Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Magn Reson Med ; 92(4): 1456-1470, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38748853

RESUMO

PURPOSE: To develop a 3D, high-sensitivity CEST mapping technique based on the 3D stack-of-spirals (SOS) gradient echo readout, the proposed approach was compared with conventional acquisition techniques and evaluated for its efficacy in concurrently mapping of guanidino (Guan) and amide CEST in human brain at 3 T, leveraging the polynomial Lorentzian line-shape fitting (PLOF) method. METHODS: Saturation time and recovery delay were optimized to achieve maximum CEST time efficiency. The 3DSOS method was compared with segmented 3D EPI (3DEPI), turbo spin echo, and gradient- and spin-echo techniques. Image quality, temporal SNR (tSNR), and test-retest reliability were assessed. Maps of Guan and amide CEST derived from 3DSOS were demonstrated on a low-grade glioma patient. RESULTS: The optimized recovery delay/saturation time was determined to be 1.4/2 s for Guan and amide CEST. In addition to nearly doubling the slice number, the gradient echo techniques also outperformed spin echo sequences in tSNR: 3DEPI (193.8 ± 6.6), 3DSOS (173.9 ± 5.6), and GRASE (141.0 ± 2.7). 3DSOS, compared with 3DEPI, demonstrated comparable GuanCEST signal in gray matter (GM) (3DSOS: [2.14%-2.59%] vs. 3DEPI: [2.15%-2.61%]), and white matter (WM) (3DSOS: [1.49%-2.11%] vs. 3DEPI: [1.64%-2.09%]). 3DSOS also achieves significantly higher amideCEST in both GM (3DSOS: [2.29%-3.00%] vs. 3DEPI: [2.06%-2.92%]) and WM (3DSOS: [2.23%-2.66%] vs. 3DEPI: [1.95%-2.57%]). 3DSOS outperforms 3DEPI in terms of scan-rescan reliability (correlation coefficient: 3DSOS: 0.58-0.96 vs. 3DEPI: -0.02 to 0.75) and robustness to motion as well. CONCLUSION: The 3DSOS CEST technique shows promise for whole-cerebrum CEST imaging, offering uniform contrast and robustness against motion artifacts.


Assuntos
Amidas , Encéfalo , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Humanos , Amidas/química , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Reprodutibilidade dos Testes , Imagem Ecoplanar/métodos , Glioma/diagnóstico por imagem , Algoritmos , Razão Sinal-Ruído , Neoplasias Encefálicas/diagnóstico por imagem , Adulto , Processamento de Imagem Assistida por Computador/métodos , Masculino , Feminino , Guanidina/química
2.
Front Physiol ; 14: 1169622, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37123257

RESUMO

Purpose: To improve the accuracy of cerebral blood flow (CBF) measurement in mice by accounting for the anesthesia effects. Methods: The dependence of CBF on anesthesia dose and time was investigated by simultaneously measuring respiration rate (RR) and heart rate (HR) under four different anesthetic regimens. Quantitative CBF was measured by a phase-contrast (PC) MRI technique. RR was evaluated with a mouse monitoring system (MouseOX) while HR was determined using an ultrashort-TE MRI sequence. CBF, RR, and HR were recorded dynamically with a temporal resolution of 1 min in a total of 19 mice. Linear regression models were used to investigate the relationships among CBF, anesthesia dose, RR, and HR. Results: CBF, RR, and HR all showed a significant dependence on anesthesia dose (p < 0.0001). However, the dose in itself was insufficient to account for the variations in physiological parameters, in that they showed a time-dependent change even for a constant dose. RR and HR together can explain 52.6% of the variations in CBF measurements, which is greater than the amount of variance explained by anesthesia dose (32.4%). Based on the multi-parametric regression results, a model was proposed to correct the anesthesia effects in mouse CBF measurements, specifically C B F c o r r e c t e d = C B F + 0.58 R R - 0.41 H R - 32.66 D o s e . We also reported awake-state CBF in mice to be 142.0 ± 8.8 mL/100 g/min, which is consistent with the model-predicted value. Conclusion: The accuracy of CBF measurement in mice can be improved by using a correction model that accounts for respiration rate, heart rate, and anesthesia dose.

3.
Neuroimage ; 268: 119870, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36640948

RESUMO

Blood-brain barrier (BBB) plays a critical role in protecting the brain from toxins and pathogens. However, in vivo tools to assess BBB permeability are scarce and often require the use of exogenous contrast agents. In this study, we aimed to develop a non-contrast arterial-spin-labeling (ASL) based MRI technique to estimate BBB permeability to water in mice. By determining the relative fraction of labeled water spins that were exchanged into the brain tissue as opposed to those that remained in the cerebral veins, we estimated indices of global BBB permeability to water including water extraction fraction (E) and permeability surface-area product (PS). First, using multiple post-labeling delay ASL experiments, we estimated the bolus arrival time (BAT) of the labeled spins to reach the great vein of Galen (VG) to be 691.2 ± 14.5 ms (N = 5). Next, we investigated the dependence of the VG ASL signal on labeling duration and identified an optimal imaging protocol with a labeling duration of 1200 ms and a PLD of 100 ms. Quantitative E and PS values in wild-type mice were found to be 59.9 ± 3.2% and 260.9 ± 18.9 ml/100 g/min, respectively. In contrast, mice with Huntington's disease (HD) revealed a significantly higher E (69.7 ± 2.4%, P = 0.026) and PS (318.1 ± 17.1 ml/100 g/min, P = 0.040), suggesting BBB breakdown in this mouse model. Reproducibility studies revealed a coefficient-of-variation (CoV) of 4.9 ± 1.7% and 6.1 ± 1.2% for E and PS, respectively. The proposed method may open new avenues for preclinical research on pathophysiological mechanisms of brain diseases and therapeutic trials in animal models.


Assuntos
Barreira Hematoencefálica , Veias Cerebrais , Camundongos , Animais , Barreira Hematoencefálica/diagnóstico por imagem , Barreira Hematoencefálica/fisiologia , Veias Cerebrais/diagnóstico por imagem , Marcadores de Spin , Água , Reprodutibilidade dos Testes , Imageamento por Ressonância Magnética/métodos , Permeabilidade , Circulação Cerebrovascular/fisiologia
4.
PLoS One ; 17(9): e0274220, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36170233

RESUMO

Cerebrovascular Reactivity (CVR) provides an assessment of the brain's vascular reserve and has been postulated to be a sensitive marker in cerebrovascular diseases. MRI-based CVR measurement typically employs alterations in arterial carbon dioxide (CO2) level while continuously acquiring Blood-Oxygenation-Level-Dependent (BOLD) images. CO2-inhalation and resting-state methods are two commonly used approaches for CVR MRI. However, processing of CVR MRI data often requires special expertise and may become an obstacle in broad utilization of this promising technique. The aim of this work was to develop CVR-MRICloud, a cloud-based CVR processing pipeline, to enable automated processing of CVR MRI data. The CVR-MRICloud consists of several major steps including extraction of end-tidal CO2 (EtCO2) curve from raw CO2 recording, alignment of EtCO2 curve with BOLD time course, computation of CVR value on a whole-brain, regional, and voxel-wise basis. The pipeline also includes standard BOLD image processing steps such as motion correction, registration between functional and anatomic images, and transformation of the CVR images to canonical space. This paper describes these algorithms and demonstrates the performance of the CVR-MRICloud in lifespan healthy subjects and patients with clinical conditions such as stroke, brain tumor, and Moyamoya disease. CVR-MRICloud has potential to be used as a data processing tool for a variety of basic science and clinical applications.


Assuntos
Dióxido de Carbono , Circulação Cerebrovascular , Encéfalo/irrigação sanguínea , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Humanos , Imageamento por Ressonância Magnética/métodos
5.
NMR Biomed ; 35(3): e4649, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34779550

RESUMO

Natural and synthetic sugars have great potential for developing highly biocompatible and translatable chemical exchange saturation transfer (CEST) MRI contrast agents. In this study, we aimed to develop the smallest clinically available form of dextran, Dex1 (molecular weight, MW ~ 1 kDa), as a new CEST agent. We first characterized the CEST properties of Dex1 in vitro at 11.7 T and showed that the Dex1 had a detectable CEST signal at ~1.2 ppm, attributed to hydroxyl protons. In vivo CEST MRI studies were then carried out on C57BL6 mice bearing orthotopic GL261 brain tumors (n = 5) using a Bruker BioSpec 11.7 T MRI scanner. Both steady-state full Z-spectral images and single offset (1.2 ppm) dynamic dextran-enhanced (DDE) images were acquired before and after the intravenous injection of Dex1 (2 g/kg). The steady-state Z-spectral analysis showed a significantly higher CEST contrast enhancement in the tumor than in contralateral brain (∆MTRasym1.2 ppm  = 0.010 ± 0.006 versus 0.002 ± 0.008, P = 0.0069) at 20 min after the injection of Dex1. Pharmacokinetic analyses of DDE were performed using the area under the curve (AUC) in the first 10 min after Dex1 injection, revealing a significantly higher uptake of Dex1 in the tumor than in brain tissue for tumor-bearing mice (AUC[0-10 min] = 21.9 ± 4.2 versus 5.3 ± 6.4%·min, P = 0.0294). In contrast, no Dex1 uptake was foundling in the brains of non-tumor-bearing mice (AUC[0-10 min] = -1.59 ± 2.43%·min). Importantly, the CEST MRI findings were consistent with the measurements obtained using DCE MRI and fluorescence microscopy, demonstrating the potential of Dex1 as a highly translatable CEST MRI contrast agent for assessing tumor hemodynamics.


Assuntos
Meios de Contraste , Aumento da Imagem , Imageamento por Ressonância Magnética/métodos , Animais , Neoplasias Encefálicas/diagnóstico por imagem , Dextranos , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência
6.
J Neuroinflammation ; 18(1): 104, 2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33931070

RESUMO

BACKGROUND: Cell transplantation-based treatments for neurological disease are promising, yet graft rejection remains a major barrier to successful regenerative therapies. Our group and others have shown that long-lasting tolerance of transplanted stem cells can be achieved in the brain with systemic application of monoclonal antibodies blocking co-stimulation signaling. However, it is unknown if subsequent injury and the blood-brain barrier breach could expose the transplanted cells to systemic immune system spurring fulminant rejection and fatal encephalitis. Therefore, we investigated whether delayed traumatic brain injury (TBI) could trigger graft rejection. METHODS: Glial-restricted precursor cells (GRPs) were intracerebroventricularly transplanted in immunocompetent neonatal mice and co-stimulation blockade (CoB) was applied 0, 2, 4, and 6 days post-grafting. Bioluminescence imaging (BLI) was performed to monitor the grafted cell survival. Mice were subjected to TBI 12 weeks post-transplantation. MRI and open-field test were performed to assess the brain damage and behavioral change, respectively. The animals were decapitated at week 16 post-transplantation, and the brains were harvested. The survival and distribution of grafted cells were verified from brain sections. Hematoxylin and eosin staining (HE) was performed to observe TBI-induced brain legion, and neuroinflammation was evaluated immunohistochemically. RESULTS: BLI showed that grafted GRPs were rejected within 4 weeks after transplantation without CoB, while CoB administration resulted in long-term survival of allografts. BLI signal had a steep rise following TBI and subsequently declined but remained higher than the preinjury level. Open-field test showed TBI-induced anxiety for all animals but neither CoB nor GRP transplantation intensified the symptom. HE and MRI demonstrated a reduction in TBI-induced lesion volume in GRP-transplanted mice compared with non-transplanted mice. Brain sections further validated the survival of grafted GRPs and showed more GRPs surrounding the injured tissue. Furthermore, the brains of post-TBI shiverer mice had increased activation of microglia and astrocytes compared to post-TBI wildtype mice, but infiltration of CD45+ leukocytes remained low. CONCLUSIONS: CoB induces sustained immunological tolerance towards allografted cerebral GRPs which is not disrupted following TBI, and unexpectedly TBI may enhance GRPs engraftment and contribute to post-injury brain tissue repair.


Assuntos
Lesões Encefálicas Traumáticas , Rejeição de Enxerto/imunologia , Tolerância Imunológica/imunologia , Células-Tronco Neurais/transplante , Transplante de Células-Tronco/métodos , Aloenxertos , Animais , Anticorpos Monoclonais/farmacologia , Antígeno B7-1/antagonistas & inibidores , Antígeno B7-2/antagonistas & inibidores , Antígenos CD28/antagonistas & inibidores , Antígenos CD40/antagonistas & inibidores , Camundongos , Camundongos Endogâmicos C57BL , Neuroglia/transplante
7.
Theranostics ; 11(13): 6240-6250, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33995656

RESUMO

Rationale: Endovascular intervention plays an important role in the treatment of various diseases, in which MRI-guidance can potentially improve precision. However, the clinical applications of currently available contrast media, including Gadolinium-based contrast agents and superparamagnetic iron oxide particles (SPIO), are hindered by safety concerns. In the present study, we sought to develop D2O as a novel contrast agent for guiding endovascular neurointervention. Methods: Animal studies were approved by institutional ACUC and conducted using an 11.7 T Bruker Biospec system and a 3T Siemens Trio clinical scanner for rodent and canine imaging, respectively. The locally selective blood brain barrier opening (BBBO) in rat brains was obtained by intraarterial (IA) injection of mannitol. The dynamic T2w* EPI MRI sequence was used to study the trans-catheter perfusion territory by IA administered SPIO before mannitol administration, whereas a dynamic T1w FLASH sequence was used to acquire Gd contrast-enhanced MRI for assessing BBBO after injection of mannitol. The contrast generated by D2O assessed by either EPI or FLASH methods was compared with the corresponding results assessed by SPIO or Gd. The utility of D2O MRI was also demonstrated to guide drug delivery to glioma in a mouse model. Finally, the clinical utility of D2O-MRI was demonstrated in a canine model. Results: Our study has shown that the contrast generated by D2O can be used to precisely delineate trans-catheter perfusion territory in both small and large animals. The perfusion territories determined by D2O-MRI show moderate correlation with those by SPIO-MRI (Spearman coefficient r = 0.5234, P < 0.001). Moreover, our results show that the perfusion territory determined by D2O-MRI can successfully predict the areas with BBBO after mannitol treatment similar to that assessed by Gd-MRI (Spearman coefficient r = 0.6923, P < 0.001). Using D2O-MRI as imaging guidance, the optimal infusion rate in the mouse brain was determined to be 150 µL/min to maximize the delivery efficacy to the tumor without serious off-target delivery to the brain parenchyma. The enhanced drug delivery of antibodies to the brain tumor was confirmed by fluorescence imaging. Conclusion: Our study demonstrated that D2O can be used as a negative MRI contrast medium to guide endovascular neurointervention. The established D2O -MRI method is safe and quantitative, without the concern of contrast accumulation. These qualities make it an attempting approach for a variety of endovascular procedures.


Assuntos
Meios de Contraste , Óxido de Deutério , Procedimentos Endovasculares , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Cirurgia Assistida por Computador/métodos , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Neoplasias Encefálicas/diagnóstico por imagem , Artéria Carótida Interna , Cateterismo , Sistemas Computacionais , Meios de Contraste/farmacocinética , Óxido de Deutério/farmacocinética , Cães , Sistemas de Liberação de Medicamentos , Feminino , Compostos Férricos , Glioma/diagnóstico por imagem , Infusões Intra-Arteriais , Injeções Intra-Arteriais , Masculino , Manitol/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Imagens de Fantasmas , Ratos , Ratos Sprague-Dawley , Distribuição Tecidual
8.
Neuroimage ; 236: 118071, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33878375

RESUMO

Detecting Alzheimer's disease (AD) at an early stage brings a lot of benefits including disease management and actions to slow the progression of the disease. Here, we demonstrate that reduced creatine chemical exchange saturation transfer (CrCEST) contrast has the potential to serve as a new biomarker for early detection of AD. The results on wild type (WT) mice and two age-matched AD models, namely tauopathy (Tau) and Aß amyloidosis (APP), indicated that CrCEST contrasts of the cortex and corpus callosum in the APP and Tau mice were significantly reduced compared to WT counterpart at an early stage (6-7 months) (p < 0.011). Two main causes of the reduced CrCEST contrast, i.e. cerebral pH and creatine concentration, were investigated. From phantom and hypercapnia experiments, CrCEST showed excellent sensitivity to pH variations. From MRS results, the creatine concentration in WT and AD mouse brain was equivalent, which suggests that the reduced CrCEST contrast was dominated by cerebral pH change involved in the progression of AD. Immunohistochemical analysis revealed that the abnormal cerebral pH in AD mice may relate to neuroinflammation, a known factor that can cause pH reduction.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Amiloidose/diagnóstico por imagem , Córtex Cerebral/diagnóstico por imagem , Corpo Caloso/diagnóstico por imagem , Creatina/metabolismo , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Tauopatias/diagnóstico por imagem , Doença de Alzheimer/metabolismo , Amiloidose/metabolismo , Animais , Biomarcadores/metabolismo , Córtex Cerebral/metabolismo , Corpo Caloso/metabolismo , Modelos Animais de Doenças , Diagnóstico Precoce , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Tauopatias/metabolismo
9.
Proc Natl Acad Sci U S A ; 117(6): 3144-3149, 2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-32001509

RESUMO

Glycogen plays a central role in glucose homeostasis and is abundant in several types of tissue. We report an MRI method for imaging glycogen noninvasively with enhanced detection sensitivity and high specificity, using the magnetic coupling between glycogen and water protons through the nuclear Overhauser enhancement (NOE). We show in vitro that the glycogen NOE (glycoNOE) signal is correlated linearly with glycogen concentration, while pH and temperature have little effect on its intensity. For validation, we imaged glycoNOE signal changes in mouse liver, both before and after fasting and during glucagon infusion. The glycoNOE signal was reduced by 88 ± 16% (n = 5) after 24 h of fasting and by 76 ± 22% (n = 5) at 1 h after intraperitoneal (i.p.) injection of glucagon, which is known to rapidly deplete hepatic glycogen. The ability to noninvasively image glycogen should allow assessment of diseases in which glucose metabolism or storage is altered, for instance, diabetes, cardiac disease, muscular disorders, cancer, and glycogen storage diseases.


Assuntos
Glicogênio , Imageamento por Ressonância Magnética/métodos , Animais , Jejum/fisiologia , Glicogênio/análise , Glicogênio/química , Glicogênio/metabolismo , Fígado/diagnóstico por imagem , Fígado/metabolismo , Camundongos , Prótons , Água/química
10.
Theranostics ; 10(5): 2215-2228, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32089739

RESUMO

Adjuvant treatment using local drug delivery is applied in treating glioblastoma multiforme (GBM) after tumor resection. However, there are no non-invasive imaging techniques available for tracking the compositional changes of hydrogel-based drug treatment. Methods: We developed Chemical Exchange Saturation Transfer Magnetic Resonance Imaging (CEST MRI) detectable and injectable liposomal hydrogel to monitor these events in vivo at 3T clinical field. Mechanical attributes of these hydrogels and their in vitro and in vivo CEST imaging properties were systematically studied. Results: The MRI detectable hydrogels were capable of generating multiparametric readouts for monitoring specific components of the hydrogel matrix simultaneously and independently. Herein, we report, for the first time, CEST contrast at -3.4 ppm provides an estimated number of liposomes and CEST contrast at 5 ppm provides an estimated amount of encapsulated drug. CEST contrast decreased by 1.57% at 5 ppm, while the contrast at -3.4 ppm remained constant over 3 d in vivo, demonstrating different release kinetics of these components from the hydrogel matrix. Furthermore, histology analysis confirmed that the CEST contrast at -3.4 ppm was associated with liposome concentrations. Conclusion: This multiparametric CEST imaging of individual compositional changes in liposomal hydrogels, formulated with clinical-grade materials at 3T and described in this study, has the potential to facilitate the refinement of adjuvant treatment for GBM.


Assuntos
Encéfalo/patologia , Glioblastoma/terapia , Hidrogéis/farmacocinética , Lipossomos/metabolismo , Imageamento por Ressonância Magnética Multiparamétrica/métodos , Animais , Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos , Feminino , Glioblastoma/diagnóstico por imagem , Humanos , Hidrogéis/administração & dosagem , Camundongos , Camundongos SCID , Imagem Individual de Molécula/métodos
11.
Quant Imaging Med Surg ; 9(9): 1579-1591, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31667143

RESUMO

BACKGROUND: To develop liposomes loaded with iodinated agents as nanosized CT/MRI bimodal contrast agents for monitoring liposome-mediated drug delivery. METHODS: Rhodamine-labeled iodixanol (VisipaqueTM)-loaded liposomes (IX-lipo) were prepared and tested for their properties as a diamagnetic CEST contrast agent in vitro. Mice bearing subcutaneous CT26 colon tumors were injected i.v. with 1 g/kg (535 mg iodine/kg) IX-lipo, and in vivo CT and CEST MR images were acquired on day 3. CT and CEST MR images were also acquired for tumor-bearing mice co-injected with IX-lipo and tumor necrosis factor (TNF-α). RESULTS: In addition to CT contrast, IX-lipo exhibited a strong CEST contrast similar to its non-liposomal form, with a detectability of ~2 nM per liposome. Both CT imaging and CEST MRI showed that i.v. injection of IX-lipo resulted in a rim enhancement of CT26 tumors with a heterogeneous central distribution. In contrast, co-injection of TNF-α caused a significantly augmented CT/MRI contrast in the tumor center. The intratumoral biodistribution of IX-lipo correlated well to the rhodamine patterns observed with fluorescence microscopy. CONCLUSIONS: We have developed a CT/MRI bimodal imaging approach for monitoring the delivery and biodistribution of liposomes by loading them with the clinically approved X-ray/CT contrast agent iodixanol. Our approach may be easily adapted for other-FDA approved iodinated agents and thus has great translational potential.

12.
Magn Reson Med ; 82(4): 1471-1479, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31106918

RESUMO

PURPOSE: Vascular disrupting therapy of cancer has become a promising approach not only to regress tumor growth directly but also to boost the delivery of chemotherapeutics in the tumor. An imaging approach to monitor the changes in tumor vascular permeability, therefore, has important applications for monitoring of vascular disrupting therapies. METHODS: Mice bearing CT26 subcutaneous colon tumors were injected intravenously with 150 kD dextran (Dex150, diameter, d~ 20 nm, 375 mg/kg), tumor necrosis factor-alpha (TNF-α; 1 µg per mouse), or both (n = 3 in each group). The Z-spectra were acquired before and 2 h after the injection, and the chemical exchange saturation transfer (CEST) signals in the tumors as quantified by asymmetric magnetization transfer ratio (MTRasym ) at 1 ppm were compared. RESULTS: The results showed a significantly stronger CEST contrast enhancement at 1 ppm (∆MTRasym = 0.042 ± 0.002) in the TNF-α-treated tumors than those by Dex150 alone (∆MTRasym = 0.000 ± 0.005, P = 0.0229) or TNF-α alone (∆MTRasym = 0.002 ± 0.004, P = 0.0264), indicating that the TNF-α treatment strongly augmented the tumor uptake of 150 kD dextran. The MRI findings were verified by fluorescence imaging and immunofluorescence microscopy. CONCLUSIONS: High molecular weight dextrans can be used as safe and sensitive CEST MRI contrast agents for monitoring tumor response to vascular disrupting therapy and, potentially, for developing dextran-based theranostic drug delivery systems.


Assuntos
Antineoplásicos/farmacologia , Dextranos/farmacologia , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Neovascularização Patológica/diagnóstico por imagem , Animais , Monitoramento de Medicamentos , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias Experimentais/irrigação sanguínea , Neoplasias Experimentais/diagnóstico por imagem
13.
Magn Reson Med ; 81(6): 3798-3807, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30793789

RESUMO

PURPOSE: The mammalian target of rapamycin is an enzyme that regulates cell metabolism and proliferation. It is up-regulated in aggressive tumors, such as glioblastoma, leading to increased glucose uptake and consumption. It has been suggested that glucose CEST signals reflect the delivery and tumor uptake of glucose. The inhibitor rapamycin (sirolimus) has been applied as a glucose deprivation treatment; thus, glucose CEST MRI could potentially be useful for monitoring the tumor responses to inhibitor treatment. METHODS: A human U87-EGFRvIII xenograft model in mice was studied. The mice were treated with a mammalian target of Rapamycin inhibitor, rapamycin. The effect of the treatment was evaluated in vivo with dynamic glucose CEST MRI. RESULTS: Rapamycin treatment led to significant increases (P < 0.001) in dynamic glucose-enhanced signal in both the tumor and contralateral brain as compared to the no-treatment group, namely a maximum enhancement of 3.7% ± 2.3% (tumor, treatment) versus 1.9% ± 0.4% (tumor, no-treatment), 1.7% ± 1.1% (contralateral, treatment), and 1.0% ± 0.4% (contralateral, no treatment). Dynamic glucose-enhanced contrast remained consistently higher in treatment versus no-treatment groups for the duration of the experiment (17 min). This was confirmed with area-under-curve analysis. CONCLUSION: Increased glucose CEST signal was found after mammalian target of Rapamycin inhibition treatment, indicating potential for dynamic glucose-enhanced MRI to study tumor response to glucose deprivation treatment.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Neoplasias Encefálicas , Glioblastoma , Imageamento por Ressonância Magnética , Sirolimo/farmacologia , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/efeitos dos fármacos , Química Encefálica/efeitos dos fármacos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Feminino , Glioblastoma/diagnóstico por imagem , Glioblastoma/metabolismo , Humanos , Camundongos , Camundongos SCID , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Magn Reson Med ; 81(1): 47-56, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30058240

RESUMO

PURPOSE: To examine the detection sensitivity for the rapidly exchanging hydroxyl protons of D-glucose using the recently developed on-resonance variable delay multi-pulse (onVDMP) chemical exchange saturation transfer (CEST) technique. METHODS: The onVDMP method was applied for the detection of water signal changes upon venous D-glucose infusion in mice with 9L glioma xenografts. The effect size of onVDMP MRI during infusion was compared with that of conventional continuous wave (CW) CEST MRI. RESULTS: Both methods highlighted the tumor and the blood vessels on D-glucose infusion. In interleaved studies, the mean signal changes detected by onVDMP were found to be 1.8 times higher than those by CW-CEST, attributed to its high labeling efficiency for fast exchanging protons and the labeling of the OH protons over a larger frequency range. CONCLUSIONS: The onVDMP method is a more sensitive technique for the detection of exogenous CEST agents with fast-exchanging protons compared to CW-CEST MRI.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Glioma/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Algoritmos , Animais , Área Sob a Curva , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Meios de Contraste , Feminino , Glioma/patologia , Glucose/metabolismo , Interpretação de Imagem Assistida por Computador/métodos , Processamento de Imagem Assistida por Computador , Camundongos , Camundongos SCID , Transplante de Neoplasias , Imagens de Fantasmas , Prótons , Reprodutibilidade dos Testes , Espectrofotometria , Água
15.
Magn Reson Med ; 81(3): 1993-2000, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30206994

RESUMO

PURPOSE: 3-O-Methyl-D-glucose (3-OMG) is a nonmetabolizable structural analog of glucose that offers potential to be used as a CEST-contrast agent for tumor detection. Here, we explore it for CEST-detection of malignant brain tumors and compare it with D-glucose. METHODS: Glioma xenografts of a U87-MG cell line were implanted in five mice. Dynamic 3-OMG weighted images were collected using CEST-MRI at 11.7 T at a single offset of 1.2 ppm, showing the effect of accumulation of the contrast agent in the tumor, following an intravenous injection of 3-OMG (3 g/kg). RESULTS: Tumor regions showed higher enhancement as compared to contralateral brain. The CEST contrast enhancement in the tumor region ranged from 2.5-5.0%, while it was 1.5-3.5% in contralateral brain. Previous D-glucose studies of the same tumor model showed an enhancement of 1.5-3.0% and 0.5-1.5% in tumor and contralateral brain, respectively. The signal gradually stabilized to a value that persisted for the length of the scan. CONCLUSIONS: 3-OMG shows a CEST contrast enhancement that is approximately twice as much as that of D-glucose for a similar tumor line. In view of its suggested low toxicity and transport properties across the BBB, 3-OMG provides an option to be used as a nonmetallic contrast agent for evaluating brain tumors.


Assuntos
3-O-Metilglucose/administração & dosagem , 3-O-Metilglucose/farmacocinética , Neoplasias Encefálicas/diagnóstico por imagem , Meios de Contraste/administração & dosagem , Meios de Contraste/farmacocinética , Glioma/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Administração Oral , Animais , Área Sob a Curva , Barreira Hematoencefálica , Encéfalo/diagnóstico por imagem , Linhagem Celular Tumoral , Feminino , Glucose/administração & dosagem , Glucose/farmacocinética , Humanos , Processamento de Imagem Assistida por Computador/métodos , Camundongos , Camundongos SCID , Transplante de Neoplasias
16.
Magn Reson Med ; 79(2): 1001-1009, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29193288

RESUMO

PURPOSE: To investigate the use of natural dextrans as nano-sized chemical exchange saturation transfer (CEST) MRI probes for characterizing size-dependent tumor vascular permeability. METHODS: Dextrans of different molecular weight (10, 70, 150, and 2000 kD) were characterized for their CEST contrast. Mice (N = 5) bearing CT26 subcutaneous colon tumors were injected intravenously with 10 kD (D10, 6 nm) and 70 kD (D70, 12 nm) dextran at a dose of 375 mg/kg. The CEST-MRI signal in the tumors was assessed before and approximately 40 min after each injection using a dynamic CEST imaging scheme. RESULTS: All dextrans of different molecular weights have a strong CEST signal with an apparent maximum of approximately 0.9 ppm. The detectability and effects of pH and saturation conditions (B1 and Tsat ) were investigated. When applied to CT26 tumors, the injection of D10 could produce a significant "dexCEST" enhancement in the majority of the tumor area, whereas the injection of D70 only resulted in an increase in the tumor periphery. Quantitative analysis revealed the differential permeability of CT26 tumors to different size particles, which was validated by fluorescence imaging and immunohistochemistry. CONCLUSIONS: As a first application, we used 10- and 70-kD dextrans to visualize the spatially variable, size-dependent permeability in the tumor, indicating that nano-sized dextrans can be used for characterizing tumor vascular permeability with dexCEST MRI and, potentially, for developing dextran-based theranostic drug delivery systems. Magn Reson Med 79:1001-1009, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Assuntos
Permeabilidade Capilar/fisiologia , Dextranos/química , Imageamento por Ressonância Magnética/métodos , Neoplasias , Algoritmos , Animais , Linhagem Celular Tumoral , Dextranos/administração & dosagem , Dextranos/farmacocinética , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias/irrigação sanguínea , Neoplasias/diagnóstico por imagem , Neoplasias/metabolismo
17.
ACS Chem Neurosci ; 9(4): 809-816, 2018 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-29257872

RESUMO

Insulin delivery to the brain has emerged as an important therapeutic target for cognitive disorders associated with abnormal brain energy metabolism. Although insulin is transported across the blood-brain barrier, peripheral routes of administration are problematic due to systemic effects of insulin on blood glucose. Intranasal (IN) administration is being investigated as an alternative route. We conducted a head-to-head comparison of subcutaneous (SC) and IN insulin, assessing plasma and brain pharmacokinetics and blood glucose levels in the mouse. SC insulin (2.4 IU) achieved therapeutically relevant concentrations in the brain (AUCbrain = 2537 h·µIU/mL) but dramatically increased plasma insulin (AUCplasma = 520 351 h·*µIU/mL), resulting in severe hypoglycemia and in some cases death. IN administration of the same dose resulted in similar insulin levels in the brain (AUCbrain = 3442 h·µIU/mL) but substantially lower plasma concentrations (AUCplasma = 354 h·µIU/mL), amounting to a ∼ 2000-fold increase in the AUCbrain:plasma ratio relative to SC. IN dosing also had no significant effect on blood glucose. When administered daily for 9 days, IN insulin increased brain glucose and energy metabolite concentrations (e.g., adenosine triphosphate and phosphocreatine) without causing overt toxicity, suggesting that IN insulin may be a safe therapeutic option for cognitively impaired patients.


Assuntos
Glicemia/metabolismo , Encéfalo/metabolismo , Insulina/sangue , Insulina/farmacocinética , Administração Intranasal , Animais , Barreira Hematoencefálica/metabolismo , Transtornos Cognitivos/metabolismo , Metabolismo Energético/fisiologia , Insulina/administração & dosagem , Insulina/líquido cefalorraquidiano , Masculino , Camundongos
18.
Oncotarget ; 8(37): 61072-61082, 2017 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-28977847

RESUMO

Orthotopic xenotransplantation studies represent the final stage in preclinical cancer research and could facilitate the implementation of precision medicine. To date, these xenografts have been tested in immunodeficient animals, but complete elimination of the adaptive immunity is a significant drawback. We present a method of efficient human glioblastoma (GBM) cell engraftment in adult mice with intact immune systems, mediated by a transient blockade of T-cell co-stimulation. Compared to transplants grown in immunodeficient hosts, the resulting tumors more accurately resemble the clinical pathophysiology of patient GBMs, which are characterized by blood-brain-barrier leakage and strong neo-vascularization. We expect our method to have great utility for studying human tumor cell biology, particularly in the field of cancer immunotherapy and in studies on microenvironmental interactions. Given the straightforward approach, the method may also be applicable to other tumor types and additional model organisms.

19.
Sci Rep ; 7(1): 4644, 2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28680144

RESUMO

The incidence of accidental and intentional acid skin burns is rising. Current treatment strategies are mostly inadequate, leaving victims disfigured and without treatment options. Here, we have shown that transplantation of adipose-derived stem cells (ASCs) accelerates the process of acid burn wound-healing. Pre-conditioning of ASCs using ascorbic acid (AA) or hypoxic conditions provided additional benefit. While the wounds were ultimately healed in all mice, histological analysis revealed that, in non-transplanted animals, the number of hair follicles was reduced. Bioluminescent imaging (BLI) of transplanted ASCs revealed a gradual loss of transplanted cells, with a similar rate of cell death for each treatment group. The signal of fluorinated cells detected by a clinically applicable 19F MRI method correlated with the BLI findings, which points to 19F MRI as a reliable method with which to track ASCs after transplantation to skin wounds. No difference in therapeutic effect or cell survival was observed between labeled and non-labeled cells. We conclude that, despite being short-lived, transplanted ASCs can accelerate wound-healing and reduce hair loss in acid-burn skin injury. The fluorine nanoemulsion is a clinically applicable cell label capable of reporting on the survival of transplanted cells.


Assuntos
Adipócitos/citologia , Queimaduras Químicas/terapia , Imagem Multimodal/métodos , Dermatopatias/induzido quimicamente , Transplante de Células-Tronco/métodos , Ácidos/efeitos adversos , Adipócitos/transplante , Animais , Ácido Ascórbico/farmacologia , Queimaduras Químicas/diagnóstico por imagem , Hipóxia Celular , Sobrevivência Celular , Células Cultivadas , Modelos Animais de Doenças , Imagem por Ressonância Magnética de Flúor-19 , Humanos , Medições Luminescentes , Masculino , Camundongos , Dermatopatias/diagnóstico por imagem , Dermatopatias/terapia , Resultado do Tratamento , Cicatrização
20.
J Cereb Blood Flow Metab ; 37(7): 2346-2358, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27618834

RESUMO

Stem cell therapy for neurological disorders reached a pivotal point when the efficacy of several cell types was demonstrated in small animal models. Translation of stem cell therapy is contingent upon overcoming the challenge of effective cell delivery to the human brain, which has a volume ∼1000 times larger than that of the mouse. Intra-arterial injection can achieve a broad, global, but also on-demand spatially targeted biodistribution; however, its utility has been limited by unpredictable cell destination and homing as dictated by the vascular territory, as well as by safety concerns. We show here that high-speed MRI can be used to visualize the intravascular distribution of a superparamagnetic iron oxide contrast agent and can thus be used to accurately predict the distribution of intra-arterial administered stem cells. Moreover, high-speed MRI enables the real-time visualization of cell homing, providing the opportunity for immediate intervention in the case of undesired biodistribution.


Assuntos
Artérias Carótidas/diagnóstico por imagem , Rastreamento de Células/métodos , Artérias Cerebrais/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia , Acidente Vascular Cerebral/terapia , Animais , Modelos Animais de Doenças , Cães , Infusões Intra-Arteriais , Masculino , Ratos Sprague-Dawley , Ratos Wistar , Especificidade da Espécie , Acidente Vascular Cerebral/diagnóstico por imagem , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA