Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ChemSusChem ; 15(13): e202200192, 2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35233939

RESUMO

An efficient catalytic system for the conversion of 5-hydroxymethylfurfural (HMF) into N-containing compounds over low-cost non-noble-metal catalysts is preferable, but it is challenging to reach high conversion and selectivity under mild conditions. Herein, an Al2 O3 -supported carbon-doped Ni catalyst was obtained via the direct pyrolysis-reduction of a mixture of Ni3 (BTC)2 ⋅ 12H2 O and Al2 O3 , generating stable Ni0 species due to the presence of carbon residue. A high yield of 96 % was observed in the reductive amination of HMF into 5-hydroxymethyl furfurylamine (HMFA) with ammonia and hydrogen at ambient temperature. The catalyst was recyclable and could be applied to the ambient-temperature synthesis of HMF-based secondary/tertiary amines and other biomass-derived amines from the carbonyl compounds. The significant performance was attributable to the synergistic effect of Ni0 species and acidic property of the support Al2 O3 , which promoted the selective ammonolysis of the imine intermediate while inhibiting the potential side reaction of over-hydrogenation.


Assuntos
Carbono , Níquel , Aminação , Aminas/química , Carbono/química , Furaldeído/análogos & derivados , Níquel/química , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA