RESUMO
BACKGROUND: Laparoscopic partial nephrectomy has been widely used in renal cell carcinoma treatment. The efficacy of GreenLight laser on Laparoscopic partial nephrectomy is still unknown. AIM: To present the first series of laparoscopic partial nephrectomy (LPN) by GreenLight laser enucleation without renal artery clamping. Due to the excellent coagulation and hemostatic properties of the laser, laser-assisted LPN (LLPN) makes it possible to perform a "zero ischemia" resection. METHODS: Fifteen patients with T1a exogenous renal tumors who received high-power GreenLight laser non-ischemic LPN in our hospital were retrospectively analyzed. All clinical information, surgical and post-operative data, complications, pathological and functional outcomes were analyzed. RESULTS: Surgery was successfully completed in all patients, and no open or radical nephrectomy was performed. The renal artery was not clamped, leading to no ischemic time. No blood transfusions were required, the average hemoglobin level ranged from 96.0 to 132.0 g/L and no postoperative complications occurred. The mean operation time was 104.3 ± 8.2 min. The postoperative removal of negative pressure drainage time ranged from 5.0 to 7.0 d, and the mean postoperative hospital stay was 6.5 ± 0.7 d. No serious complications occurred. Postoperative pathological results showed clear cell carcinoma in 12 patients, papillary renal cell carcinoma in 2 patients, and hamartoma in 1 patient. The mean creatinine level was 75.0 ± 0.8 µmol/L (range 61.0-90.4 µmol/L) at 1 mo after surgery, and there were no statistically significant differences compared with pre-operation (P > 0.05). The glomerular filtration rate ranged from 45.1 to 60.8 mL/min, with an average of 54.0 ± 5.0 mL/min, and these levels were not significantly different from those before surgery (P > 0.05). CONCLUSION: GreenLight laser has extraordinary cutting and sealing advantages when used for small renal tumors (exogenous tumors of stage T1a) during LPN. However, use of this technique can lead to the generation of excessive smoke.
RESUMO
BACKGROUND: Bone metastasis is the leading cause of mortality and reduced quality of life in patients with metastatic prostate cancer (PCa). Long non-coding RNA activated by DNA damage (NORAD) has been observed to have an abnormal expression in various cancers. This article aimed to explore the molecular mechanism underlying the regulatory role of NORAD in bone metastasis of PCa. METHODS: NORAD expression in clinical PCa tissues and cell lines was detected with the application of qRT-PCR. Cancer cells were then transfected with plasmids expressing NORAD, after which Transwell assay and CCK-8 assay were carried out to detect proliferation, migration, and bone metastasis of PCa. NORAD downstream target molecules were screened through bioinformatics analysis, followed by further verification using dual luciferase assay. Extracellular vesicles (EVs) were labeled with PKH67 and interacted with bone marrow stromal cells. The gain- and loss-function method was applied to determine the internalization and secretion of PCa cells-derived EVs under the intervention of downstream target molecules or NORAD. RESULTS: PCa tissues and cell lines were observed to have a high expression of NORAD, particularly in tissues with bone metastasis. NORAD knockdown resulted in reduced secretion and internalization of EVs, and suppressed proliferation, migration, and bone metastasis of PCa cells. It was indicated that NORAD interacted with miR-541-3p, leading to the upregulation of PKM2. Forced expression of PKM2 promoted the transfer of PKH67-labeled EVs to bone marrow stromal cells. CONCLUSIONS: NORAD might serve as a ceRNA of miR-541-3p to promote PKM2 expression, thereby enhancing the development of bone metastasis in PCa by promoting internalization and transfer of EVs of cancer cells, providing an insight into a novel treatment for the disorder.
Assuntos
Neoplasias Ósseas/secundário , Proteínas de Transporte/metabolismo , Proteínas de Membrana/metabolismo , MicroRNAs/metabolismo , Neoplasias da Próstata/metabolismo , RNA Longo não Codificante/metabolismo , Hormônios Tireóideos/metabolismo , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/patologia , Humanos , Masculino , MicroRNAs/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Qualidade de Vida , RNA Longo não Codificante/genética , Transfecção , Proteínas de Ligação a Hormônio da TireoideRESUMO
Viral entry into the host cell is the first step towards successful infection. Viral entry starts with virion attachment, and binding to receptors. Receptor binding viruses either directly release their genome into the cell, or enter cells through endocytosis. For DNA viruses and a few RNA viruses, the endocytosed viruses will transport from cytoplasm into the nucleus followed by gene expression. Receptors on the cell membrane play a crucial role in viral infection. Although several attachment factors, or candidate receptors, for the infection of white spot syndrome virus (WSSV) were identified in shrimp, the authentic entry receptors for WSSV infection and the intracellular signaling triggering by interaction of WSSV with receptors remain unclear. In the present study, a receptor for WSSV infection in kuruma shrimp, Marsupenaeus japonicus, was identified. It is a member of the immunoglobulin superfamily (IgSF) with a transmembrane region, and is similar to the vertebrate polymeric immunoglobulin receptor (pIgR); therefore, it was designated as a pIgR-like protein (MjpIgR for short). MjpIgR was detected in all tissues tested, and its expression was significantly induced by WSSV infection at the mRNA and protein levels. Knockdown of MjpIgR, and blocking MjpIgR with its antibody inhibited WSSV infection in shrimp and overexpression of MjpIgR facilitated the invasion of WSSV. Further analyses indicated that MjpIgR could independently render non-permissive cells susceptible to WSSV infection. The extracellular domain of MjpIgR interacts with envelope protein VP24 of WSSV and the intracellular domain interacts with calmodulin (MjCaM). MjpIgR was oligomerized and internalized following WSSV infection and the internalization was associated with endocytosis of WSSV. The viral internalization facilitating ability of MjpIgR could be blocked using chlorpromazine, an inhibitor of clathrin dependent endocytosis. Knockdown of Mjclathrin and its adaptor protein AP-2 also inhibited WSSV internalization. All the results indicated that MjpIgR-mediated WSSV endocytosis was clathrin dependent. The results suggested that MjpIgR is a WSSV receptor, and that WSSV enters shrimp cells via the pIgR-CaM-Clathrin endocytosis pathway.
Assuntos
Penaeidae/imunologia , Receptores de Imunoglobulina Polimérica/imunologia , Vírus da Síndrome da Mancha Branca 1/metabolismo , Animais , Aquicultura/métodos , Vírus de DNA , Endocitose , Penaeidae/metabolismo , Penaeidae/patogenicidade , Ligação Proteica , Receptores de Imunoglobulina Polimérica/metabolismo , Proteínas do Envelope Viral , Internalização do Vírus , Replicação Viral , Vírus da Síndrome da Mancha Branca 1/patogenicidadeRESUMO
A small open reading frame (smORF) or short open reading frame (sORF) encodes a polypeptide of <100 amino acids in eukaryotes (50 amino acids in prokaryotes). Studies have shown that several sORF-encoded peptides (SEPs) have important physiological functions in different organisms. Many ribosomal proteins belonging to SEPs play important roles in several cellular processes, such as DNA damage repair and apoptosis. Several studies have implicated SEPs in response to infection and innate immunity, but the mechanisms have been unclear for most of them. In this study, we identified a sORF-encoded ribosomal protein S27 (RPS27) in Marsupenaeus japonicus. The expression of MjRPS27 was significantly upregulated in shrimp infected with white spot syndrome virus (WSSV). After knockdown of MjRPS27 by RNA interference, WSSV replication increased significantly. Conversely, after MjRPS27 overexpression, WSSV replication decreased in shrimp and the survival rate of the shrimp increased significantly. These results suggested that MjRPS27 inhibited viral replication. Further study showed that, after MjRPS27 knockdown, the mRNA expression level of MjDorsal, MjRelish, and antimicrobial peptides (AMPs) decreased, and the nuclear translocation of MjDorsal and MjRelish into the nucleus also decreased. These findings indicated that MjRPS27 might activate the NF-κB pathway and regulate the expression of AMPs in shrimp after WSSV challenge, thereby inhibiting viral replication. We also found that MjRPS27 interacted with WSSV's envelope proteins, including VP19, VP24, and VP28, suggesting that MjRPS27 may inhibit WSSV proliferation by preventing virion assembly in shrimp. This study was the first to elucidate the function of the ribosomal protein MjRPS27 in the antiviral immunity of shrimp.
Assuntos
Proteínas de Artrópodes/metabolismo , NF-kappa B/metabolismo , Penaeidae/metabolismo , Penaeidae/virologia , Peptídeos/metabolismo , Transdução de Sinais , Proteínas do Envelope Viral/metabolismo , Doenças dos Animais/metabolismo , Doenças dos Animais/virologia , Animais , Interações Hospedeiro-Patógeno , Ligação Proteica , Vírus da Síndrome da Mancha Branca 1RESUMO
Myeloid leukemia factor (MLF) plays an important role in development, cell cycle, myeloid differentiation, and regulates the RUNX transcription factors. However, the function of MLF in immunity is still unclear. In this study, an MLF was identified and characterized in kuruma shrimp Marsupenaeus japonicus, and named as MjMLF. The full-length cDNA of MjMLF contained 1111 nucleotides, which had an opening reading frame of 816 bp encoding a protein of 272 amino acids with an MLF1-interacting protein domain. MjMLF could be ubiquitously detected in different tissues of shrimp at the transcriptional level. The expression pattern analysis showed that MjMLF could be upregulated in shrimp hemocytes and hepatopancreas after white spot syndrome virus challenge. The RNA interference and protein injection assay showed that MjMLF could inhibit WSSV replication in vivo. Flow cytometry assay showed that MjMLF could induce hemocytes apoptosis which functioned in the shrimp antiviral reaction. All the results suggested that MjMLF played an important role in the antiviral immune reaction of kuruma shrimp. The research indicated that MjMLF might function as a novel regulator to inhibit WSSV replication in shrimp.
Assuntos
Proteínas de Artrópodes/genética , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Penaeidae/genética , Penaeidae/imunologia , Sequência de Aminoácidos , Animais , Proteínas de Artrópodes/química , Proteínas de Artrópodes/metabolismo , Sequência de Bases , Filogenia , Alinhamento de Sequência , Vírus da Síndrome da Mancha Branca 1/fisiologiaRESUMO
Some aquatic invertebrates such as shrimp contain low albeit stable numbers of bacteria in the circulating hemolymph. The proliferation of this hemolymph microbiota in such a nutrient-rich environment is tightly controlled in healthy animals, but the mechanisms responsible had remained elusive. In the present study, we report a C-type lectin (MjHeCL) from the kuruma shrimp (Marsupenaeus japonicus) that participates in restraining the hemolymph microbiota. Although the expression of MjHeCL did not seem to be modulated by bacterial challenge, the down-regulation of its expression by RNA interference led to proliferation of the hemolymph microbiota, ultimately resulting in shrimp death. This phenotype was rescued by the injection of recombinant MjHeCL, which restored the healthy status of the knockdown shrimp. A mechanistic analysis revealed that MjHeCL inhibited bacterial proliferation by modulating the expression of antimicrobial peptides. The key function of MjHeCL in the shrimp immune homeostasis might be related to its broader recognition spectrum of the hemolymph microbiota components than other lectins. Our study demonstrates the role of MjHeCL in maintaining the healthy status of shrimp and provides new insight into the biological significance of C-type lectins, a diversified and abundant lectin family in invertebrate species.