Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Nanobiotechnology ; 22(1): 274, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38773614

RESUMO

Small extracellular vesicle-derived microRNAs (sEV-miRNAs) have emerged as promising noninvasive biomarkers for early cancer diagnosis. Herein, we developed a molecular probe based on three-dimensional (3D) multiarmed DNA tetrahedral jumpers (mDNA-Js)-assisted DNAzyme activated by Na+, combined with a disposable paper-based electrode modified with a Zr-MOF-rGO-Au NP nanocomplex (ZrGA) to fabricate a novel biosensor for sEV-miRNAs Assay. Zr-MOF tightly wrapped by rGO was prepared via a one-step method, and it effectively aids electron transfer and maximizes the effective reaction area. In addition, the mechanically rigid, and nanoscale-addressable mDNA-Js assembled from the bottom up ensure the distance and orientation between fixed biological probes as well as avoid probe entanglement, considerably improving the efficiency of molecular hybridization. The fabricated bioplatform achieved the sensitive detection of sEV-miR-21 with a detection limit of 34.6 aM and a dynamic range from100 aM to 0.2 µM. In clinical blood sample tests, the proposed bioplatform showed results highly consistent with those of qRT-PCRs and the signal increased proportionally with the NSCLC staging. The proposed biosensor with a portable wireless USB-type analyzer is promising for the fast, easy, low-cost, and highly sensitive detection of various nucleic acids and their mutation derivatives, making it ideal for POC biosensing.


Assuntos
Técnicas Biossensoriais , Vesículas Extracelulares , Limite de Detecção , Estruturas Metalorgânicas , MicroRNAs , Papel , Estruturas Metalorgânicas/química , Vesículas Extracelulares/química , Humanos , Técnicas Biossensoriais/métodos , DNA Catalítico/química , Grafite/química , Ouro/química , DNA/química , Nanopartículas Metálicas/química , Hibridização de Ácido Nucleico , Técnicas Eletroquímicas/métodos , Eletrodos , Zircônio/química
2.
Chem Biol Interact ; 387: 110781, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37967808

RESUMO

Osteoarthritis (OA) is a heterogeneous disease that affects the entire joint. Its pathogenesis involves hypertrophy and hyperplasia of synovial cells and polarization infiltration of macrophages, in which macrophages, as a potential target, can delay the progression of the disease by improving the immune microenvironment in OA. To investigate the role and regulatory mechanism of Carveol in cartilage and synovial macrophage reprogramming and crosstalk during the development of OA. RAW264.7 mouse macrophage cell line was mainly used to stimulate macrophages to polarization towards M1 and M2 by LPS, IL4+IL13, respectively. Different concentrations of Carveol were given to intervene, and macrophage culture medium was collected to intervene mouse C57BL6J chondrocytes. ROS assay kit, western blotting, cellular immunofluorescence, scanning microscope and section histology were used to evaluate the effect of Carveol on anti-M1-polarization, M2-polarization promotion and cartilage protection. The mouse destabilization of medial meniscus (DMM) model was observed by micro-CT scan and histology. We found that CA could inhibit the increase of macrophage inflammation level under the intervention of LPS and promote the production of M2 anti-inflammatory substances under the intervention of IL-4+IL13. In addition, Carveol activated NRF2/HO-1/NQO1 pathway and enhanced ROS clearance in chondrocytes under the intervention of macrophage culture medium. The phosphorylation of I-κBα is inhibited, which further reduces the phosphorylation of P65 downstream of nuclear factor-κB (NF-κB) signaling pathway. In addition, Carveol inhibits mitogen activated protein kinase (MAPK) signaling molecules P-JNK, P-ERK and P-P38, and inhibits the production of inflammatory mediators. In vivo, Carveol can reduce osteophytes and bone spurs induced by DMM, reduce hypertrophy of synovial cells, reduce infiltration of macrophages, inhibit subchondral bone destruction, and reduce articular cartilage erosion. Our study suggests that synovial macrophages are potential targets for OA treatment, and Carveol is an effective candidate for OA treatment.


Assuntos
Lipopolissacarídeos , Osteoartrite , Camundongos , Animais , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Interleucina-13/metabolismo , Interleucina-13/farmacologia , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , NF-kappa B/metabolismo , Modelos Animais de Doenças , Macrófagos , Hipertrofia/metabolismo , Condrócitos
3.
J Vis Exp ; (191)2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36688553

RESUMO

Transiliac-transsacral screw fixation is challenging in clinical practice as the screws need to break through six layers of cortical bone. Transiliac-transsacral screws provide a longer lever arm to withstand the perpendicular vertical shear forces. However, the screw channel is so long that a minor discrepancy can lead to iatrogenic neurovascular injuries. The development of medical robots has improved the precision of surgery. The present protocol describes how to use a new teleoperated robotic system to execute transiliac-transacral screw fixation. The Robot was operated remotely to position the entry point and adjust the orientation of the sleeve. The screw positions were evaluated using postoperative computed tomography (CT). All the screws were safely implanted, as confirmed using intraoperative fluoroscopy. Postoperative CT confirmed that all the screws were in the cancellous bone. This system combines the doctor's initiative with the Robot's stability. The remote control of this procedure is possible. Robot-assisted surgery has a higher position-retention capacity compared with conventional methods. In contrast to active robotic systems, surgeons have full control over the operation. The robot system is fully compatible with operating room systems and does not require additional equipment.


Assuntos
Fixação Interna de Fraturas , Procedimentos Cirúrgicos Robóticos , Fixação Interna de Fraturas/métodos , Procedimentos Cirúrgicos Robóticos/métodos , Parafusos Ósseos , Fluoroscopia/métodos , Tomografia Computadorizada por Raios X , Estudos Retrospectivos
4.
Sci Total Environ ; 865: 161183, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36581278

RESUMO

Cadmium (Cd) is a widely distributed toxic heavy metal that enters the environment via anthropogenic mobilization and accumulates in plants and animals, causing metabolic abnormalities even mortality. Although the toxic effects and stress damage of cadmium have been investigated extensively over the past few decades, research on its ability to trigger ferroptosis, growth retardation, and behavioral abnormalities is insufficient. As a result, the effects of CdCl2 exposure on growth and development, activity and sleep, and ferroptosis in this study were examined in fruit fly (Drosophila melanogaster). When exposed to 0.5 mM CdCl2, the entire growth period from larvae to adults was prolonged, and the rates of pupation and eclosion were decreased. Additionally, CdCl2 exposure resulted in a decrease in body weight and individual size of fruit fly and high lethality rate. Moreover, CdCl2 exposure altered fruit fly behavior, including decreased activity and increased sleep duration, particularly in females. Ferrostatin-1 (Fer-1) is a potent selective ferroptosis inhibitor that effectively slows lipid hydroperoxide accumulation to rescue body size reduction and restore activity and sleep in CdCl2-exposed female flies. CdCl2 exposure could induce ferroptosis in fruit fly mechanistically, as evidenced by inhibition of Nrf2 signaling pathway, accumulation of lipid peroxidation, impairment of GPX4 antioxidant system, and upregulation of iron metabolism. Our findings suggest that Cd exposure triggers ferroptosis, which leads to growth retardation and behavioral disorders in fruit fly.


Assuntos
Cloreto de Cádmio , Ferroptose , Animais , Feminino , Cádmio/farmacologia , Cloretos , Drosophila , Drosophila melanogaster , Transtornos do Crescimento
5.
Anal Chem ; 94(45): 15887-15895, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36325814

RESUMO

tRNA-derived small RNA (tsRNA) has emerged as a new biomarker for early diagnosis and prognosis prediction of breast cancer. Like the detection of other small non-coding RNAs, the traditional DNA circuit could be used for the tsRNA detection. However, the highly coupling DNA strands in the circuit increase the difficulty of design and could raise a false-positive signal. Here, we demonstrated a versatile modularized enzymatic tandem reaction, namely, reverse-transcribed nicking exponential truncation (RT-NExT). This enzymatic reaction was constructed by cohesive modules, which can work independently or in assembly. Each module could amplify and initiate the downstream module. The RT-NExT reaction could detect 10-18 M ts-66 or ts-86 within 10 min and exhibited excellent consistency to the qRT-PCR when measuring the tsRNA expression level of breast cancer or healthy patients. RT-NExT provides an appealing detection strategy for further research on the clinical diagnosis with tsRNAs.


Assuntos
Neoplasias da Mama , MicroRNAs , Pequeno RNA não Traduzido , Humanos , Feminino , RNA de Transferência/metabolismo , MicroRNAs/genética , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética
6.
Mater Today Bio ; 15: 100276, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35711289

RESUMO

The synchronous detection and regulation of microRNAs (miRNAs) are essential for the early tumor diagnosis and treatment but remains a challenge. An integrative DNA tetrahedral nanomachine was self-assembled for sensitive detection and negative feedback regulation of intracellular miRNAs. This nanomachine comprised a DNA tetrahedron nanostructure as the framework, and a miRNA inhibitor-controlled allosteric DNAzyme as the core. The DNA tetrahedron brought the DNAzyme and the substrate in spatial proximity and facilitated the cellular uptake of DNAzyme. In allosteric regulation of DNAzyme, the locked tetrahedral DNAzyme (L-tetra-D) and active tetrahedral DNAzyme (A-Tetra-D) were controlled by miRNA inhibitor. The combination of miRNA inhibitor and target could trigger the conformational change from L-tetra-D to A-Tetra-D. A-Tetra-D cleaved the substrate and released fluorescence for intracellular miRNA biosensing. The DNA tetrahedral nanomachine showed excellent sensitivity (with detection limit down to 0.77 pM), specificity (with one-base mismatch discrimination), biocompatibility and stability. Simultaneously, miRNA stimulus-unlocked inhibitor introduced by our nanomachine exhibited the synchronous regulation of target cells, of which regulatory performance has been verified by the upregulated levels of downstream genes/proteins and the increased cellular apoptosis. Our study demonstrated that the DNA tetrahedral nanomachine is a promising biosense-and-treat tool for the synchronous detection and regulation of intracellular miRNA, and is expected to be applied in the early diagnosis and tailored management of cancers.

7.
J Hazard Mater ; 435: 129024, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35523094

RESUMO

The screening of compounds with endocrine disrupting effects has been attracting increasing attention due to the continuous release of emerging chemicals into the environment. Testing the (ant)agonistic activities of these chemicals on the retinoic acid receptor α (RARα), a vital nuclear receptor, is necessary to explain their perturbation in the endocrine system in vivo. In the present study, MCF-7 breast carcinoma cells were transiently transfected with a RARα expression vector (pEF1α-RARα-RFP) and a reporter vector containing a retinoic acid reaction element (pRARE-TA-Luc). Under optimized conditions, the performance of the newly constructed system was evaluated for its feasibility in screening the (ant)agonistic effects of emerging phenolic compounds on RARα. The results showed that this transient transfection cell model responded well to stimulation with (ant)agonists of RARα, and the EC50 and IC50 values were 0.87 nM and 2.67 µM for AM580 and Ro41-5253, respectively. Its application in testing several emerging phenolic compounds revealed that triclosan (TCS) and tetrabromobisphenol A (TBBPA) exerted notable RARα antagonistic activities. This newly developed bioassay based on MCF-7 is promising in identifying the agonistic or antagonistic activities of xenobiotics on RARα and has good potential for studying RARα signaling-involved toxicological effects of emerging chemicals of concern.


Assuntos
Formigas , Neoplasias da Mama , Animais , Bioensaio , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Detecção Precoce de Câncer , Feminino , Humanos , Células MCF-7 , Fenóis/toxicidade , Receptores do Ácido Retinoico/química , Receptores do Ácido Retinoico/genética , Receptores do Ácido Retinoico/metabolismo , Transfecção
8.
Bioorg Chem ; 123: 105769, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35405572

RESUMO

The inhibition of programmed cell death-1/programmed cell death-ligand 1 (PD-1/PD-L1) interaction by monoclonal antibodies (mAbs) has achieved promising outcomes in cancer immunotherapy. Due to the inherent deficiencies of mAbs drugs, such as high cost of treatment, immunogenicity, poor pharmacokinetics and penetration of solid tumors, researchers are encouraged to develop small molecule inhibitors, to overcome mAbs drugs' deficiencies and change the situation where small molecule drugs are not available on the market. Herein, we reported a series of benzo[d]isothiazole derivatives targeting the PD-1/PD-L1 interaction through "ring fusion" strategy using BMS-202 as a starting point. Among them, compound D7 exhibited the best inhibitory activity with an IC50 value of 5.7 nM by homogeneous time-resolved fluorescence (HTRF) binding assay. In immunotoxicity analysis, D7 showed low cytotoxicity to Jurkat T cells in CCK-8 assay compared to BMS-202. The binding mode between D7 and PD-L1 protein was explored by molecular docking and molecular dynamics (MD) simulations, which revealed crucial chemical groups, such as biphenyl group interacting with Ile54A, Tyr56A, Met115A, Ala121A, Ile54B, Met115B, Ala121B and Tyr123B by hydrophobic interactions, bromobenzene moiety forming π-π stacking interaction with Tyr56B, as well as l-serine moiety forming hydrogen bond (H-bond) and salt bridge interactions with Asp122A and Lys124A. Furthermore, molecular modeling studies showed that D7 is likely to bind to the FA8 (fatty acid 8) binding site of human serum albumin (HSA). Taken together, D7 significantly inhibits the PD-1/PD-L1 interaction with low cytotoxicity, indicating that D7 is a promising starting point for further drug development in cancer immunotherapy.


Assuntos
Antígeno B7-H1 , Neoplasias , Apoptose , Humanos , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Receptor de Morte Celular Programada 1/química , Receptor de Morte Celular Programada 1/metabolismo , Relação Estrutura-Atividade
9.
J Orthop Surg Res ; 16(1): 89, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33509244

RESUMO

BACKGROUND: The transiliac-transsacral screw placement is a clinical challenge for surgeons. This study explored a point-to-point coaxial guide apparatus assisting the transiliac-transsacral screw insertion and aimed to investigate the feasibility and accuracy of the guide apparatus in the treatment of posterior ring unstable pelvic fracture compared with a free-hand technique. METHODS: A retrospective study was performed to evaluate patients treated with transiliac-transsacral screws assisted by the point-to-point coaxial guide apparatus or free-hand technique. The intraoperative data of operative time and radiation exposure times were recorded. Postoperative radiographs and CT scans were performed to scrutinize the accuracy of screws position. The quality of the postoperative fracture reduction was assessed according to Matta radiology criteria. The pelvic function was assessed according to the Majeed scoring criteria at 6 months postoperatively. RESULTS: From July 2017 to December 2019, a total of 38 patients were included in this study, 20 from the point-to-point guide apparatus group and 18 from the free-hand group. There were no significant differences between the two groups in gender, age, injury causes, pelvic fracture type, screws level, and follow-up time (P > 0.05). The average operative time of the guide apparatus group for each screw was significantly less than that in the free-hand group (25.8 ± 4.7 min vs 40.5 ± 5.1, P < 0.001). The radiation exposure times were significantly lower in the guide apparatus group than that in the free-hand group (24.4 ± 6.0 vs 51.6 ± 8.4, P < 0.001). The intraosseous and juxtacortical rate of screw placement (100%) higher than in the free-hand group (94.4%). CONCLUSION: The point-to-point coaxial guide apparatus is feasible for assisting the transiliac-transsacral screw in the treatment of posterior unstable pelvic fractures. It has the advantages of simple operation, reasonable design and no need for expensive equipment, and provides an additional surgical strategy for the insertion of the transiliac-transsacral screw.


Assuntos
Parafusos Ósseos , Fixação Interna de Fraturas/métodos , Fraturas Ósseas/cirurgia , Fraturas não Consolidadas/cirurgia , Ossos Pélvicos/lesões , Ossos Pélvicos/cirurgia , Adulto , Feminino , Seguimentos , Fixação Interna de Fraturas/instrumentação , Fraturas Ósseas/diagnóstico por imagem , Fraturas não Consolidadas/diagnóstico por imagem , Humanos , Masculino , Pessoa de Meia-Idade , Duração da Cirurgia , Ossos Pélvicos/diagnóstico por imagem , Qualidade da Assistência à Saúde , Estudos Retrospectivos , Tomografia Computadorizada por Raios X
10.
Sci Rep ; 7(1): 13817, 2017 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-29061997

RESUMO

Although traditional allele-specific PCR (tAS-PCR) is a common screening method for BRAF V600E mutations, its lower amplification specificity and mutation selectivity have limited its clinical applications. We hypothesize that these limitations are associated with the weaker specificities of allele-specific primers and the thermodynamic driving forces of DNA polymerase. We used three strategies to circumvent these limitations, namely, modifying allele-specific primers, introducing a competitive external allele-specific controller (i.e., cAS-PCR), and introducing a referenced internal positive controller in the cAS-PCR (i.e., rcAS-PCR). The amplification sensitivities and specificities were influenced by the position of the artificially introduced mismatched nucleotide in the allele-specific primers. Moreover, both cAS-PCR and rcAS-PCR could detect single-copy BRAF V600E alleles with higher mutation selectivity (0.1%) than tAS-PCR. In addition, cAS-PCR eliminated false-negative results caused by various PCR inhibitors that might be present in the DNA solutions. The rcAS-PCR could also be employed to avoid the false-negative results caused by low-abundance input templates in cAS-PCR. In conclusion, rcAS-PCR provides a rapid, simple, and low-cost method for detecting low levels of the mutated BRAF V600E gene.


Assuntos
Neoplasias Colorretais/diagnóstico , Análise Mutacional de DNA/métodos , DNA de Neoplasias/genética , Mutação , Proteínas Proto-Oncogênicas B-raf/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Alelos , China , Neoplasias Colorretais/genética , Neoplasias Colorretais/secundário , Humanos , Curva ROC
11.
PLoS One ; 10(12): e0145698, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26701781

RESUMO

The high degree of intra-tumor heterogeneity has meant that it is important to develop sensitive and selective assays to detect low-abundance KRAS mutations in metastatic colorectal carcinoma (mCRC) patients. As a major potential source of tumor DNA in the aforementioned genotyping assays, it was necessary to conduct an analysis on both the quality and quantity of DNA extracted from formalin-fixed paraffin-embedded (FFPE). Therefore, four commercial FFPE DNA extraction kits were initially compared with respect to their ability to facilitate extraction of amplifiable DNA. The results showed that TrimGen kits showed the greatest performance in relation to the quality and quantity of extracted FFPE DNA solutions. Using DNA extracted by TrimGen kits as a template for tumor genotyping, a real-time wild-type blocking PCR (WTB-PCR) assay was subsequently developed to detect the aforementioned KRAS mutations in mCRC patients. The results showed that WTB-PCR facilitated the detection of mutated alleles at a ratio of 1:10,000 (i.e. 0.01%) wild-type alleles. When the assay was subsequently used to test 49 mCRC patients, the results showed that the mutation detection levels of the WTB-PCR assay (61.8%; 30/49) were significantly higher than that of traditional PCR (38.8%; 19/49). Following the use of the real-time WTB-PCR assay, the ΔCq method was used to quantitatively analyze the mutation levels associated with KRAS in each FFPE sample. The results showed that the mutant levels ranged from 53.74 to 0.12% in the patients analyzed. In conclusion, the current real-time WTB-PCR is a rapid, simple, and low-cost method that permits the detection of trace amounts of the mutated KRAS gene.


Assuntos
Códon/genética , Neoplasias Colorretais/genética , DNA de Neoplasias/genética , Mutação de Sentido Incorreto/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Neoplasias Colorretais/secundário , Genótipo , Humanos
12.
Sci Rep ; 4: 7521, 2014 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-25515911

RESUMO

Increasing evidence points to a negative correlation between KRAS mutations and patients' responses to anti-EGFR monoclonal antibody treatment. Therefore, patients must undergo KRAS mutation detection to be eligible for treatment. High resolution melting analysis (HRM) is gaining increasing attention in KRAS mutation detection. However, its accuracy has not been systematically evaluated. We conducted a meta-analysis of published articles, involving 13 articles with 1,520 samples, to assess its diagnostic accuracy compared with DNA sequencing. The quality of included articles was assessed using the revised Quality Assessment for Studies of Diagnostic Accuracy (QUADAS-2) tools. Random effects models were applied to analyze the performance of pooled characteristics. The overall sensitivity and specificity of HRM were 0.99 (95% confidence interval [CI]: 0.98-1.00) and 0.96 (95%CI: 0.94-0.97), respectively. The area under the summary receiver operating characteristic curve was 0.996. High sensitivity and specificity, less labor, rapid turn-around and the closed-tube format of HRM make it an attractive choice for rapid detection of KRAS mutations in clinical practice. The burden of DNA sequencing can be reduced dramatically by the implementation of HRM, but positive results still need to be sequenced for diagnostic confirmation.


Assuntos
Análise Mutacional de DNA/métodos , Mutação/genética , Proteínas Proto-Oncogênicas/genética , Proteínas ras/genética , DNA de Neoplasias/genética , Humanos , Neoplasias/genética , Proteínas Proto-Oncogênicas p21(ras) , Sensibilidade e Especificidade , Análise de Sequência de DNA/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA