Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 209
Filtrar
1.
BMC Med Imaging ; 24(1): 270, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39379844

RESUMO

BACKGROUND: Most patients with osteoporosis experience vertebral compression fracture (VCF), which significantly reduces their quality of life. These patients are at a high risk of secondary VCF regardless of treatment. Thus, accurate diagnosis of VCF is important for treating and preventing new fractures. We aimed to investigate the diagnostic and predictive value of quantitative bone imaging techniques for fresh VCF. METHODS: From November 2021 to March 2023, 34 patients with VCF were enrolled in this study, all of whom underwent routine 99mTc-MDP whole-body bone planar scan and local SPECT/CT imaging. The maximum standard uptake value (SUVmax) of 57 fresh VCF, 57 normal adjacent vertebrae, and 19 old VCF were measured. Based on the site of the fracture, fresh VCFs were regrouped into the intervertebral-type group and the margin-type group. Meanwhile, 52 patients who had no bone metastasis or VCFs in their bone scan were assigned to the control group. The SUVmax of 110 normal vertebral bodies and 10 old VCFs in the control group were measured. RESULTS: The median SUVmax of fresh VCF was 19.80, which was significantly higher than the SUVmax of other groups. The receiver operator characteristic (ROC) curve showed that the cut-off value of SUVmax was 9.925 for diagnosing fresh VCF. The SUVmax in the intervertebral-type group was significantly higher than that in the margin-type group (P = 0.04). The SUVmax of normal vertebrae was higher among patients than among the control group (P<0.01), but the CT HU value showed no significant difference. CONCLUSION: The quantitative technique of bone SPECT/CT has a significant value in diagnosing fresh VCF. It can also determine the severity of fractures. In addition, whether the SUVs of the vertebrae adjacent to the fractured vertebra can predict re-fracture deserves further studies.


Assuntos
Fraturas por Compressão , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único , Fraturas da Coluna Vertebral , Humanos , Fraturas por Compressão/diagnóstico por imagem , Fraturas da Coluna Vertebral/diagnóstico por imagem , Feminino , Masculino , Estudos Retrospectivos , Idoso , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único/métodos , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais , Medronato de Tecnécio Tc 99m/análogos & derivados , Compostos Radiofarmacêuticos , Fraturas por Osteoporose/diagnóstico por imagem
2.
Nucleic Acids Res ; 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39380496

RESUMO

The majority of human cancers harbor molecular evidence of intratumoral microbiota. Microbiota-derived epitopes as molecular mimics of tumor antigens can bind human leukocyte antigen (HLA), thereby modulating host immunity. However, many questions remain regarding the mechanisms underlying the interactions between microbiota and the host's immune system in cancer. Here, MicroEpitope (http://bio-bigdata.hrbmu.edu.cn/MicroEpitope) was developed to provide and analyze the atlas of microbiota-derived epitopes in cancer. We manually collected available mass spectrometry (MS)-based HLA immunopeptidomes of 1190 samples across 24 cancer types. Alignment was performed against an in-house constructed theoretical library of human and intratumor microbiome encoded proteins, including 1298 bacterial and 124 viral species. Currently, MicroEpitope contains 51 497 bacteria and 767 virus-derived epitopes, mainly originating from Bacillus subtilis, Buchnera aphidicola and human cytomegalovirus. The common immunogenic features of epitopes were calculated, as well as their biochemical properties and the clinical relevance of corresponding bacteria and viruses across cancers. MicroEpitope also provides five analytical tools, and multiple visualization methods to facilitate understanding of the roles of microbiota-derived epitopes in cancer immunity. In summary, MicroEpitope represents a vital resource for investigating HLA-presented immunopeptidomes derived from cancer microbiomes, and could further enable rich insight in tumor antigen prioritization strategies.

3.
Adv Sci (Weinh) ; : e2409662, 2024 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-39418091

RESUMO

In pursuit of the highest possible energy density, researchers shift their focus to the ultimate anode material, lithium metal (Li0), and high-capacity cathode materials with high nickel content (Ni > 80%). The combination of these aggressive electrodes presents unprecedented challenges to the electrolyte. Here, we report a hybrid electrolyte consisting of a highly fluorinated ionic liquid and a weakly solvating fluorinated ether, whose hybridization structure enables the reversible operation of a battery chemistry based on Li0 and LiNiO2 (Ni = 100%), delivering nearly theoretical capacity of the latter (up to 249 mAh g-1) for >300 cycles with retention of 78.6% and in absence of unwanted morphological changes in both electrodes. Extensive characterization assisted by molecular dynamic simulation and density functional theory calculations reveals the function of the fluorinated ether to be far more profound than simple dilution and viscosity reduction. Instead, it induces drastic changes in Li+-solvation environment, the consequence of which engenders simultaneous stabilization of electrode/electrolyte and interfacing via formation of respective interfacial chemistries. This study further unlocks fundamental knowledge underneath the prevailing "diluent strategy" that is extensively applied by the electrolyte researchers and opens more design space for the next-generation electrolytes and interphases for these coveted battery chemistries.

4.
Sci Bull (Beijing) ; 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39277519

RESUMO

Protonic ceramic electrochemical cells (PCECs) have demonstrated great promise for applications in the generation of electricity, and the synthesis of chemicals (for example, ethylene). However, enhancing the electrochemical reactions kinetics and stability of PCECs electrodes is one grand challenge. Here, we present a novel electrode material via a co-doping of cesium (Cs) and niobium (Nb) on PrBaCo2O6-δ with the composition of PrBa0.9Cs0.1Co1.9Nb0.1O6-δ (PBCCN), which naturally decomposes into dual phases of a double-perovskite PBCCN (DP-PBCCN, ∼92.3 wt%) and a single-perovskite Ba0.9Cs0.1Co0.95Nb0.05O3-δ (SP-BCCN, ∼7.7 wt%) under typical powder processing conditions. PBCCN exhibits a low area-specific resistance (ASR) value of 0.107 Ω cm2, an outstanding performance of 2.04 W cm-2 in fuel cell (FC) mode, a current density of -2.84 A cm-2 at 1.3 V in electrolysis cell (EC) mode, and promising reversible operational durability of 53 cycles in ∼212 h at +/- 0.5 A cm-2 and 650 °C. Cs doping generates more oxygen vacancies and accelerates the oxygen exchange kinetics, while Nb doping effectively enhances the stability, as illustrated by the analyses of X-ray photoelectron spectroscopy, and electrical conductivity relaxations. When applied as the positrode for electrochemical non-oxidative dehydrogenation of ethane (C2H6) to ethylene (C2H4) on PCECs, it displays an encouraging C2H6 conversion of 12.75% and a C2H4 selectivity of 98.4% at 1.2 V.

5.
Adv Mater ; 36(40): e2408044, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39194395

RESUMO

Protonic ceramic electrochemical cells (PCECs) have received considerable attention as they can directly generate electricity and/or produce chemicals. Development of the electrodes with the trifunctionalities of oxygen reduction/evolution and nonoxidative ethane dehydrogenation is yet challenging. Here these findings are reported in the design of trifunctional electrodes for PCECs with a detailed composition of Mn0.9Cs0.1Co2O4-δ (MCCO) and Co3O4 (CO) (MCCO-CO, 8:2 mass ratio). At 600 °C, the MCCO-CO electrode exhibits a low area-specific resistance of 0.382 Ω cm2 and reasonable stability for ≈105 h with no obvious degradation. The single cell with the MCCO-CO electrode shows an encouraging peak power density of 1.73 W cm-2 in the fuel cell (FC) mode and a current density of -3.93 A cm-2 at 1.3 V in the electrolysis cell (EC) mode at 700 °C. Moreover, the MCCO-CO cell displays promising operational stability in FC mode (223 h), EC mode (209 h), and reversible cycling stability (52 cycles, 208 h) at 650 °C. The MCCO-CO single cell shows an encouraging ethane conversion to ethylene (with a conversion of 40.3% and selectivity of 94%) and excellent H2 production rates of 4.65 mL min-1 cm-2 at 1.5 V and 700 °C, respectively, with reasonable Faradaic efficiencies.

6.
Adv Sci (Weinh) ; 11(38): e2405975, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39099416

RESUMO

Lactate plays a critical role as an energy substrate, metabolite, and signaling molecule in hepatocellular carcinoma (HCC). Intracellular lactate-derived protein lysine lactylation (Kla) is identified as a contributor to the progression of HCC. Liver cancer stem cells (LCSCs) are believed to be the root cause of phenotypic and functional heterogeneity in HCC. However, the impact of Kla on the biological processes of LCSCs remains poorly understood. Here enhanced glycolytic metabolism, lactate accumulation, and elevated levels of lactylation are observed in LCSCs compared to HCC cells. H3K56la was found to be closely associated with tumourigenesis and stemness of LCSCs. Notably, a comprehensive examination of the lactylome and proteome of LCSCs and HCC cells identified the ALDOA K230/322 lactylation, which plays a critical role in promoting the stemness of LCSCs. Furthermore, this study demonstrated the tight binding between aldolase A (ALDOA) and dead box deconjugate enzyme 17 (DDX17), which is attenuated by ALDOA lactylation, ultimately enhancing the regulatory function of DDX17 in maintaining the stemness of LCSCs. This investigation highlights the significance of Kla in modulating the stemness of LCSCs and its impact on the progression of HCC. Targeting lactylation in LCSCs may offer a promising therapeutic approach for treating HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Células-Tronco Neoplásicas , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/genética , Humanos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/genética , Camundongos , Animais , Linhagem Celular Tumoral , Frutose-Bifosfato Aldolase/metabolismo , Frutose-Bifosfato Aldolase/genética , Modelos Animais de Doenças , Ácido Láctico/metabolismo
7.
Artigo em Inglês | MEDLINE | ID: mdl-39141443

RESUMO

Cancer progression involves the gradual loss of a differentiated phenotype and the acquisition of progenitor and stem-cell-like features, which are potential culprits of immunotherapy resistance. Although the state-of-art predictive computational methods have facilitated the prediction of cancer stemness, currently there is no efficient resource that can meet various usage requirements. Here, we present the Cancer Stemness Online, an integrated resource for efficiently scoring cancer stemness potential at the bulk and single-cell levels. The resource integrates 8 robust predictive algorithms as well as 27 signature gene sets associated with cancer stemness for predicting stemness scores. Downstream analyses were performed from five different aspects, including identifying the signature genes of cancer stemness, exploring the associations with cancer hallmarks, cellular states, the immune response, and communication with immune cells; investigating the contributions to patient survival; and performing a robustness analysis of cancer stemness among different methods. Moreover, the pre-calculated cancer stemness atlas for more than 40 cancer types can be accessed by users. Both the tables and diverse visualizations of the analytical results are available for download. Together, Cancer Stemness Online is a powerful resource for scoring cancer stemness and expanding the downstream functional interpretation, including immune response as well as cancer hallmarks. Cancer Stemness Online is freely accessible at http://bio-bigdata.hrbmu.edu.cn/CancerStemnessOnline.

8.
Eur Heart J ; 45(37): 3871-3885, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-38976370

RESUMO

BACKGROUND AND AIMS: Valve interstitial cells (VICs) undergo a transition to intermediate state cells before ultimately transforming into the osteogenic cell population, which is a pivotal cellular process in calcific aortic valve disease (CAVD). Herein, this study successfully delineated the stages of VIC osteogenic transformation and elucidated a novel key regulatory role of lumican (LUM) in this process. METHODS: Single-cell RNA-sequencing (scRNA-seq) from nine human aortic valves was used to characterize the pathological switch process and identify key regulatory factors. The in vitro, ex vivo, in vivo, and double knockout mice were constructed to further unravel the calcification-promoting effect of LUM. Moreover, the multi-omic approaches were employed to analyse the molecular mechanism of LUM in CAVD. RESULTS: ScRNA-seq successfully delineated the process of VIC pathological transformation and highlighted the significance of LUM as a novel molecule in this process. The pro-calcification role of LUM is confirmed on the in vitro, ex vivo, in vivo level, and ApoE-/-//LUM-/- double knockout mice. The LUM induces osteogenesis in VICs via activation of inflammatory pathways and augmentation of cellular glycolysis, resulting in the accumulation of lactate. Subsequent investigation has unveiled a novel LUM driving histone modification, lactylation, which plays a role in facilitating valve calcification. More importantly, this study has identified two specific sites of histone lactylation, namely, H3K14la and H3K9la, which have been found to facilitate the process of calcification. The confirmation of these modification sites' association with the expression of calcific genes Runx2 and BMP2 has been achieved through ChIP-PCR analysis. CONCLUSIONS: The study presents novel findings, being the first to establish the involvement of lumican in mediating H3 histone lactylation, thus facilitating the development of aortic valve calcification. Consequently, lumican would be a promising therapeutic target for intervention in the treatment of CAVD.


Assuntos
Estenose da Valva Aórtica , Valva Aórtica , Calcinose , Histonas , Lumicana , Osteogênese , Animais , Calcinose/genética , Calcinose/patologia , Calcinose/metabolismo , Valva Aórtica/patologia , Valva Aórtica/metabolismo , Lumicana/metabolismo , Lumicana/genética , Humanos , Estenose da Valva Aórtica/genética , Estenose da Valva Aórtica/metabolismo , Estenose da Valva Aórtica/patologia , Camundongos , Osteogênese/genética , Osteogênese/fisiologia , Histonas/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Camundongos Knockout , Masculino , Proteína Morfogenética Óssea 2/metabolismo , Proteína Morfogenética Óssea 2/genética
9.
Cell Rep ; 43(7): 114424, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38959111

RESUMO

Metabolic reprogramming dictates tumor molecular attributes and therapeutic potentials. However, the comprehensive metabolic characteristics in gastric cancer (GC) remain obscure. Here, metabolic signature-based clustering analysis identifies three subtypes with distinct molecular and clinical features: MSC1 showed better prognosis and upregulation of the tricarboxylic acid (TCA) cycle and lipid metabolism, combined with frequent TP53 and RHOA mutation; MSC2 had moderate prognosis and elevated nucleotide and amino acid metabolism, enriched by intestinal histology and mismatch repair deficient (dMMR); and MSC3 exhibited poor prognosis and enhanced glycan and energy metabolism, accompanied by diffuse histology and frequent CDH1 mutation. The Shandong Provincial Hospital (SDPH) in-house dataset with matched transcriptomic, metabolomic, and spatial-metabolomic analysis also validated these findings. Further, we constructed the metabolic subtype-related prognosis gene (MSPG) scoring model to quantify the activity of individual tumors and found a positive correlation with cuproptosis signaling. In conclusion, comprehensive recognition of the metabolite signature can enhance the understanding of diversity and heterogeneity in GC.


Assuntos
Neoplasias Gástricas , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Humanos , Prognóstico , Regulação Neoplásica da Expressão Gênica , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Ciclo do Ácido Cítrico , Mutação/genética , Masculino , Feminino , Proteína rhoA de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/genética , Metaboloma , Pessoa de Meia-Idade , Metabolismo dos Lipídeos/genética , Transcriptoma/genética , Relevância Clínica
10.
J Med Chem ; 67(13): 10743-10773, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38919032

RESUMO

Beta-1,3-glucuronosyltransferase (B3GAT3), overexpressed in hepatocellular carcinoma (HCC) and negatively correlated to prognosis, is a promising target for cancer therapy. Currently, no studies have reported small molecule inhibitors of B3GAT3. In this study, we designed and synthesized a series of small-molecule inhibitors of B3GAT3 through virtual screening and structure optimization. The lead compound TMLB-C16 exhibited potent B3GAT3 inhibitory activity (KD = 3.962 µM) by effectively suppressing proliferation and migration, and inducing cell cycle arrest and apoptosis in MHCC-97H (IC50= 6.53 ± 0.18 µM) and HCCLM3 (IC50= 6.22 ± 0.23 µM) cells. Furthermore, compound TMLB-C16 demonstrated favorable pharmacokinetic properties with a relatively high bioavailability of 68.37%. It significantly inhibited tumor growth in both MHCC-97H and HCCLM3 xenograft tumor models without causing obvious toxicity. These results indicate that compound TMLB-C16 is an effective small molecule inhibitor of B3GAT3, providing a basis for the future development of B3GAT3-targeted drugs.


Assuntos
Acetamidas , Antineoplásicos , Carcinoma Hepatocelular , Proliferação de Células , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Animais , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Antineoplásicos/síntese química , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Acetamidas/química , Acetamidas/farmacologia , Acetamidas/síntese química , Acetamidas/uso terapêutico , Camundongos , Relação Estrutura-Atividade , Apoptose/efeitos dos fármacos , Camundongos Nus , Descoberta de Drogas , Camundongos Endogâmicos BALB C , Ensaios Antitumorais Modelo de Xenoenxerto , Simulação de Acoplamento Molecular , Masculino , Movimento Celular/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/uso terapêutico , Inibidores Enzimáticos/síntese química
11.
Am J Hum Genet ; 111(7): 1420-1430, 2024 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-38838674

RESUMO

Numerous variants, including both single-nucleotide variants (SNVs) in DNA and A>G RNA edits in mRNA as essential drivers of cellular proliferation and tumorigenesis, are commonly associated with cancer progression and growth. Thus, mining and summarizing single-cell variants will provide a refined and higher-resolution view of cancer and further contribute to precision medicine. Here, we established a database, CanCellVar, which aims to provide and visualize the comprehensive atlas of single-cell variants in tumor microenvironment. The current CanCellVar identified ∼3 million variants (∼1.4 million SNVs and ∼1.4 million A>G RNA edits) involved in 2,754,531 cells of 5 major cell types across 37 cancer types. CanCellVar provides the basic annotation information as well as cellular and molecular function properties of variants. In addition, the clinical relevance of variants can be obtained including tumor grade, treatment, metastasis, and others. Several flexible tools were also developed to aid retrieval and to analyze cell-cell interactions, gene expression, cell-development trajectories, regulation, and molecular structure affected by variants. Collectively, CanCellVar will serve as a valuable resource for investigating the functions and characteristics of single-cell variations and their roles in human tumor evolution and treatment.


Assuntos
Bases de Dados Genéticas , Neoplasias , Polimorfismo de Nucleotídeo Único , Análise de Célula Única , Humanos , Neoplasias/genética , Neoplasias/patologia , Microambiente Tumoral/genética
12.
Imeta ; 3(3): e190, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38898987

RESUMO

Recent studies have highlighted the biological significance of cuproptosis in disease occurrence and development. However, it remains unclear whether cuproptosis signaling also has potential impacts on tumor initiation and prognosis of gastric cancer (GC). In this study, 16 cuproptosis-related genes (CRGs) transcriptional profiles were harnessed to perform the regularized latent variable model-based clustering in GC. A cuproptosis signature risk scoring (CSRS) scheme, based on a weighted sum of principle components of the CRGs, was used to evaluate the prognosis and risk of individual tumors of GC. Four distinct cuproptosis signature-based clusters, characterized by differential expression patterns of CRGs, were identified among 1136 GC samples across three independent databases. The four clusters were also associated with different clinical outcomes and tumor immune contexture. Based on the CSRS, GC patients can be divided into CSRS-High and CSRS-Low subtypes. We found that DBT, MTF1, and ATP7A were significantly elevated in the CSRS-High subtype, while SLC31A1, GCSH, LIAS, DLAT, FDX1, DLD, and PDHA1 were increased in the CSRS-Low subtype. Patients with CSRS-Low score were characterized by prolonged survival time. Further analysis indicated that CSRS-Low score also correlated with greater tumor mutation burden (TMB) and higher mutation rates of significantly mutated genes (SMG) in GC. In addition, the CSRS-High subtype harbored more significantly amplified focal regions related to tumorigenesis (3q27.1, 12p12.1, 11q13.3, etc.) than the CSRS-Low tumors. Drug sensitivity analyses revealed the potential compounds for the treatment of gastric cancer with CSRS-High score, which were experimentally validated using GC cells. This study highlights that cuproptosis signature-based subtyping is significantly associated with different clinical features and molecular landscape of GC. Quantitative evaluation of the CSRS of individual tumors will strengthen our understanding of the occurrence and development of cuproptosis and the treatment progress of GC.

13.
Front Oncol ; 14: 1399297, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38873261

RESUMO

Background: Pancreatic ductal adenocarcinoma (PDAC) is frequently diagnosed in advanced stages, necessitating pancreaticoduodenectomy (PD) as a primary therapeutic approach. However, PD surgery can engender intricate complications. Thus, understanding the factors influencing postoperative complications documented in electronic medical records and their impact on survival rates is crucial for improving overall patient outcomes. Methods: A total of 749 patients were divided into two groups: 598 (79.84%) chose the RPD (Robotic pancreaticoduodenectomy) procedure and 151 (20.16%) chose the LPD (Laparoscopic pancreaticoduodenectomy) procedure. We used correlation analysis, survival analysis, and decision tree models to find the similarities and differences about postoperative complications and prognostic survival. Results: Pancreatic cancer, known for its aggressiveness, often requires pancreaticoduodenectomy as an effective treatment. In predictive models, both BMI and surgery duration weigh heavily. Lower BMI correlates with longer survival, while patients with heart disease and diabetes have lower survival rates. Complications like delayed gastric emptying, pancreatic fistula, and infection are closely linked post-surgery, prompting conjectures about their causal mechanisms. Interestingly, we found no significant correlation between nasogastric tube removal timing and delayed gastric emptying, suggesting its prompt removal post-decompression. Conclusion: This study aimed to explore predictive factors for postoperative complications and survival in PD patients. Effective predictive models enable early identification of high-risk individuals, allowing timely interventions. Higher BMI, heart disease, or diabetes significantly reduce survival rates in pancreatic cancer patients post-PD. Additionally, there's no significant correlation between DGE incidence and postoperative extubation time, necessitating further investigation into its interaction with pancreatic fistula and infection.

14.
Nano Lett ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38857313

RESUMO

The quantum yield of reactive oxygen species is of central importance for the development of organic photosensitizers and photodynamic therapy (PDT). A common molecular design approach for optimizing organic photosensitizers involves the incorporation of heavy atoms into their backbones. However, this raises concerns regarding heightened dark cytotoxicity and a shortened triplet-state lifetime. Herein, we demonstrate a heavy-atom-free (HAF) photosensitizer design strategy founded on the singlet fission (SF) mechanism for cancer PDT. Through the "single-atom surgery" approach to deleting oxygen atoms in pyrazino[2,3-g]quinoxaline skeleton photosensitizers, photosensitizers PhPQ and TriPhPQ are produced with Huckel's aromaticity and Baird's aromaticity in the ground state and triplet state, respectively, enabling the generation of two triplet excitons through SF. The SF process endows photosensitizer PhPQ with an ultrahigh triplet-state quantum yield (186%) and an outstanding 1O2 quantum yield (177%). Notably, HAF photosensitizers PhPQ and TriPhPQ enhanced PDT efficacy and potentiated αPD-L1 immune check blockade therapy in vivo, which show their promise for translational oncology treatment.

15.
Food Sci Technol Int ; : 10820132241260453, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38845348

RESUMO

Brewer's spent grain (BSG), one of the main byproducts of brewing, has been widely used in the food industry due to its high nutritional components of dietary fiber, proteins, polysaccharides, and polyphenols. This study investigated the influence of wheat brewer's spent grain (WBSG) on the physicochemical properties of dough and steamed bread-making performance. The incorporation of WBSG in wheat flour significantly increased water absorption, development time, and degree of softening while decreasing the stability time of blending dough. Excessive WBSG up to 20% restricted the dough formation. WBSG contributed to the remarkable increase of pasting viscosities, pasting temperature, and immobilized water proportion in doughs. For all doughs, storage moduli (G') were higher than viscous moduli (G″). WBSG addition resulted in higher moduli values and the formation of highly networked gluten structure, finally leading to the lower specific volume, spread ratio, and elasticity of bread. Lightness (L*) of bread decreased with increasing WBSG while redness (a*) and total color difference (ΔE) augmented. Low WBSG addition (≤5%) could endow steamed bread with the appearance of a chocolate-like color and pleasant malt flavor, which is acceptable for most consumers. Nevertheless, the improvement of nutritional and functional characteristics of steamed bread incorporated with WBSG should be more focused in the future.

16.
Artigo em Inglês | MEDLINE | ID: mdl-38818918

RESUMO

A malignant tumor is a frequent and common disease that severely threatens human health. Many mechanisms, such as cell signaling pathway, anti-apoptosis mechanism, cell stemness, metabolism, and cell phenotype, have been studied to explain the reasons for chemotherapy, radioresistance, and tumor recurrences in antitumor treatment. Cancer stem cells (CSCs) are important tumor cell subclasses that can potentially organize and regulate stem cell properties. Growing evidence suggests that CSCs can initiate tumors and constitute a significant factor in metastasis, recurrence, and treatment resistance. The inability to completely target and remove CSCs is a considerable obstacle in tumor treatment. Therefore, drugs and therapeutic strategies that can effectively intervene with CSCs are essential for the treatment of different tumor types. However, the current strategies and efficacy of targeted elimination of CSCs are very limited. Oxidative stress has been recognized to play a crucial role in cancer pathophysiology. Moreover, reactive oxygen species (ROS) production and imbalance of the built-in cellular antioxidant defense system are hallmarks of tumor and cancer etiology. The current paper will focus on the regulation and mechanism behind oxidative stress in tumors and cancer stem cells and its tumor therapy applications. Additionally, the article discusses the role of CSCs in causing tumor treatment resistance and recurrence based on a redox perspective. The study also emphasizes that targeted modulation of oxidative stress in CSCs has great potential in tumor therapy, providing novel prospects for tumor therapy.

17.
Int J Biol Macromol ; 270(Pt 2): 132459, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38763254

RESUMO

Nuclear receptors (NRs) are ligand-regulated transcription factors that are important for the normal growth and development of insects. However, systematic function analysis of NRs in the molting process of Lasioderma serricorne has not been reported. In this study, we identified and characterized 16 NR genes from L. serricorne. Spatiotemporal expression analysis revealed that six NRs were mainly expressed in 3-d-old 4th-instar larvae; five NRs were primarily expressed in 5-d-old adults and four NRs were predominately expressed in prepupae. All the NRs were highly expressed in epidermis, fat body and foregut. RNA interference (RNAi) experiments revealed that knockdown of 15 NRs disrupted the larva-pupa-adult transitions and caused 64.44-100 % mortality. Hematoxylin-eosin staining showed that depletion of 12 NRs prevented the formation of new cuticle and disrupted apolysis of old cuticle. Silencing of LsHR96, LsSVP and LsE78 led to newly formed cuticle that was thinner than the controls. The 20E titer and chitin content significantly decreased by 17.67-95.12 % after 15 NR dsRNA injection and the gene expression levels of 20E synthesis genes and chitin metabolism genes were significantly reduced. These results demonstrated that 15 NR genes are essential for normal molting and metamorphosis of L. serricorne by regulating 20E synthesis and chitin metabolism.


Assuntos
Besouros , Regulação da Expressão Gênica no Desenvolvimento , Metamorfose Biológica , Muda , Receptores Citoplasmáticos e Nucleares , Animais , Muda/genética , Metamorfose Biológica/genética , Besouros/genética , Besouros/crescimento & desenvolvimento , Besouros/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Larva/genética , Larva/crescimento & desenvolvimento , Quitina/metabolismo , Interferência de RNA , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Filogenia , Ecdisterona/metabolismo
18.
Pest Manag Sci ; 80(9): 4543-4552, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38738474

RESUMO

BACKGROUND: MicroRNA (miRNA) pathway genes have been widely reported to participate in several physiological events in insect lifecycles. The cigarette beetle Lasioderma serricorne is an economically important storage pest worldwide. However, the functions of miRNA pathway genes in L. serricorne remain to be clarified. Herein, we investigated the function of molting and reproduction of the miRNA pathway in L. serricorne. RESULTS: LsDicer-1, LsArgonaute-1, LsLoquacious and LsExportin-5 were universally expressed in adults, whereas LsPasha and LsDrosha were mainly expressed in the pupae. The genes presented different patterns in various tissues. Silencing of LsDicer-1, LsArgonaute-1, LsDrosha and LsExportin-5 resulted in a high proportion of wing deformities and molting defects. Silencing of LsDicer-1, LsArgonaute-1, LsPasha and LsLoquacious affected the development of the ovary and the maturation of oocytes, resulting in a significant decrease in fecundity. Further investigation revealed that the decreases in LsDicer-1 and LsArgonaute-1 expression destroyed follicular epithelia and delayed vitellogenesis and oocyte development. In addition, the expression levels of several miRNAs (let-7, let-7-5p, miR-8-3p, miR-8-5p, miR-9c-5p, miR-71, miR-252-5p, miR-277-3p, miR-263b and Novel-miR-50) were decreased significantly after knockdown of these miRNA pathway core genes, indicating that they played important roles in regulating miRNA-mediated gene expression. CONCLUSION: The results indicate that miRNA pathway genes play important roles in the molting, ovarian development and female fecundity of L. serricorne, and thus are potentially suitable target genes for developing an RNAi strategy against a major pest of stored products. © 2024 Society of Chemical Industry.


Assuntos
Besouros , MicroRNAs , Muda , Reprodução , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Muda/genética , Besouros/genética , Besouros/fisiologia , Besouros/crescimento & desenvolvimento , Reprodução/genética , Feminino , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Genes de Insetos , Masculino
19.
World J Gastrointest Surg ; 16(4): 1055-1065, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38690047

RESUMO

BACKGROUND: Colon cancer is one of the most common malignant tumors of the digestive system. Liver metastasis after colon cancer surgery is the primary cause of death in patients with colon cancer. AIM: To construct a novel nomogram model including various factors to predict liver metastasis after colon cancer surgery. METHODS: We retrospectively analyzed 242 patients with colon cancer who were admitted and underwent radical resection for colon cancer in Zhejiang Provincial People's Hospital from December 2019 to December 2022. Patients were divided into liver metastasis and non-liver metastasis groups. Sex, age, and other general and clinicopathological data (preoperative blood routine and biochemical test indexes) were compared. The risk factors for liver metastasis were analyzed using single-factor and multifactorial logistic regression. A predictive model was then constructed and evaluated for efficacy. RESULTS: Systemic inflammatory index (SII), C-reactive protein/albumin ratio (CAR), red blood cell distribution width (RDW), alanine aminotransferase, preoperative carcinoembryonic antigen level, and lymphatic metastasis were different between groups (P < 0.05). SII, CAR, and RDW were risk factors for liver metastasis after colon cancer surgery (P < 0.05). The area under the curve was 0.93 for the column-line diagram prediction model constructed based on these risk factors to distinguish whether liver metastasis occurred postoperatively. The actual curve of the column-line diagram predicting the risk of postoperative liver metastasis was close to the ideal curve, with good agreement. The prediction model curves in the decision curve analysis showed higher net benefits for a larger threshold range than those in extreme cases, indicating that the model is safer. CONCLUSION: Liver metastases after colorectal cancer surgery could be well predicted by a nomogram based on the SII, CAR, and RDW.

20.
Commun Biol ; 7(1): 325, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486093

RESUMO

Regulating metabolic disorders has become a promising focus in treating intervertebral disc degeneration (IDD). A few drugs regulating metabolism, such as atorvastatin, metformin, and melatonin, show positive effects in treating IDD. Glutamine participates in multiple metabolic processes, including glutaminolysis and glycolysis; however, its impact on IDD is unclear. The current study reveals that glutamine levels are decreased in severely degenerated human nucleus pulposus (NP) tissues and aging Sprague-Dawley (SD) rat nucleus pulposus tissues, while lactate accumulation and lactylation are increased. Supplementary glutamine suppresses glycolysis and reduces lactate production, which downregulates adenosine-5'-monophosphate-activated protein kinase α (AMPKα) lactylation and upregulates AMPKα phosphorylation. Moreover, glutamine treatment reduces NP cell senescence and enhances autophagy and matrix synthesis via inhibition of glycolysis and AMPK lactylation, and glycolysis inhibition suppresses lactylation. Our results indicate that glutamine could prevent IDD by glycolysis inhibition-decreased AMPKα lactylation, which promotes autophagy and suppresses NP cell senescence.


Assuntos
Degeneração do Disco Intervertebral , Ratos , Animais , Humanos , Degeneração do Disco Intervertebral/tratamento farmacológico , Degeneração do Disco Intervertebral/metabolismo , Ratos Sprague-Dawley , Glutamina , Proteínas Quinases Ativadas por AMP , Autofagia , Lactatos/farmacologia , Lactatos/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA