Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Small ; : e2309907, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38712486

RESUMO

The biophysical properties of the extracellular matrix (ECM) play a pivotal role in modulating cancer progression via cell-ECM interactions. However, the biophysical properties specific to gastric cancer (GC) remain largely unexplored. Pertinently, GC ECM shows significantly heterogeneous metamorphoses, such as matrix stiffening and intricate restructuring. By combining collagen I and alginate, this study designs an in vitro biomimetic hydrogel platform to independently modulate matrix stiffness and structure across a physiological stiffness spectrum while preserving consistent collagen concentration and fiber topography. With this platform, this study assesses the impacts of matrix biophysical properties on cell proliferation, migration, invasion, and other pivotal dynamics of AGS. The findings spotlight a compelling interplay between matrix stiffness and structure, influencing both cellular responses and ECM remodeling. Furthermore, this investigation into the integrin/actin-collagen interplay reinforces the central role of integrins in mediating cell-ECM interactions, reciprocally sculpting cell conduct, and ECM adaptation. Collectively, this study reveals a previously unidentified role of ECM biophysical properties in GC malignant potential and provides insight into the bidirectional mechanical cell-ECM interactions, which may facilitate the development of novel therapeutic horizons.

2.
Am J Physiol Gastrointest Liver Physiol ; 326(6): G697-G711, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38591127

RESUMO

Sterol regulatory element binding protein (SREBP) cleavage-activating protein (SCAP) is a widely expressed membrane glycoprotein that acts as an important modulator of lipid metabolism and inflammatory stress. N-glycosylation of SCAP has been suggested to modulate cancer development, but its role in nonalcoholic steatohepatitis (NASH) is poorly understood. In this study, the N-glycosylation of SCAP was analyzed by using sequential trypsin proteolysis and glycosidase treatment. The liver cell lines expressing wild-type and N-glycosylation sites mutated SCAP were constructed to investigate the N-glycosylation role of SCAP in regulating inflammation and lipid accumulation as well as the underlying mechanisms. The hepatic SCAP protein levels were significantly increased in C57BL/6J mice fed with Western diet and sugar water (WD + SW) and diabetic db/db mice, which exhibited typical liver steatosis and inflammation accompanied with hyperglycemia. In vitro, the enhanced N-glycosylation by high glucose increased the protein stability of SCAP and hence increased its total protein levels, whereas the ablation of N-glycosylation significantly decreased SCAP protein stability and alleviated lipid accumulation and inflammation in hepatic cell lines. Mechanistically, SCAP N-glycosylation increased not only the SREBP-1-mediated acetyl-CoA synthetase 2 (ACSS2) transcription but also the AMPK-mediated S659 phosphorylation of ACCS2 protein, causing the enhanced ACSS2 levels in nucleus and hence increasing the histone H3K27 acetylation (H3K27ac), which is a key epigenetic modification associated with NASH. Modulating ACSS2 expression or its location in the nuclear abolished the effects of SCAP N-glycosylation on H3K27ac and lipid accumulation and inflammation. In conclusion, SCAP N-glycosylation aggravates inflammation and lipid accumulation through enhancing ACSS2-mediated H3K27ac in hepatocytes.NEW & NOTEWORTHY N-glycosylation of SCAP exacerbates inflammation and lipid accumulation in hepatocytes through ACSS2-mediated H3K27ac. Our data suggest that SCAP N-glycosylation plays a key role in regulating histone H3K27 acetylation and targeting SCAP N-glycosylation may be a new strategy for treating nonalcoholic steatohepatitis (NASH).


Assuntos
Histonas , Peptídeos e Proteínas de Sinalização Intracelular , Metabolismo dos Lipídeos , Proteínas de Membrana , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica , Animais , Glicosilação , Histonas/metabolismo , Acetilação , Camundongos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Metabolismo dos Lipídeos/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Masculino , Humanos , Fígado/metabolismo , Fígado/patologia
3.
Artigo em Inglês | MEDLINE | ID: mdl-38489081

RESUMO

Gastric cancer (GC) treatment regimens are still unsatisfactory. Recently, Urolithin A (UroA) has gained tremendous momentum due to its anti-tumor properties. However, the therapeutic effect and underlying mechanisms of UroA in GC are unclear. We explored the effects and related mechanisms of UroA on GC both in vivo and in vitro. A Cell Counting Kit-8 was used to determine the influence of UroA on the proliferation of GC cell lines. The Autophagy inhibitor 3-methyladenine (3MA) was employed to clarify the role of autophagy in the anti-tumor effect of UroA. Simultaneously, we detected the core-component proteins involved in autophagy and its downstream pathways. Subsequently, the in vivo anti-tumor effect of UroA was determined using a xenograft mouse model. Western blotting was used to detect the core protein components of the anti-tumor pathways, and 16S rDNA sequencing was used to detect the effect of UroA on the gut microbiota. We found that UroA suppressed tumor progression. The use of 3MA undermined the majority of the inhibitory effect of UroA on tumor cell proliferation, further confirming the importance of autophagy in the anti-tumor effect of UroA. Invigorating of autophagy activated the downstream Hippo pathway, thereby inhibiting the Warburg effect and promoting cell apoptosis. In addition, UroA modulated the composition of the gut microbiota, as indicated by the increase of probiotics and the decrease of pathogenic bacteria. Our research revealed new anti-tumor mechanisms of UroA, which may be a promising candidate for GC treatment.

4.
J Med Chem ; 67(3): 2083-2094, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38287228

RESUMO

Colorectal cancer remains the second leading cause of cancer-related mortalities worldwide. While artemisinin (ART), a key active compound from the traditional Chinese medicinal herb Artemisia annua, has been recognized for its antiproliferative activity against colon cancer cells, its underlying molecular underpinnings remain elusive. Whereas promiscuity of heme-dependent alkylating of macromolecules, mainly proteins, has been seen pivotal as a universal and primary mode of action of ART in cancer cells, accumulating evidence suggests the existence of unique targets and mechanisms of actions contingent on cell or tissue specificities. Here, we employed photoaffinity probes to identify the specific targets responsible for ART's anti-colon cancer actions. Upon validation, microsomal prostaglandins synthase-2 emerged as a specific and reversible target of ART in HCT116 colorectal cancer cells, whose inhibition resulted in reduced cellular prostaglandin E2 biosynthesis and cell growth. Our discovery opens new opportunities for pharmacological treatment of colon cancer.


Assuntos
Artemisininas , Neoplasias do Colo , Neoplasias Colorretais , Humanos , Artemisininas/metabolismo , Ciclo-Oxigenase 2 , Neoplasias Colorretais/tratamento farmacológico , Prostaglandinas
5.
Int J Pharm ; 652: 123810, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38244648

RESUMO

Transforming growth factor ß (TGF-ß), a versatile immunosuppressive cytokine, has gained increasing attention as a potential target for cancer immunotherapy. However, current strategies are constrained by tumor heterogeneity and drug resistance. Therapeutic probiotics, such as Escherichia coli Nissle1917 (EcN), not only regulate the gut microbiota to increase beneficial bacteria with anti-tumor effects, but also modulate immune factors within the body, thereby enhancing immunity. In this study, we developed an oral microgel delivery system of EcN@(CS-SA)2 by electrostatic interaction between chitosan (CS) and sodium alginate (SA), aiming to enhance its bioavailability in the gastrointestinal tract (GIT). Notably, EcN@(CS-SA)2 microgel showed a synergistic enhancement of the anti-tumor efficacy of Galunisertib (Gal, a TGF-ß inhibitor) by inducing apoptosis and immunogenic cell death (ICD) in tumor cells, as well as promoting increased infiltration of CD8+ T cells into the tumor microenvironment (TME).


Assuntos
Neoplasias Colorretais , Microgéis , Probióticos , Pirazóis , Quinolinas , Humanos , Fator de Crescimento Transformador beta/metabolismo , Linfócitos T CD8-Positivos , Imunoterapia , Neoplasias Colorretais/tratamento farmacológico , Imunidade , Microambiente Tumoral , Linhagem Celular Tumoral
6.
J Fluoresc ; 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38252217

RESUMO

A novel multi-functional fluorescence probe HMIC based on hydrazide Schiff base has been successfully synthesized and characterized. It can distinguish Al3+/Zn2+/Cd2+ in ethanol, in which fluorescence emission with different colors (blue for Al3+, orange for Zn2+, and green for Cd2+) were presented. The limits of detection of HMIC towards three ions were calculated from the titration curve as 7.70 × 10- 9 M, 4.64 × 10- 9 M, and 1.35 × 10- 8 M, respectively. The structures of HMIC and its complexes were investigated using UV-Vis spectra, Job's plot, infrared spectra, mass spectrometry, 1H-NMR and DFT calculations. Practical application studies have also demonstrated that HMIC can be applied to real samples with a low impact of potential interferents. Cytotoxicity and cellular imaging assays have shown that HMIC has good cellular permeability and potential antitumor effects. Interestingly, HMIC can image Al3+, Zn2+ and Cd2+ in the cells with different fluorescence signals.

7.
Artigo em Inglês | MEDLINE | ID: mdl-37883193

RESUMO

The development of a self-calibrating ratio fluorescence probe without the need for additional substrates is a major advancement in biosensing. In this study, at room temperature, a self-calibrating infinite coordination polymer (SSA-Tb-ATP ICPs) has been proposed by self-assembling adenosine triphosphate (ATP) with 5-sulfosalicylic acid (SSA) and Tb3+. Due to the antenna effect, SSA-Tb-ATP ICPs exhibited strong green fluorescence emission of Tb3+ (at 547 nm) and blue fluorescence emission of SSA (at 407 nm). This material offers several advantages over existing detection methods, including simplicity of synthesis and exceptional sensitivity. Our self-calibrating SSA-Tb-ATP ICPs demonstrated excellent performance in detecting alkaline phosphatase (ALP) and phosphate (Pi) in both serum and environmental samples with detection limits of 0.076 U/L and 0.025 µM, respectively. Moreover, we successfully employed the SSA-Tb-ATP ICPs to perform cellular imaging of ALP in both hepatocellular carcinoma cells (HepG2) and normal liver cells (LO2), representing a significant advancement in ALP detection and imaging. The simplicity of the synthesis and high sensitivity make this probe a promising tool for early diagnosis of hepatocellular carcinoma in clinical settings and environment analysis.

8.
J Cataract Refract Surg ; 49(12): 1195-1200, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37702529

RESUMO

PURPOSE: To investigate the effect of corneal curvature (K) on the accuracy of 8 intraocular lens formulas in highly myopic eyes. SETTING: Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China. DESIGN: Retrospective consecutive case series. METHODS: 302 eyes (302 patients) were analyzed in subgroups based on the K value. The mean refractive error, mean absolute error (MAE), median absolute error (MedAE), root-mean-square absolute prediction error (RMSAE) and proportions of eyes within ±0.25 diopter (D), ±0.50 D, ±0.75 D, ±1.00 D were statistical analyzed. RESULTS: Emmetropia Verifying Optical (EVO) 2.0, Kane, and Radial Basis Function (RBF) 3.0 had the lower MAE (≤0.28) and RMSAE (≤0.348) and highest percentage of eyes within ±0.50 D (≥83.58%) in the flat (K ≤ 43 D) and steep K (K > 45 D) groups. Hoffer QST had the lowest MedAE (0.19), RMSAE (0.351) and the highest percentage of eyes within ±0.50 D (82.98%) in the normal K group (43 < K ≤ 45 D). When axial length (AL) ≤28 mm, all formulas showed close RMSAE values (0.322 to 0.373) in flat K group. When AL >28 mm, RBF 3.0 achieved the lowest MAE (≤0.24), MedAE (≤0.17) and RMSAE (≤0.337) across all subgroups. CONCLUSIONS: EVO 2.0, Kane, and RBF 3.0 were the most accurate in highly myopic eyes with a flat or steep K. Hoffer QST is recommended for long eyes with normal K values. RBF 3.0 showed the highest accuracy when AL >28 mm, independent of corneal curvature.


Assuntos
Lentes Intraoculares , Miopia , Facoemulsificação , Humanos , Refração Ocular , Implante de Lente Intraocular , Estudos Retrospectivos , Comprimento Axial do Olho , Miopia/cirurgia , Biometria , Óptica e Fotônica
9.
Exp Ther Med ; 26(3): 420, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37602313

RESUMO

N6-methyladenosine (m6A) serves a critical role in regulating gene expression and has been associated with various diseases; however, its role in the differentiation of endothelial progenitor cells (EPCs) remains unclear. The present study used liquid chromatography with tandem mass spectrometry and immunofluorescence assays to quantify the levels of m6A in human peripheral blood-derived EPCs (HPB-EPCs) before and after differentiation into mature cells. The present study performed Cell Counting Kit 8, Transwell, and tube formation assays to determine the effects of overexpression and knockdown of Wilms' tumor 1-associated protein (WTAP) on HPB-EPCs. The results revealed that the level of m6A modification was significantly increased during HPB-EPCs differentiation, and WTAP exhibited the most significant alteration among the enzymes involved in m6A regulation. When WTAP was overexpressed in HPB-EPCs, cell proliferation, invasion, and the formation of tubes were improved, whereas WTAP knockdown yielded the opposite effects. In conclusion, the present study highlighted the involvement of m6A in regulating EPC differentiation, with WTAP acting as a promoter of EPC differentiation.

10.
Naunyn Schmiedebergs Arch Pharmacol ; 396(10): 2687-2699, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37126194

RESUMO

The pharmacology of urolithin C (UroC) on non-alcoholic fatty liver disease (NAFLD) is largely undetermined. We sought to investigate the potential for NAFLD improvement by administration of UroC and the underlying mechanisms. We verified the therapeutic effect of UroC on choline-deficient amino acid-defined high fat diet (CDAHFD) induced NAFLD mice via evaluating NAFLD activity score (NAS), AST, ALT, hepatic phosphorylated AMPK, and 4-hydroxynonenal. Oleic acid-induced AML12 cell was appraised by oil red staining and western blotting to explore the effect and mechanism of UroC in vitro. Transcriptional regulation of UroC was explored by liver RNA sequencing, gut microbiota composition was explored by 16SrRNA sequencing, and colorectal tight junctional proteins were detected by western blotting and immunohistochemistry. The detrimental effects of CDAHFD included the increased liver index, AST, ALT, hepatic 4-hydroxynonenal, impaired intestinal mucosal barrier, and most importantly, pathological damage in liver. Oral administration of UroC largely protected against these harmful alterations. Remarkably, both RNA sequencing and western blotting results indicated an activation in hepatic AMPK signaling pathway which was thought to inhibit ferroptosis response to UroC in vivo, while no change were found in AMPK-ferroptosis axis response to UroC in oleic acid-induced AML12 cells, hinted an indispensable linkage between UroC and hepatic AMPK, presumably the gut-liver axis. Furthermore, UroC could neither alleviate lipid deposition nor inhibit ferroptosis in vitro. The 16SrRNA showed UroC partially counteracted the dysbiosis induced by CDAHFD. Specifically, UroC reversed the elevated proportion of Firmicutes/Bacteroidota and enhanced the level of Parabacteroides goldsteinii and Lactobacillus vaginalis, which played a beneficial role in metabolic disorders. Oral administration of Urolithin C protected against the detrimental impact of CDAHFD via regulating AMPK-ferroptosis axis, maintaining intestinal mucosal barrier and counteracting gut dysbiosis.


Assuntos
Ferroptose , Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Disbiose/metabolismo , Disbiose/patologia , Ácido Oleico/metabolismo , Ácido Oleico/farmacologia , Ácido Oleico/uso terapêutico , Fígado , Dieta Hiperlipídica , Camundongos Endogâmicos C57BL
11.
Autophagy ; 19(9): 2504-2519, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37014234

RESUMO

Macroautophagy/autophagy plays a protective role in sepsis-induced liver injury. As a member of class B scavenger receptors, CD36 plays important roles in various disorders, such as atherosclerosis and fatty liver disease. Here we found that the expression of CD36 in hepatocytes was increased in patients and a mouse model with sepsis, accompanied by impaired autophagy flux. Furthermore, hepatocyte cd36 knockout (cd36-HKO) markedly improved liver injury and the impairment of autophagosome-lysosome fusion in lipopolysaccharide (LPS)-induced septic mice. Ubqln1 (ubiquilin 1) overexpression (OE) in hepatocyte blocked the protective effect of cd36-HKO on LPS-induced liver injury in mice. Mechanistically, with LPS stimulation, CD36 on the plasma membrane was depalmitoylated and distributed to the lysosome, where CD36 acted as a bridge molecule linking UBQLN1 to soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins and hence promoting the proteasomal degradation of SNARE proteins, resulting in fusion impairment. Overall, our data reveal that CD36 is essential for modulating the proteasomal degradation of autophagic SNARE proteins in a UBQLN1-dependent manner. Targeting CD36 in hepatocytes is effective for improving autophagic flux in sepsis and therefore represents a promising therapeutic strategy for clinical treatment of septic liver injury.Abbreviations: AAV8: adeno-associated virus 8; AOSC: acute obstructive suppurative cholangitis; ATP1A1: ATPase, Na+/K+ transporting, alpha 1 polypeptide; CASP3: caspase 3; CASP8: caspase 8; CCL2: chemokine (C-C motif) ligand 2; cd36-HKO: hepatocyte-specific cd36 knockout; Co-IP: co-immunoprecipitation; CQ: chloroquine; Cys: cysteine; GOT1: glutamic-oxaloacetic transaminase 1, soluble; GPT: glutamic-pyruvic transaminase, soluble; IL1B: interleukin 1 beta; IL6: interleukin 6; KO: knockout; LAMP1: lysosomal associated membrane protein 1; LDH, lactate dehydrogenase; LPS: lipopolysaccharide; LYPLA1: lysophospholipase 1; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; OE: overexpression; qPCR: quantitative polymerase chain reaction; SNAP29: synaptosome associated protein 29; SNARE: soluble N-ethylmaleimide-sensitive factor attachment protein receptor; SQSTM1/p62: sequestosome 1; STX17: syntaxin 17; TNF: tumor necrosis factor; TRIM: tripartite motif-containing; UBA: ubiquitin-associated; UBL: ubiquitin-like; UBQLN: ubiquilin; VAMP8: vesicle associated membrane protein 8; WT: wild-type.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Sepse , Animais , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Autofagia/fisiologia , Proteínas Relacionadas à Autofagia/metabolismo , Doença Hepática Crônica Induzida por Substâncias e Drogas/metabolismo , Hepatócitos/metabolismo , Lipopolissacarídeos/farmacologia , Lisossomos/metabolismo , Sepse/complicações , Sepse/metabolismo , Proteínas SNARE/metabolismo , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/metabolismo , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/farmacologia , Ubiquitinas/metabolismo
12.
Eur J Med Chem ; 250: 115233, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36863224

RESUMO

Cancer treatment requires the participation of multiple targets/pathways, and single approach is hard to effectively curb the proliferation and metastasis of carcinoma cells. In this work, we conjugated FDA-approved riluzole and platinum(II) drugs into a series of unreported riluzole-Pt(IV) compounds, which were designed to simultaneously target DNA, the solute carrier family 7 member 11 (SLC7A11, xCT), and the human ether a go-go related gene 1 (hERG1), to exert synergistic anticancer effect. Among them, c,c,t-[PtCl2(NH3)2(OH)(glutarylriluzole)] (compound 2) displayed excellent antiproliferative activity with IC50 value of 300-times lower than that of cisplatin in HCT-116, and optimal selectivity index between carcinoma and human normal liver cells (LO2). Mechanism studies indicated that compound 2 released riluzole and active Pt(II) species after entering cells to exhibit a prodrug behavior against cancer, which obviously increased DNA-damage and cell apoptosis, as well as suppressed metastasis in HCT-116. Compound 2 persisted in the xCT-target of riluzole and blocked the biosynthesis of glutathione (GSH) to trigger oxidative stress, which could boost the killing to cancer cells and reduce Pt-drug resistance. Meanwhile, compound 2 significantly inhibited invasion and metastasis of HCT-116 cells by targeting hERG1 to interrupt the phosphorylation of phosphatidylinositide 3-kinases/proteinserine-threonine kinase (PI3K/Akt), and reverse epithelial-mesenchymal transformation (EMT). Based on our results, the riluzole-Pt(IV) prodrugs studied in this work could be regarded as a new class of very promising candidates for cancer treatment compared to traditional platinum drugs.


Assuntos
Antineoplásicos , Carcinoma , Pró-Fármacos , Humanos , Antineoplásicos/farmacologia , Pró-Fármacos/farmacologia , Riluzol/farmacologia , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Platina/farmacologia , Linhagem Celular Tumoral , Cisplatino/farmacologia , Dano ao DNA
13.
ACS Omega ; 8(7): 6945-6958, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36844596

RESUMO

A series of (8-hydroxyquinoline) gallium(III) complexes (CP-1-4) was synthesized and characterized by single X-ray crystallography and density functional theory (DFT) calculation. The cytotoxicity of the four gallium complexes toward a human nonsmall cell lung cancer cell line (A549), human colon cancer cell line (HCT116), and human normal hepatocyte cell line (LO2) was evaluated using MTT assays. CP-4 exhibited excellent cytotoxicity against HCT116 cancer cells (IC50 = 1.2 ± 0.3 µM) and lower toxicity than cisplatin and oxaliplatin. We also evaluated the anticancer mechanism studies in cell uptake, reactive oxygen species analysis, cell cycle, wound-healing, and Western blotting assays. The results showed that CP-4 affected the expression of DNA-related proteins, which led to the apoptosis of cancer cells. Moreover, molecular docking tests of CP-4 were performed to predict other binding sites and to confirm its higher binding force to disulfide isomerase (PDI) proteins. The emissive properties of CP-4 suggest that this complex can be used for colon cancer diagnosis and treatment, as well as in vivo imaging. These results also provide a foundation for the development of gallium complexes as potent anticancer agents.

14.
Cell Death Dis ; 14(2): 82, 2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36737598

RESUMO

Metformin is the biguanide of hepatic insulin sensitizer for patients with non-alcohol fatty liver disease (NAFLD). Findings regarding its efficacy in restoring blood lipids and liver histology have been contradictory. In this study, we explore metformin's preventive effects on NAFLD in leptin-insensitive individuals. We used liver tissue, serum exosomes and isolated hepatocytes from high-fat diet (HFD)-induced Zucker diabetic fatty (ZDF) rats and leptin receptor (Lepr) knockout rats to investigate the correlation between hepatic Lepr defective and liver damage caused by metformin. Through immunostaining, RT-PCR and glucose uptake monitoring, we showed that metformin treatment activates adenosine monophosphate (AMP)-activated protein kinase (AMPK) and its downstream cytochrome C oxidase (CCO). This leads to overactivation of glucose catabolism-related genes, excessive energy repertoire consumption, and subsequent hepatocyte pyroptosis. Single-cell RNA sequencing further confirmed the hyper-activation of glucose catabolism after metformin treatment. Altogether, we showed that functional Lepr is necessary for metformin treatment to be effective, and that long-term metformin treatment might promote NAFLD progression in leptin-insensitive individuals. This provides important insight into the clinical application of metformin.


Assuntos
Metformina , Hepatopatia Gordurosa não Alcoólica , Ratos , Animais , Metformina/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Leptina/metabolismo , Receptores para Leptina/genética , Receptores para Leptina/metabolismo , Piroptose , Ratos Zucker , Fígado/metabolismo , Hepatócitos/metabolismo , Glucose/metabolismo
15.
J Med Chem ; 66(3): 1852-1872, 2023 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-36715603

RESUMO

Exploring multi-targeting chemotherapeutants with advantages over single-targeting agents and drug combinations is of great significance in drug discovery. Herein, we employed phytogenic evodiamine (EVO) and conventional Pt(II) drugs to design and synthesize multi-target EVO-Pt(IV) anticancer prodrugs (4-14). Among them, compound 10 exhibited a 118-fold enhancement in the IC50 value compared to cisplatin and low toxicity to normal cells. Further studies proved that 10 significantly enhanced intracellular Pt accumulation and DNA damage, perturbed mitochondrial membrane potential, inhibited cell migration and invasion, upregulated reactive oxygen species levels, and induced apoptosis and autophagic cell death. Molecular docking assay revealed that 10 fits perfectly into the extracellular signal-regulated protein kinase (ERK)-1 pocket, which was verified to produce profound ERK suppression. Most strikingly, compound 10 exhibited superior in vivo antitumor efficiency and effectively attenuated systemic toxicity. Our results emphasize that functionalizing platinum drugs with the multi-target EVO could generate synergistically excellent anticancer activity with low toxicity and decreased resistance, which may represent a brand-new cancer therapy modality.


Assuntos
Antineoplásicos , Pró-Fármacos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Simulação de Acoplamento Molecular , Linhagem Celular Tumoral , Cisplatino/farmacologia , MAP Quinases Reguladas por Sinal Extracelular , Apoptose , Dano ao DNA , Autofagia
16.
Int J Nanomedicine ; 18: 225-241, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36660337

RESUMO

Background: Gallium (III) metal-organic complexes have been shown to have the ability to inhibit tumor growth, but the poor water solubility of many of the complexes precludes further application. The use of materials with high biocompatibility as drug delivery carriers for metal-organic complexes to enhance the bioavailability of the drug is a feasible approach. Methods: Here, we modified the ligands of gallium 8-hydroxyquinolinate complex with good clinical anticancer activity by replacing the 8-hydroxyquinoline ligands with 5-bromo-8-hydroxyquinoline (HBrQ), and the resulting Ga(III) + HBrQ complex had poor water solubility. Two biocompatible materials, bovine serum albumin (BSA) and graphene oxide (GO), were used to synthesize the corresponding Ga(III) + HBrQ complex nanoparticles (NPs) BSA/Ga/HBrQ NPs and GO/Ga/HBrQ NPs in different ways to enhance the drug delivery of the metal complex. Results: Both of BSA/Ga/HBrQ NPs and GO/Ga/HBrQ NPs can maintain stable existence in different solution states. In vitro cytotoxicity test showed that two nanomedicines had excellent anti-proliferation effect on HCT116 cells, which shown higher level of intracellular ROS and apoptosis ratio than that of cisplatin and oxaliplatin. In addition, the superior emissive properties of BSA/Ga/HBrQ NPs and GO/Ga/HBrQ NPs allow their use for in vivo imaging showing highly effective therapy in HCT116 tumor-bearing mouse models. Conclusion: The use of biocompatible materials for the preparation of NPs against poorly biocompatible metal-organic complexes to construct drug delivery systems is a promising strategy that can further improve drug delivery and therapeutic efficacy.


Assuntos
Antineoplásicos , Portadores de Fármacos , Gálio , Grafite , Nanopartículas Metálicas , Oxiquinolina , Animais , Humanos , Camundongos , Materiais Biocompatíveis , Linhagem Celular Tumoral , Portadores de Fármacos/síntese química , Gálio/química , Grafite/química , Células HCT116 , Nanopartículas Metálicas/análise , Nanopartículas/análise , Oxiquinolina/química , Tamanho da Partícula , Soroalbumina Bovina/farmacologia , Água , Antineoplásicos/síntese química , Antineoplásicos/química
17.
World Wide Web ; 26(2): 539-559, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35528264

RESUMO

Developmental dysplasia of the hip (DDH) is one of the most common diseases in children. Due to the experience-requiring medical image analysis work, online automatic diagnosis of DDH has intrigued the researchers. Traditional implementation of online diagnosis faces challenges with reliability and interpretability. In this paper, we establish an online diagnosis tool based on a multi-task hourglass network, which can accurately extract landmarks to detect the extent of hip dislocation and predict the age of the femoral head. Our method utilizes a multi-task hourglass network, which trains an encoder-decoder network to regress the landmarks and predict the developmental age for online DDH diagnosis. With the support of precise image analysis and fast GPU computing, our method can help overcome the shortage of medical resources and enable telehealth for DDH diagnosis. Applying this approach to a dataset of DDH X-ray images, we demonstrate 4.64 mean pixel error of landmark detection compared to the results of human experts. Moreover, we can improve the accuracy of the age prediction of femoral heads to 89%. Our online automatic diagnosis system has provided service to 112 patients, and the results demonstrate the effectiveness of our method.

18.
Biomaterials ; 289: 121758, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36049426

RESUMO

Tumor-targeting peptides have profound clinical implications in early detection and delineation of microscopic lesions for surgical resection, and also delivery of therapeutics with reduced systemic toxicity. Here, we demonstrate that a peptide (RS), evolved from a previously reported hepatocellular carcinoma (HCC)-targeting peptide P47, enables improved HCC micrometastasis discrimination and delineation from noncancerous tissues in murine orthotopic mice and patient biopsies, with up to 21-fold contrast. Importantly, RS targets non-small cell lung (NSCLC) and colon cancers in mice and patient biopsies, with higher selectivity for highly proliferative tumor nodules. Moreover, RS localizes to cell nucleoli of HCC, NSCLC, breast, colon and cervical cancer cells and induces nucleolar stress when conjugated with chemotherapeutic Oxaliplatin (OXA) (RS-OXA), demonstrating both cellular and subcellular targeting. RS-delivered OXA elicits significant tumor retardation in orthotopic HCC mice with markedly reduced systemic toxicity compared to OXA alone. Injection of fluorescence-labeled RS enables dynamic visualization of tumor growth in RS-OXA-treated subcutaneous HCC mice. Our study demonstrates that RS targets a spectrum of tumors and localizes to cell nucleolus, thus enabling functional imaging and targeted delivery of OXA in HCC mice, and consequently provides a versatile tool for tumor imaging and targeted therapeutics.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Nucléolo Celular/patologia , Neoplasias Hepáticas/patologia , Camundongos , Oxaliplatina/uso terapêutico , Peptídeos/uso terapêutico
19.
Chin Med J (Engl) ; 135(7): 837-848, 2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35671182

RESUMO

BACKGROUND: Pulmonary microvascular endothelial cells (PMVECs) were not complex, and the endothelial barrier was destroyed in the pathogenesis progress of acute lung injury (ALI)/acute respiratory distress syndrome (ARDS). Previous studies have demonstrated that hepatocyte growth factor (HGF), which was secreted by bone marrow mesenchymal stem cells, could decrease endothelial apoptosis. We investigated whether mTOR/STAT3 signaling acted in HGF protective effects against oxidative stress and mitochondria-dependent apoptosis in lipopolysaccharide (LPS)-induced endothelial barrier dysfunction and ALI mice. METHODS: In our current study, we introduced LPS-induced PMEVCs with HGF treatment. To investigate the effects of mammalian target of rapamycin (mTOR)/signal transducer and activator of transcription 3 (STAT3) pathway in endothelial oxidative stress and mitochondria-dependent apoptosis, mTOR inhibitor rapamycin and STAT3 inhibitor S3I-201 were, respectively, used to inhibit mTOR/STAT3 signaling. Moreover, lentivirus vector-mediated mTORC1 (Raptor) and mTORC2 (Rictor) gene knockdown modifications were introduced to evaluate mTORC1 and mTORC1 pathways. Calcium measurement, reactive oxygen species (ROS) production, mitochondrial membrane potential and protein, cell proliferation, apoptosis, and endothelial junction protein were detected to evaluate HGF effects. Moreover, we used the ALI mouse model to observe the mitochondria pathological changes with an electron microscope in vivo. RESULTS: Our study demonstrated that HGF protected the endothelium via the suppression of ROS production and intracellular calcium uptake, which lead to increased mitochondrial membrane potential (JC-1 and mitochondria tracker green detection) and specific proteins (complex I), raised anti-apoptosis Messenger Ribonucleic Acid level (B-cell lymphoma 2 and Bcl-xL), and increased endothelial junction proteins (VE-cadherin and occludin). Reversely, mTOR inhibitor rapamycin and STAT3 inhibitor S3I-201 could raise oxidative stress and mitochondria-dependent apoptosis even with HGF treatment in LPS-induced endothelial cells. Similarly, mTORC1 as well as mTORC2 have the same protective effects in mitochondria damage and apoptosis. In in vivo experiments of ALI mouse, HGF also increased mitochondria structural integrity via the mTOR/STAT3 pathway. CONCLUSION: In all, these reveal that mTOR/STAT3 signaling mediates the HGF suppression effects to oxidative level, mitochondria-dependent apoptosis, and endothelial junction protein in ARDS, contributing to the pulmonary endothelial survival and barrier integrity.


Assuntos
Fator de Crescimento de Hepatócito , Síndrome do Desconforto Respiratório , Animais , Apoptose , Cálcio/metabolismo , Células Endoteliais/metabolismo , Endotélio/metabolismo , Fator de Crescimento de Hepatócito/metabolismo , Lipopolissacarídeos/farmacologia , Mamíferos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Camundongos , Mitocôndrias/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismo
20.
J Inorg Biochem ; 232: 111842, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35472743

RESUMO

Combination of immune- and chemo-therapy has become a new trend in cancer treatment. Food and Drug Administration (FDA)-approved immune-modulatory agent, thalidomide, can modulate the related proteins of upstream signaling pathway of programmed cell death-ligand 1 (PD-L1), including nuclear transcription factor κB (NF-κB), hypoxia inducible factor-1α (HIF-1α), epidermal growth factor receptor (EGFR), and signal transducer and activator of transcription 3 (STAT3), all acting as key antitumor target proteins. In this work, we conjugated thalidomide with oxidized cisplatin to construct multi-functional Pt(IV) prodrugs, named thaliplatins 4-6, to investigate the anti-tumor effect of immuno- and chemo-therapy. Among them, thaliplatin 6 exerted remarkable cytotoxicity against the tested cancer cell lines, showing 15-26 and 9-20 times higher IC50 values than those of single cisplatin or the combination of cisplatin + thalidomide, respectively. Moreover, thaliplatin 6 could rapidly accumulated into cells, markedly triggered DNA damage, and induced cell S phase arrest and apoptosis, as well as inhibited cell migration and invasion in breast carcinoma cell line (MCF-7). Fluorescent confocal and western blotting experiments proved that 6 significantly regulated NF-κB, EGFR, HIF-1α and phosphor-signal transducer and activator of transcription 3 (p-STAT3), and simultaneously inhibited PD-L1 expression to interrupt programmed cell death 1 (PD-1)/PD-L1 signaling pathway, suggesting a synergistic action of cisplatin and thalidomide. Most strikingly, in vivo tests indicated that 6 effectively decreased tumor growth with no observable systemic toxicity, being superior to the anticancer efficacy of cisplatin.


Assuntos
Pró-Fármacos , Fator de Transcrição STAT3 , Antígeno B7-H1/metabolismo , Linhagem Celular Tumoral , Cisplatino , Receptores ErbB/metabolismo , Imunomodulação , NF-kappa B/metabolismo , Pró-Fármacos/farmacologia , Fator de Transcrição STAT3/metabolismo , Talidomida/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA