Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Med Imaging ; 39(1): 140-151, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31180843

RESUMO

Accurate scatter correction is essential for qualitative and quantitative PET imaging. Until now, scatter correction based on Monte Carlo simulation (MCS) has been recognized as the most accurate method of scatter correction for PET. However, the major disadvantage of MCS is its long computational time, which makes it unfeasible for clinical usage. Meanwhile, single scatter simulation (SSS) is the most widely used method for scatter correction. Nevertheless, SSS has the disadvantage of limited robustness for dynamic measurements and for the measurement of large objects. In this work, a newly developed implementation of MCS using graphics processing unit (GPU) acceleration is employed, allowing full MCS-based scatter correction in clinical 3D brain PET imaging. Starting from the generation of annihilation photons to their detection in the simulated PET scanner, all relevant physical interactions and transport phenomena of the photons were simulated on GPUs. This resulted in an expected distribution of scattered events, which was subsequently used to correct the measured emission data. The accuracy of the approach was validated with simulations using GATE (Geant4 Application for Tomography Emission), and its performance was compared to SSS. The comparison of the computation time between a GPU and a single-threaded CPU showed an acceleration factor of 776 for a voxelized brain phantom study. The speedup of the MCS implemented on the GPU represents a major step toward the application of the more accurate MCS-based scatter correction for PET imaging in clinical routine.


Assuntos
Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Tomografia por Emissão de Pósitrons/métodos , Algoritmos , Neoplasias Encefálicas/diagnóstico por imagem , Desenho de Equipamento , Humanos , Imageamento Tridimensional/métodos , Método de Monte Carlo , Imagens de Fantasmas
2.
J Biomed Nanotechnol ; 11(10): 1776-82, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26502640

RESUMO

A synthesized PEI-based gene delivery system, wherein PEI was crosslinked with sulfosuccinimidyl-4-(N-maleimidomethyl) cyclohexane-1-carboxylate (Sulfo-SMCC) conjugating trans-activating transcriptional activator (TAT), yielding PEI-SMCC-TAT (PST), a novel non-viral vector for apoptosis-related gene PUMA (p53 up regulated modulator of apoptosis), was designed and evaluated. Sulfo-SMCC is a commonly used heterobifunctional crosslinker and is soluble in water, making the crosslinking easier without organic reagent like DMSO or chloroform. The PST/pDNA nanoparticles were 171.9 nm at the optimal N/P ratio (50:1). DNA complexes of all the PST conjugation had much lower toxicity and exhibited enhancement in transfection efficiency in comparison with single PEI vector. The results also showed that the transfection efficiency of PST/pEGFP nanoparticles into malignant melanoma A375 cell increased, and PST carrying PUMA gene induced the apoptosis of A375 cells. It was suggested that PST could be a promising melanoma tumor-targeting nanovector, and have a good potential in clinical application.


Assuntos
Genes tat/genética , Melanoma/genética , Melanoma/terapia , Nanocápsulas/química , Polietilenoimina/química , Transfecção/métodos , Apoptose/genética , Linhagem Celular Tumoral , Difusão , Humanos , Maleimidas/química , Melanoma/patologia , Nanocápsulas/administração & dosagem , Nanocápsulas/ultraestrutura , Tamanho da Partícula , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA