil toxicity in fish.


Assuntos
Anormalidades Induzidas por Medicamentos/veterinária , Perciformes , Poluição por Petróleo , Petróleo/toxicidade , Animais , Biologia Computacional , Larva , Fenótipo , Poluentes Químicos da Água
14.
Aquat Toxicol ; 189: 77-86, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28601011

RESUMO

One of the primary sources of polycyclic aromatic hydrocarbons (PAHs) in marine environments is oil. Photochemical oxidation and microbial transformation of PAH-containing oils can result in the formation of oxygenated products. Among the PAHs in crude oil, chrysene is one of the most persistent within the water column and may be transformed to 2- and 6-hydroxychrysene (OHCHR). Both of these compounds have been shown to activate (2-OHCHR) and antagonize (6-OHCHR) the estrogen receptor (ER). Previous studies in our lab have shown that estrogen can significantly alter zebrafish development. However, little is known about the developmental toxicity of hydroxylated PAHs. Zebrafish embryos were exposed to 0.5-10µM of 2- or 6-OHCHR from 2h post-fertilization (hpf) until 76hpf. A significant decrease in survival was observed following exposure to 6-OHCHR - but not 2-OHCHR. Both OHCHRs significantly increased the percentage of overall deformities after treatment. In addition to cardiac malformations, ocular and circulatory defects were also observed in embryos exposed to both compounds, while 2-OHCHR generally resulted in a higher prevalence of effect. Moreover, treatment with 2-OHCHR resulted in a significant decrease in hemoglobin levels. ER nor G-Protein coupled estrogen receptor (GPER) antagonists and agonists did not rescue the observed defects. We also analyzed the expression of cardiac-, eye- and circulation-related genes previously shown to be affected by oil. Rhodopsin mRNA expresssion was significantly decreased by both compounds equally. However, exposure to 2-OHCHR significantly increased the expression of the hematopoietic regulator, runx1 (runt related transcription factor 1). These results indicate the toxicity of oxygenated photoproducts of PAHs and suggest that other targets and signaling pathways may contribute to developmental toxicity of weathered oil. Our findings also demonstrate the regio-selective toxicity of hydroxy-PAHs in the effects on eye and circulatory development and raise the need to identify mechanisms and ecological risks of oxy-PAHs to fish populations.


Assuntos
Crisenos/toxicidade , Embrião não Mamífero/efeitos dos fármacos , Petróleo/toxicidade , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/embriologia , Animais , Crisenos/metabolismo , Relação Dose-Resposta a Droga , Embrião não Mamífero/anormalidades , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Coração/efeitos dos fármacos , Coração/embriologia , Organogênese/efeitos dos fármacos , Organogênese/genética , Poluentes Químicos da Água/metabolismo , Peixe-Zebra/anormalidades , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
15.
Sci Rep ; 7: 44546, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28295044

RESUMO

The impacts of Deepwater Horizon (DWH) oil on morphology and function during embryonic development have been documented for a number of fish species, including the economically and ecologically important pelagic species, mahi-mahi (Coryphaena hippurus). However, further investigations on molecular events and pathways responsible for developmental toxicity have been largely restricted due to the limited molecular data available for this species. We sought to establish the de novo transcriptomic database from the embryos and larvae of mahi-mahi exposed to water accommodated fractions (HEWAFs) of two DWH oil types (weathered and source oil), in an effort to advance our understanding of the molecular aspects involved during specific toxicity responses. By high throughput sequencing (HTS), we obtained the first de novo transcriptome of mahi-mahi, with 60,842 assembled transcripts and 30,518 BLAST hits. Among them, 2,345 genes were significantly regulated in 96hpf larvae after exposure to weathered oil. With comparative analysis to a reference-transcriptome-guided approach on gene ontology and tox-pathways, we confirmed the novel approach effective for exploring tox-pathways in non-model species, and also identified a list of co-expressed genes as potential biomarkers which will provide information for the construction of an Adverse Outcome Pathway which could be useful in Ecological Risk Assessments.


Assuntos
Larva/efeitos dos fármacos , Perciformes/genética , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Transcriptoma/genética , Animais , Embrião não Mamífero/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Larva/genética , Petróleo/toxicidade , Poluição por Petróleo/efeitos adversos , Alimentos Marinhos , Poluentes Químicos da Água
16.
Environ Sci Technol ; 50(14): 7842-51, 2016 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-27348429

RESUMO

The Deepwater Horizon (DWH) oil spill contaminated the spawning habitats for numerous commercially and ecologically important fishes. Exposure to the water accommodated fraction (WAF) of oil from the spill has been shown to cause cardiac toxicity during early developmental stages across fishes. To better understand the molecular events and explore new pathways responsible for toxicity, RNA sequencing was performed in conjunction with physiological and morphological assessments to analyze the time-course (24, 48, and 96 h post fertilization (hpf)) of transcriptional and developmental responses in embryos/larvae of mahi-mahi exposed to WAF of weathered (slick) and source DWH oils. Slick oil exposure induced more pronounced changes in gene expression over time than source oil exposure. Predominant transcriptomic responses included alteration of EIF2 signaling, steroid biosynthesis, ribosome biogenesis and activation of the cytochrome P450 pathway. At 96 hpf, slick oil exposure resulted in significant perturbations in eye development and peripheral nervous system, suggesting novel targets in addition to the heart may be involved in the developmental toxicity of DHW oil. Comparisons of changes of cardiac genes with phenotypic responses were consistent with reduced heart rate and increased pericardial edema in larvae exposed to slick oil but not source oil.


Assuntos
Larva , Petróleo/toxicidade , Animais , Perciformes , Poluição por Petróleo , Poluentes Químicos da Água
17.
Environ Pollut ; 215: 103-112, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27179329

RESUMO

Marine Protected Areas (MPAs) in Hong Kong are situated in close proximity to urbanized areas, and inevitably influenced by wastewater discharges and antifouling biocides leached from vessels. Hence, marine organisms inhabiting these MPAs are probably at risk. Here an integrative approach was employed to comprehensively assess ecological risks of eight priority endocrine disrupting chemicals (EDCs) in four MPAs of Hong Kong. We quantified their concentrations in environmental and biota samples collected in different seasons during 2013-2014, while mussels (Septifer virgatus) and semi-permeable membrane devices were deployed to determine the extent of accumulation of the EDCs. Extracts from the environmental samples were subjected to the yeast estrogen screen and a novel human cell-based catechol-O-methyltransferase ELISA to evaluate their estrogenic activities. The results indicated ecological risks of EDCs in the Cape d'Aguilar Marine Reserve. This integrated approach can effectively evaluate ecological risks of EDCs through linking their concentrations to biological effects.


Assuntos
Disruptores Endócrinos/análise , Disruptores Endócrinos/farmacologia , Estrogênios/farmacologia , Poluentes da Água/análise , Animais , Bivalves/química , Catecol O-Metiltransferase/biossíntese , Cultura em Câmaras de Difusão , Ensaio de Imunoadsorção Enzimática , Sedimentos Geológicos/química , Hong Kong , Humanos , Células MCF-7/efeitos dos fármacos , Medição de Risco , Água do Mar/química , Leveduras/efeitos dos fármacos
18.
Environ Pollut ; 213: 940-948, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27049791

RESUMO

High concentrations of DDT and metabolites (ΣDDT) have been detected in sediment and the demersal flatfish hornyhead turbot (Pleuronichtys verticalis) collected from Palos Verdes (PV), California, USA, a site contaminated with over 100 metric tons of DDT throughout 1960s-70s. This study was conducted to assess the transfer of ΣDDT from PV-sediment into polychaetes (Neanthes arenaceodentata) and hornyhead turbot, and to investigate if the responses in turbots from two different laboratory exposures mimic those in turbots caught in PV (PV-turbot). Turbot fed PV-sediment-contaminated polychaete for 7 days had liver concentrations of ΣDDT similar to PV-turbot. After 28 days, ΣDDT also accumulated in livers of turbot gavaged with a ΣDDT mixture. In vitro cell bioassays indicated significant increases of 17ß-estradiol equivalents (EEQ) in turbot bile extracts as compared to the control in the 7-day study. These responses corresponded to those measured in PV-fish. Glucocorticoid receptor (GR), anti-androgen receptor (anti-AR), estrogen receptor (ER) or aryl hydrocarbon receptor (AhR) activities were also observed in extracts of PV-sediment, and PV-sediment-exposed worm. Anti-AR, AhR and GR activities were significantly higher in PV-sediment than reference sediment (San Diego, SD). Higher transcripts of hepatic VTG, ERα and ERß were found in PV-turbot than SD-turbot, but were unaltered in fish exposed to sediment-contaminated worms for the 7-day study. In contrast, liver extracts from the 28-day treatment of ΣDDT showed lower EEQ but similar hepatic VTG and ERß transcripts relative to those of PV-turbot. These data indicated that trophic transfer of sediment-associated DDT in 7-day exposures corresponded to field measurements of DDT residues and in vitro ER bioactivities, but failed to mimic in vivo biological effects observed in field fish. In contrast, treatment with ΣDDT alone for 28 days mimicked in vivo biological effects of DDTs in PV fish, but did not correspond to liver concentrations or in vitro bioactivities.


Assuntos
DDT , Exposição Ambiental/efeitos adversos , Linguado/metabolismo , Cadeia Alimentar , Sedimentos Geológicos/química , Poliquetos/metabolismo , Receptores de Estrogênio/metabolismo , Animais , California , DDT/metabolismo , DDT/farmacologia , Dieta , Disruptores Endócrinos/metabolismo , Disruptores Endócrinos/farmacologia , Exposição Ambiental/análise , Monitoramento Ambiental/métodos , Estradiol/metabolismo , Linguados/metabolismo , Masculino , Praguicidas , Receptores de Estrogênio/genética , Eliminação de Resíduos , Solo/química , Poluentes do Solo/metabolismo , Poluentes do Solo/farmacologia , Transcrição Gênica , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA