Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neurosci Bull ; 36(9): 1023-1034, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32812127

RESUMO

Joubert syndrome is characterized by unique malformation of the cerebellar vermis. More than thirty Joubert syndrome genes have been identified, including ARL13B. However, its role in cerebellar development remains unexplored. We found that knockdown or knockout of arl13b impaired balance and locomotion in zebrafish larvae. Granule cells were selectively reduced in the corpus cerebelli, a structure homologous to the mammalian vermis. Purkinje cell progenitors were also selectively disturbed dorsomedially. The expression of atoh1 and ptf1, proneural genes of granule and Purkinje cells, respectively, were selectively down-regulated along the dorsal midline of the cerebellum. Moreover, wnt1, which is transiently expressed early in cerebellar development, was selectively reduced. Intriguingly, activating Wnt signaling partially rescued the granule cell defects in arl13b mutants. These findings suggested that Arl13b is necessary for the early development of cerebellar granule and Purkinje cells. The arl13b-deficient zebrafish can serve as a model organism for studying Joubert syndrome.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Anormalidades Múltiplas , Cerebelo/crescimento & desenvolvimento , Anormalidades do Olho , Doenças Renais Císticas , Proteínas de Peixe-Zebra/metabolismo , Animais , Cerebelo/anormalidades , Técnicas de Silenciamento de Genes , Técnicas de Inativação de Genes , Células de Purkinje , Retina/anormalidades , Retina/metabolismo , Peixe-Zebra/metabolismo
2.
Front Cell Neurosci ; 13: 81, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30949029

RESUMO

Joubert syndrome (JBTS) is an inherited autosomal recessive disorder associated with cerebellum and brainstem malformation and can be caused by mutations in the Abelson helper integration site-1 (AHI1) gene. Although AHI1 mutations in humans cause abnormal cerebellar development and impaired axonal decussation in JBTS, these phenotypes are not robust or are absent in various mouse models with Ahi1 mutations. AHI1 contains an N-terminal coiled-coil domain, multiple WD40 repeats, and a C-terminal Src homology 3 (SH3) domain, suggesting that AHI1 functions as a signaling or scaffolding protein. Since most AHI1 mutations in humans can result in truncated AHI1 proteins lacking WD40 repeats and the SH3 domain, it remains unclear whether mutant AHI1 elicits toxicity via a gain-of-function mechanism by the truncated AHI1. Because Ahi1 in zebrafish and humans share a similar N-terminal region with a coiled-coil domain that is absent in mouse Ahi1, we used zebrafish as a model to investigate whether Ahi1 mutations could affect axonal decussation. Using in situ hybridization, we found that ahi1 is highly expressed in zebrafish ocular tissues, especially in retina, allowing us to examine its effect on retinal ganglion cell (RGC) projection and eye morphology. We injected a morpholino to zebrafish embryos, which can generate mutant Ahi1 lacking the intact WD40 repeats, and found RGC axon misprojection and ocular dysplasia in 4 dpf (days post-fertilization) larvae after the injection. However, ahi1 null zebrafish showed normal RGC axon projection and ocular morphology. We then used CRISPR/Cas9 to generate truncated ahi1 and also found similar defects in the RGC axon projection as seen in those injected with ahi1 morpholino. Thus, the aberrant retinal axon projection in zebrafish is caused by the presence of mutant ahi1 rather than the loss of ahi1, suggesting that mutant Ahi1 may affect axonal decussation via toxic gain of function.

3.
Am J Pathol ; 188(4): 1043-1058, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29353058

RESUMO

Coloboma, heart defect, atresia choanae, retarded growth and development, genital hypoplasia, ear anomalies/deafness (CHARGE) syndrome is a congenital disorder affecting multiple organs and mainly caused by mutations in CHD7, a gene encoding a chromatin-remodeling protein. Immunodeficiency and reduced T cells have been noted in CHARGE syndrome. However, the mechanisms underlying T lymphopenia are largely unexplored. Herein, we observed dramatic decrease of T cells in both chd7knockdown and knockout zebrafish embryos. Unexpectedly, hematopoietic stem and progenitor cells and, particularly, lymphoid progenitor cells were increased peripherally in nonthymic areas in chd7-deficient embryos, unlikely to contribute to the T-cell decrease. Further analysis demonstrated that both the organogenesis and homing function of the thymus were seriously impaired. Chd7 might regulate thymus organogenesis through modulating the development of both neural crest cell-derived mesenchyme and pharyngeal endoderm-derived thymic epithelial cells. The expression of foxn1, a central regulator of thymic epithelium, was remarkably down-regulated in the pharyngeal region in chd7-deficient embryos. Moreover, the T-cell reduction in chd7-deficient embryos was partially rescued by overexpressing foxn1, suggesting that restoring thymic epithelium may be a potential therapeutic strategy for treating immunodeficiency in CHARGE syndrome. Collectively, the results indicated that chd7 was critical for thymic development and T-lymphopenia in CHARGE syndrome may be mainly attributed to the defects of thymic organogenesis. The current finding may benefit the diagnosis and therapy of T lymphopenia and immunodeficiency in CHARGE syndrome.


Assuntos
DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Organogênese , Linfócitos T/citologia , Timo/citologia , Timo/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Apoptose/efeitos dos fármacos , Sequência de Bases , Proteínas Morfogenéticas Ósseas/metabolismo , Região Branquial/efeitos dos fármacos , Região Branquial/embriologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Quimiocinas/metabolismo , DNA Helicases/deficiência , Proteínas de Ligação a DNA/deficiência , Embrião não Mamífero/metabolismo , Células Epiteliais/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Morfolinos/farmacologia , Mutação/genética , Crista Neural/patologia , Fenótipo , Transdução de Sinais , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/deficiência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA