Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
Mol Cancer Ther ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38684230

RESUMO

Advances in linker payload technology and target selection have been at the forefront of recent improvements in antibody-drug conjugate (ADC) design, leading to several approvals over the last decade. In contrast, the potential of novel ADC technologies to enhance payload delivery to tumors is relatively underexplored. We demonstrate that incorporation of pH-dependent binding in the antibody component of a cMET targeting ADC (MYTX-011) can overcome the requirement for high cMET expression on tumors, an innovation that has the potential to benefit a broader population of patients with lower cMET levels. MYTX-011 drove four-fold higher net internalization than a non-pH engineered parent ADC in non-small cell lung cancer (NSCLC) cells and showed increased cytotoxicity against a panel of cell lines from various solid tumors. A single dose of MYTX-011 showed at least three-fold higher efficacy than a benchmark ADC in mouse xenograft models of NSCLC ranging from low to high cMET expression. Moreover, MYTX-011 showed improved pharmacokinetics over parent and benchmark ADCs. In a repeat dose toxicology study, MYTX-011 exhibited a toxicity profile similar to other MMAE-based ADCs. These results highlight the potential of MYTX-011 for treating a broader range of NSCLC patients with cMET expression than other cMET targeting ADCs. A first in human study is ongoing to determine the safety, tolerability, and preliminary efficacy of MYTX-011 in patients with NSCLC (NCT05652868).

2.
Materials (Basel) ; 17(6)2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38541435

RESUMO

In this study, we investigated the preparation and characterization of flexible conductive fiber membranes (BC/PPy) using different metal salt oxidants on bacterial cellulose (BC) and pyrrole (Py) in the in situ polymerization and co-blended methods, respectively. The effects of these oxidants, namely, ferric chloride hexahydrate (FeCl3·6H2O) and silver nitrate (AgNO3), on the structural characterization, conductivity, resistance value and thermal stability of the resulting materials were assessed by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). A comparative study revealed that the BC/PPy conductive fiber membrane prepared using FeCl3·6H2O as the oxidant had a resistance value of 12 Ω, while the BC/PPy conductive fiber membrane prepared using AgNO3 as the oxidant had an electrical resistance value of 130 Ω. The conductivity of the same molar ratio of BC/PPy prepared using FeCl3·6H2O as an oxidant was 10 times higher than that of the BC/PPy prepared using AgNO3 as an oxidant. Meanwhile, the resistance values of the conductive fiber membranes prepared from BC and PPy by the co-blended method were much higher than the BC/PPy prepared by in situ polymerization. SEM and XPS analyses revealed that when FeCl3·6H2O was used as the oxidant, the Fe-doped polypyrrole conductive particles could form uniform and dense conductive layers on the BC nanofiber surfaces. These two metal salt oxidants demonstrated differences in the binding sites between PPy and BC.

3.
Inflamm Res ; 73(4): 597-617, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38353723

RESUMO

OBJECTIVE: PANoptosis, a new form of regulated cell death, concomitantly manifests hallmarks for pyroptosis, apoptosis, and necroptosis. It has been usually observed in macrophages, a class of widely distributed innate immune cells in various tissues, upon pathogenic infections. The second-generation curaxin, CBL0137, can trigger necroptosis and apoptosis in cancer-associated fibroblasts. This study aimed to explore whether CBL0137 induces PANoptosis in macrophages in vitro and in mouse tissues in vivo. METHODS: Bone marrow-derived macrophages and J774A.1 cells were treated with CBL0137 or its combination with LPS for indicated time periods. Cell death was assayed by propidium iodide staining and immunoblotting. Immunofluorescence microscopy was used to detect cellular protein distribution. Mice were administered with CBL0137 plus LPS and their serum and tissues were collected for biochemical and histopathological analyses, respectively. RESULTS: The results showed that CBL0137 alone or in combination with LPS induced time- and dose-dependent cell death in macrophages, which was inhibited by a combination of multiple forms of cell death inhibitors but not each alone. This cell death was independent of NLRP3 expression. CBL0137 or CBL0137 + LPS-induced cell death was characterized by simultaneously increased hallmarks for pyroptosis, apoptosis and necroptosis, indicating that this is PANoptosis. Induction of PANoptosis was associated with Z-DNA formation in the nucleus and likely assembly of PANoptosome. ZBP1 was critical in mediating CBL0137 + LPS-induced cell death likely by sensing Z-DNA. Moreover, intraperitoneal administration of CBL0137 plus LPS induced systemic inflammatory responses and caused multi-organ (including the liver, kidney and lung) injury in mice due to induction of PANoptosis in these organs. CONCLUSIONS: CBL0137 alone or plus inflammatory stimulation induces PANoptosis both in vitro and in vivo, which is associated with systemic inflammatory responses in mice.


Assuntos
Carbazóis , DNA Forma Z , Neoplasias , Camundongos , Animais , Lipopolissacarídeos/farmacologia , Apoptose , Piroptose
4.
Medicine (Baltimore) ; 103(3): e36912, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38241574

RESUMO

Hallux valgus (HV) is often accompanied by metatarsalgia. This study compared the radiological and clinical outcomes of new triplanar chevron osteotomy (TCO) and chevron osteotomy (CO) in the treatment of HV, especially for patients with plantar callosities and metatarsalgia. In this retrospective analysis, 90 patients (45 patients per group) with mild to moderate HV and plantar callosities were treated with TCO and CO from July 2020 to January 2022. In both procedures, the apex was located in the center of the head of the first metatarsal bone, and the CO was oriented towards the fourth MTPJ at a 60° angle. Plantar-oblique chevron osteotomy was defined as chevron osteotomy and a 20° plantar tilt; TCO was defined as plantar-oblique chevron osteotomy-based metatarsal osteotomy with a 10° tilt towards the metatarsal head. Primary outcome measures included preoperative and postoperative hallux valgus angle, 1 to 2 intermetatarsal angle (IMA), distal metatarsal articular angle (DMAA), first metatarsal length (FML), and second metatarsal head height X-ray images; clinical measurements, including visual analogue scale and American Orthopaedic Foot & Ankle Society (AOFAS) scores; changes in callosity grade and area; and changes in the number of people with metatarsalgia. Secondary outcomes included complications, recurrence rates, and cosmetic appearance. The hallux valgus angle, IMA, and DMAA were significantly lower after surgery (P  < .001) in all patients. In the TCO group, the mean FML and second metatarsal head height increased significantly postoperatively (P < .001). The AOFAS and visual analogue scale scores improved postoperatively in both groups (P < .001). All patients experienced satisfactory pain relief and acceptable cosmesis. The plantar callosity areas were smaller postoperatively in both the TCO and CO groups, but the change in the area (Δarea) in the TCO group significantly differed from that in the CO group (P < .001). The number of postoperative patients with metatarsalgia and the plantar callosity grade were both significantly lower in the TCO group than in the CO group after osteotomy (P < .05). TCO prevents dorsal shift of the metatarsal head and preserves and even increases FML, thereby preventing future metatarsalgia in patients. Therefore, compared with CO, TCO has better orthopedic outcomes and is an effective method for treating mild to moderate HV and preventing transfer metatarsalgia.


Assuntos
Calosidades , Doenças do Pé , Hallux Valgus , Ossos do Metatarso , Metatarsalgia , Articulação Metatarsofalângica , Humanos , Hallux Valgus/diagnóstico por imagem , Hallux Valgus/cirurgia , Resultado do Tratamento , Estudos Retrospectivos , Fluormetolona , Metatarsalgia/cirurgia , Osteotomia/métodos , Ossos do Metatarso/cirurgia
5.
Apoptosis ; 28(11-12): 1646-1665, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37702860

RESUMO

Macrophages represent the first lines of innate defense against pathogenic infections and are poised to undergo multiple forms of regulated cell death (RCD) upon infections or toxic stimuli, leading to multiple organ injury. Triptolide, an active compound isolated from Tripterygium wilfordii Hook F., possesses various pharmacological activities including anti-tumor and anti-inflammatory effects, but its applications have been hampered by toxic adverse effects. It remains unknown whether and how triptolide induces different forms of RCD in macrophages. In this study, we showed that triptolide exhibited significant cytotoxicity on cultured macrophages in vitro, which was associated with multiple forms of lytic cell death that could not be fully suppressed by any one specific inhibitor for a single form of RCD. Consistently, triptolide induced the simultaneous activation of pyroptotic, apoptotic and necroptotic hallmarks, which was accompanied by the co-localization of ASC specks respectively with RIPK3 or caspase-8 as well as their interaction with each other, indicating the formation of PANoptosome and thus the induction of PANoptosis. Triptolide-induced PANoptosis was associated with mitochondrial dysfunction and ROS production. PANoptosis was also induced by triptolide in mouse peritoneal macrophages in vivo. Furthermore, triptolide caused kidney and liver injury, which was associated with systemic inflammatory responses and the activation of hallmarks for PANoptosis in vivo. Collectively, our data reveal that triptolide induces PANoptosis in macrophages in vitro and exhibits nephrotoxicity and hepatotoxicity associated with induction of PANoptosis in vivo, suggesting a new avenue to alleviate triptolide's toxicity by harnessing PANoptosis.


Assuntos
Diterpenos , Fenantrenos , Camundongos , Animais , Apoptose , Macrófagos/metabolismo , Diterpenos/efeitos adversos , Diterpenos/metabolismo , Fenantrenos/toxicidade , Fenantrenos/metabolismo , Compostos de Epóxi/toxicidade , Compostos de Epóxi/metabolismo
6.
Front Plant Sci ; 14: 1216782, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37655220

RESUMO

Introduction: Bacterial leaf blight (BLB) caused by Xanthomonas oryzae pv. oryzae (Xoo) is one of the most devastative diseases that threatens rice plants worldwide. Biosynthesized nanoparticle (NP) composite compounds have attracted attention as environmentally safe materials that possess antibacterial activity that could be used in managing plant diseases. Methods: During this study, a nanocomposite of two important elements, nickel and silicon, was biosynthesized using extraction of saffron stigmas (Crocus sativus L.). Characterization of obtained nickel-silicon dioxide (Ni-SiO2) nanocomposite was investigated using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Transmission/Scanning electron microscopy (TEM/SEM), and energy-dispersive spectrum (EDS). Antibacterial activities of the biosynthesized Ni-SiO2 nanocomposite against Xoo were tested by measuring bacterial growth, biofilm formation, and dead Xoo cells. Results and discussions: The bacterial growth (OD600) and biofilm formation (OD570) of Xoo treated with distilled water (control) was found to be 1.21 and 1.11, respectively. Treatment with Ni-SiO2 NPs composite, respectively, reduced the growth and biofilm formation by 89.07% and 80.40% at 200 µg/ml. The impact of obtained Ni-SiO2 nanocomposite at a concentration of 200 µg/ml was assayed on infected rice plants. Treatment of rice seedlings with Ni-SiO2 NPs composite only had a plant height of 64.8 cm while seedlings treated with distilled water reached a height of 45.20 cm. Notably, Xoo-infected seedlings treated with Ni-SiO2 NPs composite had a plant height of 57.10 cm. Furthermore, Ni-SiO2 NPs composite sprayed on inoculated seedlings had a decrease in disease leaf area from 43.83% in non-treated infected seedlings to 13.06% in treated seedlings. The FTIR spectra of biosynthesized Ni-SiO2 nanocomposite using saffron stigma extract showed different bands at 3,406, 1,643, 1,103, 600, and 470 cm-1. No impurities were found in the synthesized composite. Spherically shaped NPs were observed by using TEM and SEM. EDS revealed that Ni-SiO2 nanoparticles (NPs) have 13.26% Ni, 29.62% Si, and 57.11% O. Xoo treated with 200 µg/ml of Ni-SiO2 NPs composite drastically increased the apoptosis of bacterial cells to 99.61% in comparison with 2.23% recorded for the control. Conclusions: The application of Ni-SiO2 NPs significantly improved the vitality of rice plants and reduced the severity of BLB.

7.
Acta Pharmacol Sin ; 44(10): 2019-2036, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37221235

RESUMO

Activation of NLR family pyrin domain-containing 3 (NLRP3) inflammasome plays important role in defending against infections, but its aberrant activation is causally linked to many inflammatory diseases, thus being a therapeutic target for these diseases. Theaflavin, one major ingredient of black tea, exhibits potent anti-inflammatory and anti-oxidative activities. In this study, we investigated the therapeutic effects of theaflavin against NLRP3 inflammasome activation in macrophages in vitro and in animal models of related diseases. We showed that theaflavin (50, 100, 200 µM) dose-dependently inhibited NLRP3 inflammasome activation in LPS-primed macrophages stimulated with ATP, nigericin or monosodium urate crystals (MSU), evidenced by reduced release of caspase-1p10 and mature interleukin-1ß (IL-1ß). Theaflavin treatment also inhibited pyroptosis as shown by decreased generation of N-terminal fragment of gasdermin D (GSDMD-NT) and propidium iodide incorporation. Consistent with these, theaflavin treatment suppressed ASC speck formation and oligomerization in macrophages stimulated with ATP or nigericin, suggesting reduced inflammasome assembly. We revealed that theaflavin-induced inhibition on NLRP3 inflammasome assembly and pyroptosis resulted from ameliorated mitochondrial dysfunction and reduced mitochondrial ROS production, thereby suppressing interaction between NLRP3 and NEK7 downstream of ROS. Moreover, we showed that oral administration of theaflavin significantly attenuated MSU-induced mouse peritonitis and improved the survival of mice with bacterial sepsis. Consistently, theaflavin administration significantly reduced serum levels of inflammatory cytokines including IL-1ß and attenuated liver inflammation and renal injury of mice with sepsis, concomitant with reduced generation of caspase-1p10 and GSDMD-NT in the liver and kidney. Together, we demonstrate that theaflavin suppresses NLRP3 inflammasome activation and pyroptosis by protecting mitochondrial function, thus mitigating acute gouty peritonitis and bacterial sepsis in mice, highlighting a potential application in treating NLRP3 inflammasome-related diseases.


Assuntos
Gota , Peritonite , Sepse , Camundongos , Animais , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Espécies Reativas de Oxigênio , Nigericina/uso terapêutico , Peritonite/tratamento farmacológico , Antioxidantes/uso terapêutico , Sepse/complicações , Sepse/tratamento farmacológico , Caspases , Trifosfato de Adenosina , Interleucina-1beta/metabolismo
8.
Front Surg ; 10: 1143219, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37123545

RESUMO

Bladder cancer is the most common malignant tumor of urinary system worldwide. Approximately 75% of patients with bladder cancer present with non-muscle-invasive bladder cancer (NMIBC), which is effectively managed with transurethral resection of bladder tumor (TURBT). For refractory high risk NMIBC, patients are typically treated by radical cystectomy (RC). TURBT deserves further evaluation. Growing evidence suggests that repeated TURBT-based bladder-sparing approaches may improve oncological outcomes and quality of life in highly selected patients. Novel imaging techniques and biomarkers may aid in patients selection and postoperative surveillance. With growing interest in adding immunotherapy to refractory bladder cancer, TURBT based approaches enable the bladder preservation therapy for high risk NMIBC. Here we summarize the current landscape, biomarkers for surveillance, and future directions for applying TURBT-based bladder preservation therapy.

9.
Int Immunopharmacol ; 117: 109974, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37012867

RESUMO

Necroptosis is a necrotic form of regulated cell death, which is primarily mediated by the receptor-interacting protein kinase 1 (RIPK1), RIPK3, and mixed lineage kinase domain-like (MLKL) pathway in a caspase-independent manner. Necroptosis has been found to occur in virtually all tissues and diseases evaluated, including pancreatitis. Celastrol, a pentacyclic triterpene extracted from the roots of Tripterygium wilfordii (thunder god vine), possesses potent anti-inflammatory and anti-oxidative activities. Yet, it is unclear whether celastrol has any effects on necroptosis and necroptotic-related diseases. Here we showed that celastrol significantly suppressed necroptosis induced by lipopolysaccharide (LPS) plus pan-caspase inhibitor (IDN-6556) or by tumor-necrosis factor-α in combination with LCL-161 (Smac mimetic) and IDN-6556 (TSI). In these in vitro cellular models, celastrol inhibited the phosphorylation of RIPK1, RIPK3, and MLKL and the formation of necrosome during necroptotic induction, suggesting its possible action on upstream signaling of the necroptotic pathway. Consistent with the known role of mitochondrial dysfunction in necroptosis, we found that celastrol significantly rescued TSI-induced loss of mitochondrial membrane potential. TSI-induced intracellular and mitochondrial reactive oxygen species (mtROS), which are involved in the autophosphorylation of RIPK1 and recruitment of RIPK3, were significantly attenuated by celastrol. Moreover, in a mouse model of acute pancreatitis that is associated with necroptosis, celastrol administration significantly reduced the severity of caerulein-induced acute pancreatitis accompanied by decreased phosphorylation of MLKL in pancreatic tissues. Collectively, celastrol can attenuate the activation of RIPK1/RIPK3/MLKL signaling likely by attenuating mtROS production, thereby inhibiting necroptosis and conferring protection against caerulein-induced pancreatitis in mice.


Assuntos
Pancreatite , Camundongos , Animais , Pancreatite/induzido quimicamente , Pancreatite/tratamento farmacológico , Proteínas Quinases/metabolismo , Necroptose , Ceruletídeo , Doença Aguda , Triterpenos Pentacíclicos , Caspases/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Apoptose
10.
Vet Microbiol ; 278: 109660, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36657343

RESUMO

The pro- and inflammatory cytokines fail to effectively inhibit FAdV-4, which has always puzzled us. In the current study, the data determined that the mRNA levels of interferons were significantly enhanced in the livers and LMH cells from 24 h to 72 h post FAdV-4 infection. But the viral load of FAdV-4 was still significantly increased, which meant that FAdV-4 evaded innate immune response. We additionally revealed that the protein levels not mRNA levels of PKR were degraded in host cell at 48 h post FAdV-4 infection. Moreover, the results of over expression and silent expression of PKR revealed that PKR could inhibit FAdV-4 proliferation. These results indicated that FAdV-4 degraded the protein levels of PKR to evade innate immune response. We also found that the protein degradation levels of PKR induced by FAdV-4 were recovery in LHM cells after treatment with proteasome inhibitor MG132, and ubiquitin-specific proteases inhibitor DUB-IN-1. Furthermore, our current data presented that FAdV-4 52/55 K protein directly interacted with PKR and degraded it determined by Co-immunoprecipitation and immunofluorescence. We also determined that 52/55 K protein triggered PKR degradation, and the degradation of PKR could be recovery in LHM cells after treatment with MG132, or DUB-IN-1, respectively. Finally, our data demonstrated that 52/55 K protein was a ubiquitylase that could directly degrade PKR protein in host cells via the ubiquitin-proteasome pathway. Therefore, the current study firstly revealed that FAdV-4 52/55 K protein played the key role in triggering PKR degradation by ubiquitin-proteasome system pathway to escape from innate immunity response.


Assuntos
Infecções por Adenoviridae , Aviadenovirus , Doenças das Aves Domésticas , Animais , Complexo de Endopeptidases do Proteassoma/genética , Infecções por Adenoviridae/veterinária , Ubiquitina/genética , Sorogrupo , Galinhas , Aviadenovirus/genética , Proteínas Virais/genética , Imunidade Inata
11.
Plant Dis ; 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36167512

RESUMO

Crown daisy (Glebionis coronaria L.), also known as chrysanthemum greens, is a popular vegetable in Asia, especially in China. The leaves have been used in folk medicine as a tonic for the liver, blood, intestines and to control anemia and high blood pressure. In November 2020, severe leaf spot and blight was observed with 80% to 95% incidence on crown daisy growing in greenhouses in Fengxian, Shanghai, China (121°22'E, 30°53'N). Irregular rounded spots appeared with a light gray center and water-soaked margins. Round lesions enlarged and merged with age, followed by the development of a necrotic area resulting in the typical "frog-eye" and causing a continuous deterioration of crown daisy. Diseased leaves were washed in running water for 30 min. Small fragments (5 × 5 mm) taken from the margin of lesions were disinfected with 1% NaClO for 3 min, rinsed three times with sterile water, cultured on potato sucrose agar (PSA) augmented with 50 mg streptomycin/liter at 26 oC,and incubated in the dark. Colonies had identical morphology, and TH11290202 was selected and deposited in the plant pathology lab of Shanghai Academy of Agricultural Sciences. Mycelium was initially cottony and white and became appressed to the medium and dark brown with time. Conidia did not form on any media, including PSA, PDA, V8 agar (V8A), maize leaf carbonate agar (MLPCA), pepper leaf carbonate agar (PLPCA), etc. To confirm the identity of the pathogen, genomic DNA was extracted from TH11290202 with the cetyltrimethylammonium ammonium bromide (CTAB) method from the mycelia. Five loci were PCR amplified, namely, the internal transcribed spacer (ITS), translation elongation factor (TEF), calmodulin (cmdA), histone (H3) and actin (ACT), using primers ITS1/ITS4 (White et al. 1990), EF1-728F/EF1-986R (Jaklitsch et al. 2005), CAL-F/CAL-R (O'Donnell et al. 2000), cylh3f/cylh3r (Glass and Donaldson 1995), and ACT-512F/ACT-783R (Carbone and Kohn 1999), respectively. The resulting sequences were deposited in GenBank (MW819910, MW981277, MW981278, ON798723, and MW981279). Analysis of the ITS, TEF, cmdA, H3 and ACT gene sequences of isolate TH11290202 revealed that it was a member of the genus Cercospora, sharing 99.79%, 99.66%, 98.10% 99.74% and 100% sequence similarity with type strain of Cercospora apii CBS 116455. A multilocus phylogenetic analysis was performed using sequences from other closely related taxa obtained from GenBank. Based on morphological and molecular characteristics, TH11290202 was identified as C. apii (Crous and Braun 2003; Groenewald et al. 2006; Milosavljevic et al. 2014). To confirm pathogenicity, Koch's postulates were fulfilled on 30 mature plants, which were maintained in a growth chamber (at 26 °C, relative humidity 90%, 12/12 h light/dark). Surface-sterilized leaves were sprayed with a mycelial suspension. Brown lesions were formed 7 days after inoculation on 15 plants, whereas the noninoculated controls remained asymptomatic on the other 15 plants. To our knowledge, this is the first report of C. apii causing leaf spot and blight on G. coronaria in China and will provide useful information for developing effective control strategies.

13.
Int Immunopharmacol ; 108: 108885, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35623294

RESUMO

Necroptosis is a form of regulated necrosis mainly controlled by receptor-interacting protein kinases 3 (RIPK3) and mixed lineage kinase domain-like protein (MLKL). Necroptosis has important roles in defensing against pathogenic infections, but it is also implicated in various inflammatory diseases including pancreatitis. Baicalin, a flavonoid from Scutellaria baicalensis Georgi, has been shown to possess anti-inflammatory and anti-pyroptosis properties, yet it is unclear whether baicalin can inhibit necroptosis and confer protection against necroptosis-related diseases. Here we reported that baicalin significantly inhibited necroptosis in macrophages induced by lipopolysaccharide plus pan-caspase inhibitor (IDN-6556), or by tumor-necrosis factor-α in combination with LCL-161 (Smac mimetic) and IDN-6556 (TSI). Mechanistically, baicalin did not inhibit the phosphorylation of RIPK1, RIPK3 and MLKL, nor membrane translocation of p-MLKL, during necroptotic induction, but instead inhibited p-MLKL oligomerization that is required for executing necroptosis. As intracellular reactive oxygen species (ROS) has been reported to be involved in p-MLKL oligomerization, we assessed the effects of N-acetyl-L-cysteine (NAC), an ROS scavenger, on necroptosis and found that NAC significantly attenuated TSI-induced necroptosis and intracellular ROS production concomitantly with reduced levels of oligomerized p-MLKL, mirroring the effect of baicalin. Indeed, inhibitory effect of baicalin was associated with reduced TSI-induced superoxide (indicating mitochondrial ROS) production and increased mitochondrial membrane potential within cells during necroptosis. Besides, oral administration of baicalin significantly reduced the severity of caerulein-induced acute pancreatitis in mice, an animal model of necroptosis-related disease. Collectively, baicalin can inhibit necroptosis through attenuating p-MLKL oligomerization and confers protection against caerulein-induced pancreatitis in mice.


Assuntos
Necroptose , Pancreatite , Doença Aguda , Animais , Apoptose , Ceruletídeo/farmacologia , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Camundongos , Necrose/tratamento farmacológico , Pancreatite/induzido quimicamente , Pancreatite/tratamento farmacológico , Proteínas Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
14.
BMC Vet Res ; 18(1): 189, 2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35590365

RESUMO

BACKGROUND: Fowl Adenovirus serotype 4 (FAdV-4) infection causes severe inflammatory response leading to hepatitis-hydropericardium syndrome (HHS) in poultry. As an essential functional amino acid of poultry, arginine plays a critical role in anti-inflammatory and anti-oxidative stress. RESULTS: In this study, the differential expression genes (DEGs) were screened by transcriptomic techniques, and the DEGs in gene networks of inflammatory response-induced by FAdV-4 in broiler's liver were analyzed by Kyoto encyclopedia of genes and genomes (KEGG) enrichment. The results showed that the cytokines pathway and JAK/STAT pathway were significantly enriched, in which the DEGs levels of IL-6, IL-1ß, IFN-α, JAK and STAT were significantly up-regulated after FAdV-4 infection. It was further verified with real-time fluorescence quantitative polymerase chain reaction (Real-time qPCR) and Western blotting (WB) in vitro and in vivo. The findings demonstrated that FAdV-4 induced inflammatory response and activated JAK2/STAT3 pathway. Furthermore, we investigated whether arginine could alleviate the liver inflammation induced by FAdV-4. After treatment with 1.92% arginine level diet to broilers or 300 µg/mL arginine culture medium to LMH cell line with FAdV-4 infection at the same time, we found that the mRNA levels of IL-6, IL-1ß, IFN-α and the protein levels of p-JAK2, p-STAT3 were down-regulated, compared with FAdV-4 infection group. Furthermore, we confirmed that the inflammation induced by FAdV-4 was ameliorated by pre-treatment with JAK inhibitor AG490 in LMH cells, and it was further alleviated in LMH cells treatment with AG490 and ARG. CONCLUSIONS: These above results provide new insight that arginine protects hepatocytes against inflammation induced by FAdV-4 through JAK2/STAT3 signaling pathway.


Assuntos
Infecções por Adenoviridae , Doenças das Aves Domésticas , Adenoviridae/genética , Infecções por Adenoviridae/veterinária , Animais , Arginina/farmacologia , Galinhas , Inflamação/veterinária , Interleucina-6/genética , Janus Quinases/genética , Aves Domésticas , Doenças das Aves Domésticas/induzido quimicamente , Fatores de Transcrição STAT/genética , Sorogrupo , Transdução de Sinais
15.
Plant Dis ; 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35612579

RESUMO

Conophytum luiseae is native to the Namaqualand region of Cape, South Africa. It is a lovely plant with many short succulent spines on ingot-shaped fleshy leaf surfaces, and a high-value ornamental plant in China. In August to October 2021, a serious soft rot disease on Conophytum luiseae plants was observed in four greenhouses at a horticultural farm in Songjiang District, Shanghai, China. 70% of Conophytum luiseae plants on this farm had severe rot symptoms. Initially, wilting and soft rot symptoms appeared on fleshy leaves, then progressed into browning and withering symptoms of all fleshy leaves. To isolate and identify the causal agent, small pieces of lesion tissues were sterilized by 75% ethanol for 30 s, and rinsed three times with sterile water. Later, the tissues were crushed in sterile 2.0 mL centrifuge tube with 100 µl of sterile water. The suspension was serially diluted and spread on Luria-Bertani agar (LB) medium. After incubation at 28°C for 48 h, the bacterial colonies were tiny and streaked on LB plate for purification. After purification, five independent representative colonies were used for further confirmation. Genomic DNA from the bacterial isolate was extracted and used as the template to amplify 16s rDNA with primers 27F/1492R (Ying et al. 2012) and the housekeeping genes, dnaX with primers dnaXF/ dnaXR (Slawiak et al. 2009), and leuS with primers leuSF/ leuSR (Portier et al. 2019), respectively, by a polymerase chain reaction (PCR). The 16S rRNA sequences of one bacterial isolate was deposited in GenBank (GenBank accession OM333246) and showed a 99% similarity to that of Pectobacterium brasiliense (syn. Pectobacterium carotovorum subsp. brasiliense, Pcb) strains HG1501090309 (KU997683), BC1(CP009769), KC08 (KY021029). The dnaX (OM320998) and leuS (OM321306) sequences showed high similarity (> 99%) to P. brasiliense sequences. To further validate this identification, Pcb-specific primers BR1f/L1r was used for PCR, and it produced a predicted amplicon of 322 bp expected for P. brasiliense (Duarte et al. 2004). All five isolates could be detected by BR1f/L1r primer. To fulfill Koch's postulates, five healthy Conophytum luiseae were inoculated by spraying bacterial inoculum (108 CFU/ml), meanwhile five additional healthy Conophytum luiseae were implemented with sterilized distilled water as a negative control. The plants were then kept at 70% humidity and 25ºC. Seven days after inoculation, the inoculated plants showed serious soft rot, while the control samples remained healthy. Bacteria were re-isolated from rot of inoculated tissues, and the isolates were identified as the original pathogen by the 16S rRNA gene sequences. P. Brasiliense has been reported to cause soft rot on diverse plant hosts, like sweet potato, radish, tobacco (Liu et al. 2019; Voronina et al., 2019; Wang et al., 2017). Best to our knowledge, this is the first report that P. Brasiliense causes soft rot on Conophytum luiseae in China.

16.
Vet Microbiol ; 266: 109351, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35121306

RESUMO

Fiber-1 protein (F1) is the structural protein of Fowl Adenovirus serotype 4 (FAdV-4), which could recondite the receptors of host cytomembrane. In this study, we firstly determined that F1 protein located in nucleus of LMH cells after infection with FAdV-4. We additionally revealed that F1 protein had a classic NLS, and the NLS was required for F1 nucleus entry, which was intently associated to the 26th Pro in NLS. The time rule result indicated that some F1 proteins firstly positioned in the nucleus 6 h posttranfection, and it entirely located in the nucleus 12 h posttranfection, then it ordinarily placed in cytoplasm 18 h posttranfection by means of microscopic fluorescence observation and Western Blotting. Then after transfection with pCI-neo-flag-F1 or infection with FAdV-4, the importin alpha 1 was once investigated whether or not it was required for F1 protein nucleus entry through immunofluorescence and/or Co-IP, results demonstrated that the F1 protein and importin alpha 1 co-located in the nucleus 6 h and 12 h posttranfection. The tiers of F1 protein vicinity in nucleus have been additionally investigated after knockdown expression or overexpression of importin alpha 1, and the results further revealed that importin alpha 1 used to be required for F1 protein nucleus entry. Finally, the function of F1 protein nucleus entry was investigated by qPCR, RT-PCR and Western Blotting, and the results revealed that F1 protein nucleus location was conducive to the proliferation of FAdV-4. In summary, we firstly reveal that the F1 protein of FAdV-4 locates in nucleus infected with FAdV-4, and confirm that importin alpha 1 binds to the NLS of F1 protein to nucleus localization, which promotes the proliferation of FAdV-4.


Assuntos
Infecções por Adenoviridae , Doenças das Aves Domésticas , Adenoviridae , Infecções por Adenoviridae/veterinária , Animais , Núcleo Celular , Galinhas , Sorogrupo , alfa Carioferinas/genética
17.
Acta Biochim Biophys Sin (Shanghai) ; 54(1): 64-76, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35130622

RESUMO

Macrophages are critical sentinel cells armed with multiple regulated necrosis pathways, including pyroptosis, apoptosis followed by secondary necrosis, and necroptosis, and are poised to undergo distinct form(s) of necrosis for tackling dangers of pathogenic infection or toxic exposure. The natural BH3-mimetic gossypol is a toxic phytochemical that can induce apoptosis and/or pyroptotic-like cell death, but what exact forms of regulated necrosis are induced remains largely unknown. Here we demonstrated that gossypol induces pyroptotic-like cell death in both unprimed and lipopolysaccharide-primed mouse bone marrow-derived macrophages (BMDMs), as evidenced by membrane swelling and ballooning accompanied by propidium iodide incorporation and lactic acid dehydrogenase release. Notably, gossypol simultaneously induces the activation of both pyroptotic and apoptotic (followed by secondary necrosis) pathways but only weakly activates the necroptosis pathway. Unexpectedly, gossypol-induced necrosis is independent of nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3) inflammasome, as neither inhibitor for the NLRP3 pathway nor NLRP3 deficiency protects the macrophages from the necrosis. Furthermore, necrotic inhibitors or even pan-caspase inhibitor alone does not or only partly inhibit such necrosis. Instead, a combination of inhibitors composed of pan-caspase inhibitor IDN-6556, RIPK3 inhibitor GSK'872 and NADPH oxidase inhibitor GKT137831 not only markedly inhibits the necrosis, with all apoptotic and pyroptotic pathways being blocked, but also attenuates gossypol-induced peritonitis in mice. Lastly, the activation of the NLRP3 pathway and apoptotic caspase-3 appears to be independent of each other. Collectively, gossypol simultaneously induces the activation of multiple subroutines of regulated necrosis in macrophages depending on both apoptotic and inflammatory caspases.


Assuntos
Gossipol , Animais , Apoptose , Caspase 1/metabolismo , Gossipol/metabolismo , Gossipol/farmacologia , Inflamassomos/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Necrose/induzido quimicamente , Necrose/metabolismo
18.
Chin Med J (Engl) ; 134(21): 2597-2602, 2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34748525

RESUMO

BACKGROUND: Computed tomography (CT) and magnetic resonance imaging (MRI) data can be fused to identify the tumor boundaries. This enables surgeons to set close but tumor-free surgical margins and excise the tumor more precisely. This study aimed to report our experience in performing computer navigation-aided joint-preserving resection and custom-made endoprosthesis reconstruction to treat bone sarcoma in the diaphysis and metaphysis of the femur and tibia. METHODS: Between September 2008 and December 2015, 24 patients with bone sarcomas underwent surgical resection and joint-sparing reconstruction under image-guided computer navigation. The cohort comprised 16 males and eight females with a median age of 19.5 years (range: 12-48 years). The tumor location was the femoral diaphysis in three patients, distal femur in 19, and proximal tibia in two. The tumors were osteosarcoma (n = 15), chondrosarcoma (n = 3), Ewing sarcoma (n = 3), and other sarcomas (n = 3). We created a pre-operative plan for each patient using navigation system software and performed navigation-aided resection before reconstructing the defect with a custom-made prosthesis with extracortical plate fixation. RESULTS: Pathological examination verified that all resected specimens had appropriate surgical margins. The median distance from the tumor resection margin to the joint was 30 mm (range: 13-80 mm). The median follow-up duration was 62.5 months (range: 24-134 months). Of the 24 patients, 21 remain disease free, one is alive with disease, and two died of the disease. One patient developed local recurrence. Complications requiring additional surgical procedures occurred in six patients, including one with wound hematoma, one with delayed wound healing, one with superficial infection, one with deep infection, and two with mechanical failure of the prosthesis. The mean Musculoskeletal Tumor Society score at the final follow-up was 91% (range: 80%-100%). The 5- and 10-year implant survival rates were 91.3% and 79.9%, respectively. CONCLUSIONS: Computer navigation-aided joint-preserving resection and custom-made endoprosthesis reconstruction with extracortical plate fixation is a reliable surgical treatment option for bone sarcoma in the diaphysis and metaphysis of the femur and tibia.


Assuntos
Osteossarcoma , Sarcoma , Adolescente , Adulto , Criança , Computadores , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia , Próteses e Implantes , Adulto Jovem
19.
Front Immunol ; 12: 632606, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33679781

RESUMO

Taraxasterol (TAS) is an active ingredient of Dandelion (Taraxacum mongolicum Hand. -Mazz.), a medicinal plant that has long been used in China for treatment of inflammatory disorders. But the underlying mechanism for its therapeutic effects on inflammatory disorders is not completely clear. Inflammasome activation is a critical step of innate immune response to infection and aseptic inflammation. Among the various types of inflammasome sensors that has been reported, NLR family pyrin domain containing 3 (NLRP3) is implicated in various inflammatory diseases and therefore has been most extensively studied. In this study, we aimed to explore whether TAS could influence NLPR3 inflammasome activation in macrophages. The results showed that TAS dose-dependently suppressed the activation of caspase-1 in lipopolysaccharide (LPS)-primed murine primary macrophages upon nigericin treatment, resulting in reduced mature interleukin-1ß (IL-1ß) release and gasdermin D (GSDMD) cleavage. TAS greatly reduced ASC speck formation upon the stimulation of nigericin or extracellular ATP. Consistent with reduced cleavage of GSDMD, nigericin-induced pyroptosis was alleviated by TAS. Interestingly, TAS time-dependently suppressed the mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) and mTORC2 signaling induced by LPS priming. Like TAS, both INK-128 (inhibiting both mTORC1 and mTORC2) and rapamycin (inhibiting mTORC1 only) also inhibited NLRP3 inflammasome activation, though their effects on mTOR signaling were different. Moreover, TAS treatment alleviated mitochondrial damage by nigericin and improved mouse survival from bacterial infection, accompanied by reduced IL-1ß levels in vivo. Collectively, by inhibiting the NLRP3 inflammasome activation, TAS displayed anti-inflammatory effects likely through regulation of the mTOR signaling in macrophages, highlighting a potential action mechanism for the anti-inflammatory activity of Dandelion in treating inflammation-related disorders, which warrants further clinical investigation.


Assuntos
Inflamassomos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piroptose/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Esteróis/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Triterpenos/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Infecções Bacterianas/tratamento farmacológico , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Inflamassomos/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Nigericina/farmacologia , Esteróis/uso terapêutico , Análise de Sobrevida , Triterpenos/uso terapêutico
20.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 42(5): 596-602, 2020 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-33131513

RESUMO

Objective To investigate the effect of pirfenidone on cytokine/chemokine production by alveolar macrophages(AMs)in patients with idiopathic nonspecific interstitial pneumonia(iNSIP)or idiopathic pulmonary fibrosis(IPF).Methods We prospectively enrolled 10 iNSIP patients,11 IPF patients,and 8 non-interstitial lung disease(non-ILD)patients(control group)from our center from January 2015 to December 2018.AMs from bronchoalveolar lavage fluid(BALF)were cultured with or without lipopolysaccharide(LPS)stimulation.The production of Th1 cytokines [soluble tumor necrosis factor receptor(sTNFR)-1,sTNFR-2,and interleukin(IL)-1ß],Th2 cytokines [IL-10 and granulocyte-macrophage colony-stimulating factor(GM-CSF)],angiogenic chemokines [IL-18 and macrophage inflammatory protein(MIP)-1ß],and angiostatic chemokines [interferon-gama inducible monokines(MIG)and interferon-gama inducible protein(IP-10)] in the culture supernatants were measured by a bead-based assay,Luminex.The effect of pirfenidone on the cytokine/chemokine production was tested at various concentrations(0,0.03,0.10,0.30 mg/ml).Results The spontaneous and LPS-stimulated release of TNF-α,sTNFR-1,sTNFR-2,IL-1ß,IL-10,MIP-1ß,MIG,and IP-10 by AMs were significantly increased in iNSIP and IPF groups compared with control group(all P<0.05),but no difference in IL-18 was seen among three groups(all P>0.05).MIG and IP-10 were significantly higher in iNSIP group than in IPF group(both P<0.05).Pirfenidone suppressed the spontaneous and LPS-stimulated AMs release of all studied cytokine/chemokine in iNSIP and IPF in a dose-dependent manner at concentrations of 0.10 and 0.30 mg/ml,and no difference was observed between iNSIP and IPF groups(both P>0.05).Conclusion Pirfenidone can markedly suppress cytokine/chemokine expression in iNSIP and IPF patients,but the difference is not significant between these two groups of patients.


Assuntos
Quimiocinas , Macrófagos Alveolares , Piridonas , Anti-Inflamatórios não Esteroides/farmacologia , Líquido da Lavagem Broncoalveolar/citologia , Quimiocinas/metabolismo , Citocinas/metabolismo , Humanos , Macrófagos Alveolares/efeitos dos fármacos , Piridonas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA