Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int Immunopharmacol ; 131: 111860, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38508093

RESUMO

OBJECTIVES: Rheumatoid arthritis (RA) is a complex disease with a challenging diagnosis, especially in seronegative patients. The aim of this study is to investigate whether the methylation sites associated with the overall immune response in RA can assist in clinical diagnosis, using targeted methylation sequencing technology on peripheral venous blood samples. METHODS: The study enrolled 241 RA patients, 30 osteoarthritis patients (OA), and 30 healthy volunteers control (HC). Fifty significant cytosine guanine (CG) sites between undifferentiated arthritis and RA were selected and analyzed using targeted DNA methylation sequencing. Logistic regression models were used to establish diagnostic models for different clinical features of RA, and six machine learning methods (logit model, random forest, support vector machine, adaboost, naive bayes, and learning vector quantization) were used to construct clinical diagnostic models for different subtypes of RA. Least absolute shrinkage and selection operator regression and detrended correspondence analysis were utilized to screen for important CGs. Spearman correlation was used to calculate the correlation coefficient. RESULTS: The study identified 16 important CG sites, including tumor necrosis factort receptor associated factor 5 (TRAF5) (chr1:211500151), mothers against decapentaplegic homolog 3 (SMAD3) (chr15:67357339), tumor endothelial marker 1 (CD248) (chr11:66083766), lysosomal trafficking regulator (LYST) (chr1:235998714), PR domain zinc finger protein 16 (PRDM16) (chr1:3307069), A-kinase anchoring protein 10 (AKAP10) (chr17:19850460), G protein subunit gamma 7 (GNG7) (chr19:2546620), yes1 associated transcriptional regulator (YAP1) (chr11:101980632), PRDM16 (chr1:3163969), histone deacetylase complex subunit sin3a (SIN3A) (chr15:75747445), prenylated rab acceptor protein 2 (ARL6IP5) (chr3:69134502), mitogen-activated protein kinase kinase kinase 4 (MAP3K4) (chr6:161412392), wnt family member 7A (WNT7A) (chr3:13895991), inhibin subunit beta B (INHBB) (chr2:121107018), deoxyribonucleic acid replication helicase/nuclease 2 (DNA2) (chr10:70231628) and chromosome 14 open reading frame 180 (C14orf180) (chr14:105055171). Seven CG sites showed abnormal changes between the three groups (P < 0.05), and 16 CG sites were significantly correlated with common clinical indicators (P < 0.05). Diagnostic models constructed using different CG sites had an area under the receiver operating characteristic curve (AUC) range of 0.64-0.78 for high-level clinical indicators of high clinical value, with specificity ranging from 0.42 to 0.77 and sensitivity ranging from 0.57 to 0.88. The AUC range for low-level clinical indicators of high clinical value was 0.63-0.72, with specificity ranging from 0.48 to 0.74 and sensitivity ranging from 0.72 to 0.88. Diagnostic models constructed using different CG sites showed good overall diagnostic accuracy for the four subtypes of RA, with an accuracy range of 0.61-0.96, a balanced accuracy range of 0.46-0.94, and an AUC range of 0.46-0.94. CONCLUSIONS: This study identified potential clinical diagnostic biomarkers for RA and provided novel insights into the diagnosis and subtyping of RA. The use of targeted deoxyribonucleic acid (DNA) methylation sequencing and machine learning methods for establishing diagnostic models for different clinical features and subtypes of RA is innovative and can improve the accuracy and efficiency of RA diagnosis.


Assuntos
Artrite Reumatoide , Neoplasias , Osteoartrite , Feminino , Humanos , Metilação de DNA , Teorema de Bayes , Artrite Reumatoide/diagnóstico , Artrite Reumatoide/genética , Osteoartrite/diagnóstico , Osteoartrite/genética , Biomarcadores , DNA , Neoplasias/genética , Antígenos de Neoplasias , Antígenos CD
2.
Front Med (Lausanne) ; 10: 1244888, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38020103

RESUMO

Background: Czech dysplasia is a rare skeletal disorder with symptomatology including platyspondyly, brachydactyly of the third and fourth toes, and early-onset progressive pseudorheumatoid arthritis. The disorder segregates in an autosomal dominant fashion. A specific missense mutation (R275C, c.823C > T) in exon 13 of the COL2A1 gene has been identified in German and Japanese families. Case summary: We present the case of a Chinese woman diagnosed with Czech dysplasia (proband) who carried a variant in the COL2A1 gene. Whole-exome sequencing (WES) identified the COL2A1 missense mutation (R275C, c.823C > T) in close relatives of the proband who also exhibited the same disorder. Conclusion: This study is a thorough clinical and physiological description of Czech dysplasia in a Chinese patient.

3.
Front Pharmacol ; 14: 1306584, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38027031

RESUMO

Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic inflammation and joint damage. The signaling lymphocytic activation molecule (SLAMF) family of receptors are expressed on various hematopoietic and non-hematopoietic cells and can regulate both immune cell activation and cytokine production. Altered expression of certain SLAMF receptors contributes to aberrant immune responses in RA. In RA, SLAMF1 is upregulated on T cells and may promote inflammation by participating in immune cell-mediated responses. SLAMF2 and SLAMF4 are involved in regulating monocyte tumor necrosis factor production and promoting inflammation. SLAMF7 activates multiple inflammatory pathways in macrophages to drive inflammatory gene expression. SLAMF8 inhibition can reduce inflammation in RA by blocking ERK/MMPs signaling. Of note, there are differences in SLAMF receptor (SFR) expression between normal and arthritic joint tissues, suggesting a role as potential diagnostic biomarkers. This review summarizes recent advances on the roles of SLAMF receptors 1, 2, 4, 7, and 8 in RA pathogenesis. However, further research is needed to elucidate the mechanisms of SLAMF regulation of immune cells in RA. Understanding interactions between SLAMF receptors and immune cells will help identify selective strategies for targeting SLAMF signaling without compromising normal immunity. Overall, the SLAMF gene family holds promise as a target for precision medicine in RA, but additional investigation of the underlying immunological mechanisms is needed. Targeting SLAMF receptors presents opportunities for new diagnostic and therapeutic approaches to dampen damaging immune-mediated inflammation in RA.

4.
Immun Inflamm Dis ; 11(6): e902, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37382265

RESUMO

OBJECTIVES: To assess the differences in circulating DNA methylation levels of CXCR5 between rheumatoid arthritis (RA) and osteoarthritis (OA) and healthy controls (HC), and the correlation of methylation changes with clinical characteristics of RA patients. METHODS: Peripheral blood samples were collected from 239 RA patients, 30 patients with OA, and 29 HC. Target region methylation sequencing to the promoter region of CXCR5 was achieved using MethylTarget. The methylation level of cg04537602 and methylation haplotype were compared among the three groups, and the correlation between methylation levels and clinical characteristics of RA patients was performed by Spearman's rank correlation analysis. RESULTS: The methylation level of cg04537602 was significantly higher in the peripheral blood of RA patients compared with OA patients (p = 1.3 × 10-3 ) and in the HC group (p = 5.5 × 10- 4 ). The sensitivity was enhanced when CXCR5 methylation level combined with rheumatoid factor and anti-cyclic citrullinated peptide with area under curve (AUC) of 0.982 (95% confidence interval 0.970-0.995). The methylation level of cg04537602 in RA was positively correlated with C-reactive protein (CRP) (r = .16, p = .01), and in RA patients aged 60 years and above, cg04537602 methylation levels were positively correlated with CRP (r = .31, p = 4.7 × 10- 4 ), tender joint count (r = .21, p = .02), visual analog scales score (r = .21, p = .02), Disease Activity Score in 28 joints (DAS28) using the CRP level DAS28-CRP (r = .27, p = 2.1 × 10- 3 ), and DAS28-ESR (r = .22, p = .01). We also observed significant differences of DNA methylation haplotypes in RA patients compared with OA patients and HC, which was consistent with single-loci-based CpG methylation measurement. CONCLUSION: The methylation level of CXCR5 was significantly higher in RA patients than in OA and HC, and correlated with the level of inflammation in RA patients, our study establishes a link between CXCR5 DNA methylation and clinical features that may help in the diagnosis and disease management of RA patients.


Assuntos
Artrite Reumatoide , Metilação de DNA , Humanos , Inflamação , Artrite Reumatoide/genética , Área Sob a Curva , Autoanticorpos , Receptores CXCR5/genética
5.
Nutrients ; 15(11)2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37299390

RESUMO

Changes in the composition and ratio of the flora during colitis have been found to potentially affect ovarian function through nutrient absorption. However, the mechanisms have not been fully explored. To investigate whether colitis-induced dysbacteriosis of the intestinal flora affects ovarian function, mice were given dextran sodium sulfate (DSS) through drinking water. High-throughput sequencing technology was used to clarify the composition and proportion of bacterial flora as well as gene expression changes in the colon. Changes in follicle type, number, and hormone secretion in the ovary were detected. The results showed that 2.5% DSS could induce severe colitis symptoms, including increased inflammatory cell infiltration, severe damage to the crypt, and high expression of inflammatory factors. Moreover, vitamin A synthesis metabolism-related genes Rdh10, Aldh1a1, Cyp26a1, Cyp26b1, and Rarß were significantly decreased, as well as the levels of the steroid hormone synthase-related proteins STAR and CYP11A1. The levels of estradiol, progesterone, and Anti-Mullerian hormone as well as the quality of oocytes decreased significantly. The significantly changed abundances of Alistipes, Helicobacter, Bacteroides, and some other flora had potentially important roles. DSS-induced colitis and impaired vitamin A absorption reduced ovarian function.


Assuntos
Colite , Microbioma Gastrointestinal , Feminino , Camundongos , Animais , Vitamina A/metabolismo , Disbiose/metabolismo , Colite/metabolismo , Colo/metabolismo , Hormônios/metabolismo , Sulfato de Dextrana/efeitos adversos , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
6.
Animals (Basel) ; 12(22)2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36428301

RESUMO

Kirsten rat sarcoma viral oncogene homolog (KRAS), or guanosine triphosphatase KRAS, is a proto-oncogene that encodes the small guanosine triphosphatase transductor protein. Previous studies have found that KRAS can promote cytokine secretion, cell chemotaxis, and survival. However, its effects on milk fat synthesis in bovine mammary epithelial cells are unclear. In this study, the effects of KRAS inhibition on cell metabolism, autophagy, oxidative stress, endoplasmic reticulum stress, mitochondrial function, and lipid composition as well as the potential mechanisms were detected in an immortalized dairy cow mammary epithelial cell line (MAC-T). The results showed that inhibition of KRAS changed the lipid composition (especially the triglyceride level), mitochondrial functions, autophagy, and endoplasmic reticulum stress in cells. Moreover, KRAS inhibition regulated the levels of the mammalian target of rapamycin and mitogen-activated protein kinase (extracellular regulated protein kinases, c-Jun N-terminal kinases, p38) activation. These results indicated that regulation of KRAS would affect the synthesis and composition of milk fat. These results are also helpful for exploring the synthesis and secretion of milk fat at the molecular level and provide a theoretical basis for improving the percentage of fat in milk and the yield of milk from cows.

7.
Front Immunol ; 13: 907733, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35874704

RESUMO

Rheumatoid arthritis (RA) is a chronic inflammatory disease that leads to joint damage and even disability. Although there are various clinical therapies for RA, some patients still have poor or no response. Thus, the development of new drug targets remains a high priority. In this review, we discuss the role of G-protein-coupled receptors (GPCRs), including chemokine receptors, melanocortin receptors, lipid metabolism-related receptors, adenosine receptors, and other inflammation-related receptors, on mechanisms of RA, such as inflammation, lipid metabolism, angiogenesis, and bone destruction. Additionally, we summarize the latest clinical trials on GPCR targeting to provide a theoretical basis and guidance for the development of innovative GPCR-based clinical drugs for RA.


Assuntos
Artrite Reumatoide , Artrite Reumatoide/tratamento farmacológico , Humanos , Inflamação , Receptores de Quimiocinas , Receptores Acoplados a Proteínas G/fisiologia , Receptores Purinérgicos P1
8.
Front Immunol ; 13: 903475, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35795672

RESUMO

Secreted frizzled-related protein 1 (SFRP1) is a member of secretory glycoprotein SFRP family. As a primitive gene regulating cell growth, development and transformation, SFRP1 is widely expressed in human cells, including various cancer cells and fibroblast-like synoviocytes (FLS) of rheumatoid arthritis (RA). Deletion or silencing of SFRP1 involves epigenetic and other mechanisms, and participates in biological behaviors such as cell proliferation, migration and cell pyroptosis, which leads to disease progression and poor prognosis. In this review, we discuss the role of SFRP1 in the pathogenesis of RA-FLS and summarize different experimental platforms and recent research results. These are helpful for understanding the biological characteristics of SFRP1 in RA, especially the mechanism by which SFRP1 regulates RA-FLS pyroptosis through Wnt/ß-catenin and Notch signaling pathways. In addition, the epigenetic regulation of SFRP1 in RA-FLS is emphasized, which may be considered as a promising biomarker and therapeutic target of RA.


Assuntos
Artrite Reumatoide , Sinoviócitos , Artrite Reumatoide/metabolismo , Células Cultivadas , Epigênese Genética , Fibroblastos/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Piroptose , Sinoviócitos/metabolismo
9.
Front Immunol ; 13: 888306, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35464445

RESUMO

Gout, a chronic inflammatory arthritis disease, is characterized by hyperuricemia and caused by interactions between genetic, epigenetic, and metabolic factors. Acute gout symptoms are triggered by the inflammatory response to monosodium urate crystals, which is mediated by the innate immune system and immune cells (e.g., macrophages and neutrophils), the NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) inflammasome activation, and pro-inflammatory cytokine (e.g., IL-1ß) release. Recent studies have indicated that the multiple programmed cell death pathways involved in the inflammatory response include pyroptosis, NETosis, necroptosis, and apoptosis, which initiate inflammatory reactions. In this review, we explore the correlation and interactions among these factors and their roles in the pathogenesis of gout to provide future research directions and possibilities for identifying potential novel therapeutic targets and enhancing our understanding of gout pathogenesis.


Assuntos
Artrite Gotosa , Gota , Artrite Gotosa/metabolismo , Gota/metabolismo , Humanos , Inflamassomos/metabolismo , Macrófagos , Piroptose
10.
Front Plant Sci ; 13: 804593, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35310663

RESUMO

Paclitaxel (Taxol), a highly modified diterpene agent mainly obtained from Taxus species, is the most widely used anticancer drug. Abscisic acid (ABA) is a well-known stress hormone that plays important roles in the secondary metabolism of plants, and it can also induce the accumulation of taxol in Taxus cell suspension cultures. However, the mechanism behind the regulation of taxol biosynthesis by ABA remains largely unknown. In previous research, a R2R3 MYB transcription factor (TF) TcMYB29a was observed to show a significant correlation with taxol biosynthesis, indicative of its potential role in the taxol biosynthesis. In this study, the TcMYB29a encoded by its gene was further characterized. An expression pattern analysis revealed that TcMYB29a was highly expressed in the needles and roots. Overexpression of TcMYB29a in Taxus chinensis cell suspension cultures led to an increased accumulation of taxol, and upregulated expression of taxol-biosynthesis-related genes, including the taxadiene synthase (TS) gene, the taxane 5α-hydroxylase (T5OH) gene, and the 3'-N-debenzoyl-2'-deoxytaxol-N-benzoyltransferase (DBTNBT) gene as compared to the controls. Chromatin immunoprecipitation (ChIP) assays, yeast one-hybrid (Y1H) assays, electrophoretic mobility shift assays (EMSAs), and dual-luciferase reporter assays verified that TcMYB29a could bind and activate the promoter of TcT5OH. Promoter sequence analysis of TcMYB29a revealed that its promoter containing an AERB site from -313 to -319 was a crucial ABA-responsive element. Subsequently, the ABA treatment assay showed that TcMYB29a was strongly upregulated at 6 h after ABA pretreatment. Furthermore, TcMYB29a was strongly suppressed at 3 h after the methyl jasmonate (MeJA) treatment and was depressed to the platform at 12 h. Taken together, these results reveal that TcMYB29a is an activator that improves the accumulation of taxol in Taxus chinensis cells through an ABA-medicated signaling pathway which is different from JA-medicated signaling pathways for the accumulation of taxol. These findings provide new insights into the potential regulatory roles of MYBs on the expression of taxol biosynthetic genes in Taxus.

11.
BMC Plant Biol ; 22(1): 12, 2022 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-34979929

RESUMO

BACKGROUND: Taxol from Taxus species is a precious drug used for the treatment of cancer and can effectively inhibit the proliferation of cancer cells. However, the growth of Taxus plants is very slow and the content of taxol is quite low. Therefore, it is of great significance to improve the yield of taxol by modern biotechnology without destroying the wild forest resources. Endophytic fungus which symbiosis with their host plants can promote the growth and secondary metabolism of medicinal plants. RESULTS: Here, an endophytic fungus KL27 was isolated from T. chinensis, and identified as Pseudodidymocyrtis lobariellae. The fermentation broth of KL27 (KL27-FB) could significantly promote the accumulation of taxol in needles of T. chinensis, reaching 0.361 ± 0.082 mg/g·DW (dry weight) at 7 days after KL27-FB treatment, which is 3.26-fold increase as compared to the control. The RNA-seq and qRT-PCR showed that KL27-FB could significantly increase the expression of key genes involved in the upstream pathway of terpene synthesis (such as DXS and DXR) and those in the taxol biosynthesis pathway (such as GGPPS, TS, T5OH, TAT, T10OH, T14OH, T2OH, TBT, DBAT and PAM), especially at the early stage of the stimulation. Moreover, the activation of jasmonic acid (JA) biosynthesis and JA signal transduction, and its crosstalk with other hormones, such as gibberellin acid (GA), ethylene (ET) and salicylic acid (SA), explained the elevation of most of the differential expressed genes related to taxol biosynthesis pathway. Moreover, TF (transcriptional factor)-encoding genes, including MYBs, ethylene-responsive transcription factors (ERFs) and basic/helix-loop-helix (bHLH), were detected as differential expressed genes after KL27-FB treatment, further suggested that the regulation of hormone signaling on genes of taxol biosynthesis was mediated by TFs. CONCLUSIONS: Our results indicated that fermentation broth of endophytic fungus KL27-FB could effectively enhance the accumulation of taxol in T. chinensis needles by regulating the phytohormone metabolism and signal transduction and further up-regulating the expression of multiple key genes involved in taxol biosynthesis. This study provides new insight into the regulatory mechanism of how endophytic fungus promotes the production and accumulation of taxol in Taxus sp.


Assuntos
Ascomicetos/fisiologia , Endófitos/fisiologia , Regulação da Expressão Gênica de Plantas , Paclitaxel/biossíntese , Reguladores de Crescimento de Plantas/metabolismo , Transdução de Sinais , Taxus/metabolismo , Genes de Plantas , Paclitaxel/metabolismo , Taxus/microbiologia , Regulação para Cima
12.
Front Immunol ; 12: 605616, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33664742

RESUMO

Rheumatoid arthritis (RA) is an autoimmune disease. Fibroblast-like synoviocytes (FLS) serve a major role in synovial hyperplasia and inflammation in RA. (5R)-5-hydroxytriptolide (LLDT-8), a novel triptolide derivative, shows promising therapeutic effects for RA and is now in phase II clinical trials in China. However, the underlying mechanism of LLDT-8 is still not fully understood. Here, we found that LLDT-8 inhibited proliferation and invasion of RA FLS, as well as the production of cytokines. Microarray data demonstrated that LLDT-8 upregulated the expression of long non-coding RNA (lncRNA) WAKMAR2, which was negatively associated with proliferation and invasion of RA FLS, as well as the production of pro-inflammatory cytokines. Knockdown of WAKMAR2 abolished the inhibitory effects of LLDT-8 on RA FLS. Mechanistically, WAKMAR2 sponged miR-4478, which targeted E2F1 and downstreamed p53 signaling. Rescue experiments indicated that the inhibitory effects of LLDT-8 on RA FLS were dependent on WAKMAR2/miR-4478/E2F1/p53 axis.


Assuntos
Artrite Reumatoide/etiologia , Diterpenos/farmacologia , Fator de Transcrição E2F1/genética , MicroRNAs/genética , RNA Longo não Codificante/genética , Sinoviócitos/efeitos dos fármacos , Sinoviócitos/metabolismo , Proteína Supressora de Tumor p53/genética , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/metabolismo , Proliferação de Células/efeitos dos fármacos , Suscetibilidade a Doenças , Diterpenos/uso terapêutico , Fator de Transcrição E2F1/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Inativação Gênica , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Modelos Biológicos , Interferência de RNA , Transdução de Sinais/efeitos dos fármacos , Sinoviócitos/patologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Proteína Supressora de Tumor p53/metabolismo
13.
Gastroenterol Res Pract ; 2020: 1794769, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32676103

RESUMO

OBJECTIVE: To investigate the risk factors for hepatic steatosis in chronic hepatitis B (CHB), to determine its correlation with liver necroinflammation and fibrosis and response to peginterferon alpha-2a (PEG-IFNα-2a) antiviral therapy, and to explore the mechanisms underlying the poor antiviral effect of PEG-IFNα-2a in CHB patients with hepatic steatosis. METHODS: We analysed the impact of hepatic steatosis on the antiviral effect of PEG-IFNα-2a on CHB patients in a cohort of 226 patients who underwent pretherapeutic liver biopsy. To assess the complete response (CR), virological response (VR), and biochemical response (BR), the 226 patients were treated with PEG-IFNα-2a for 48 weeks and were followed-up for 24 weeks. The expressions of hepatitis B surface antigen (HBsAg) and hepatitis B core antigen (HBcAg) in the liver tissue were detected in all patients to explore the possible mechanism of hepatic steatosis with regard to antiviral effects. RESULTS: The patients were divided into four groups based on the severity of hepatic steatosis: 119 with no steatosis, 76 with mild steatosis, 22 with moderate steatosis, and 9 with severe steatosis. In the hepatic steatosis groups, the proportions of male patients, patients aged >40 years, patients with hyperuricaemia, patients with a BMI > 23 kg/m2, and total cholesterol (TC), triglyceride (TG), glucose (GLU), and uric acid (UA) levels were significantly higher than those in the group without steatosis, whereas the alanine aminotransferase (ALT) and aspartate transaminase (AST) levels were significantly lower than those in the group without steatosis. The multivariate analysis results indicated that a BMI > 23 kg/m2 was independently associated with CHB patients with hepatic steatosis; the levels of baseline AST and UA were independently associated with CHB patients with significant hepatic steatosis, and the baseline AST level was independently associated with significant liver fibrosis. After 48 weeks of treatment and 24 weeks of follow-up, the rates of CR, VR, and BR had gradually decreased, whereas the severity of hepatic steatosis had increased. CONCLUSION: Hepatic steatosis can reduce the efficacy of PEG-IFNα-2a in the treatment of CHB patients, and its mechanism may be related to the different HBcAg expression patterns in liver tissue.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA