Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Lipids Health Dis ; 23(1): 128, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38685023

RESUMO

BACKGROUND: Sepsis-associated encephalopathy (SAE) refers to the widespread impairment of brain function caused by noncentral nervous system infection mediated by sepsis. Lipid peroxidation-induced ferroptosis contributes to the occurrence and course of SAE. This study aimed to investigate the relationship between neuronal injury and lipid peroxidation-induced ferroptosis in SAE. METHODS: Baseline data were collected from pediatric patients upon admission, and the expression levels of various markers related to lipid peroxidation and ferroptosis were monitored in the serum and peripheral blood mononuclear cells (PBMCs) of patients with SAE as well as SAE model mice. The hippocampal phosphatidylethanolamine-binding protein (PEBP)-1/15-lysine oxidase (LOX)/ glutathione peroxidase 4 (GPX4) pathway was assessed for its role on the inhibitory effect of ferroptosis in SAE treatment. RESULTS: The results showed elevated levels of S100 calcium-binding protein beta (S-100ß), glial fibrillary acidic protein, and malondialdehyde in the serum of SAE patients, while superoxide dismutase levels were reduced. Furthermore, analysis of PBMCs revealed increased transcription levels of PEBP1, LOX, and long-chain fatty acyl-CoA synthetase family member 4 (ACSL4) in SAE patients, while the transcription levels of GPX4 and cystine/glutamate transporter xCT (SLC7A11) were decreased. In comparison to the control group, the SAE mice exhibited increased expression of S-100ß and neuron-specific enolase (NSE) in the hippocampus, whereas the expression of S-100ß and NSE were reduced in deferoxamine (DFO) mice. Additionally, iron accumulation was observed in the hippocampus of SAE mice, while the iron ion levels were reduced in the DFO mice. Inhibition of ferroptosis alleviated the mitochondrial damage (as assessed by transmission electron microscopy, hippocampal mitochondrial ATP detection, and the JC-1 polymer-to-monomer ratio in the hippocampus) and the oxidative stress response induced by SAE as well as attenuated neuroinflammatory reactions. Further investigations revealed that the mechanism underlying the inhibitory effect of ferroptosis in SAE treatment is associated with the hippocampal PEBP-1/15-LOX/GPX4 pathway. CONCLUSION: These results offer potential therapeutic targets for the management of neuronal injury in SAE and valuable insights into the potential mechanisms of ferroptosis in neurological disorders.


Assuntos
Ferroptose , Hipocampo , Peroxidação de Lipídeos , Proteína de Ligação a Fosfatidiletanolamina , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Encefalopatia Associada a Sepse , Ferroptose/efeitos dos fármacos , Animais , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Humanos , Encefalopatia Associada a Sepse/tratamento farmacológico , Encefalopatia Associada a Sepse/metabolismo , Encefalopatia Associada a Sepse/patologia , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Peroxidação de Lipídeos/efeitos dos fármacos , Camundongos , Masculino , Feminino , Proteína de Ligação a Fosfatidiletanolamina/metabolismo , Proteína de Ligação a Fosfatidiletanolamina/genética , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/patologia , Coenzima A Ligases/metabolismo , Coenzima A Ligases/genética , Coenzima A Ligases/antagonistas & inibidores , Inflamação/metabolismo , Inflamação/patologia , Inflamação/tratamento farmacológico , Sistema y+ de Transporte de Aminoácidos/metabolismo , Sistema y+ de Transporte de Aminoácidos/genética , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo , Subunidade beta da Proteína Ligante de Cálcio S100/genética , Modelos Animais de Doenças , Pré-Escolar , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Criança , Proteína Glial Fibrilar Ácida/metabolismo , Proteína Glial Fibrilar Ácida/genética , Malondialdeído/metabolismo , Sepse/complicações , Sepse/metabolismo , Sepse/tratamento farmacológico , Lactente
2.
Exp Neurol ; 375: 114721, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38342180

RESUMO

Plasma microRNA (miR)-9 has been identified as a promising diagnostic biomarker for traumatic brain injury (TBI). This study aims to investigate the possible role and mechanisms of miR-9a-5p affecting TBI. Microarray-based gene expression profiling of TBI was used for screening differentially expressed miRNAs and genes. TBI rat models were established. miR-9a-5p, ELAVL1 and VEGF expression in the brain tissue of TBI rats was detected. The relationship among miR-9a-5p, ELAVL1 and VEGF was tested. TBI modeled rats were injected with miR-9a-5p-, ELAVL1 or VEGF-related sequences to identify their effects on TBI. miR-9a-5p was poorly expressed in the brain tissue of rats with TBI. ELAVL1 was a downstream target gene of miR-9a-5p, which could negatively regulate its expression. Enforced miR-9a-5p expression prevented brain tissue damage in TBI rats by targeting ELAVL1. Meanwhile, ELAVL1 could increase the expression of VEGF, which was highly expressed in the brain tissue of rats with TBI. In addition, ectopically expressed miR-9a-5p alleviated brain tissue damage in TBI rats by downregulating the ELAVL1/VEGF axis. Overall, miR-9a-5p can potentially reduce brain tissue damage in TBI rats by targeting ELAVL1 and down-regulating VEGF expression.


Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , MicroRNAs , Animais , Ratos , Lesões Encefálicas/metabolismo , Lesões Encefálicas Traumáticas/genética , Perfilação da Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética
3.
BMC Cancer ; 24(1): 220, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365636

RESUMO

BACKGROUND: Glioblastoma (GBM) is a relatively prevalent primary tumor of the central nervous system in children, characterized by its high malignancy and mortality rates, along with the intricate challenges of achieving complete surgical resection. Recently, an increasing number of studies have focused on the crucial role of super-enhancers (SEs) in the occurrence and development of GBM. This study embarks on the task of evaluating the effectiveness of MZ1, an inhibitor of BRD4 meticulously designed to specifically target SEs, within the intricate framework of GBM. METHODS: The clinical data of GBM patients was sourced from the Chinese Glioma Genome Atlas (CGGA) and the Gene Expression Profiling Interactive Analysis 2 (GEPIA2), and the gene expression data of tumor cell lines was derived from the Cancer Cell Line Encyclopedia (CCLE). The impact of MZ1 on GBM was assessed through CCK-8, colony formation assays, EdU incorporation analysis, flow cytometry, and xenograft mouse models. The underlying mechanism was investigated through RNA-seq and ChIP-seq analyses. RESULTS: In this investigation, we made a noteworthy observation that MZ1 exhibited a substantial reduction in the proliferation of GBM cells by effectively degrading BRD4. Additionally, MZ1 displayed a notable capability in inducing significant cell cycle arrest and apoptosis in GBM cells. These findings were in line with our in vitro outcomes. Notably, MZ1 administration resulted in a remarkable decrease in tumor size within the xenograft model with diminished toxicity. Furthermore, on a mechanistic level, the administration of MZ1 resulted in a significant suppression of pivotal genes closely associated with cell cycle regulation and epithelial-mesenchymal transition (EMT). Interestingly, our analysis of RNA-seq and ChIP-seq data unveiled the discovery of a novel prospective oncogene, SDC1, which assumed a pivotal role in the tumorigenesis and progression of GBM. CONCLUSION: In summary, our findings revealed that MZ1 effectively disrupted the aberrant transcriptional regulation of oncogenes in GBM by degradation of BRD4. This positions MZ1 as a promising candidate in the realm of therapeutic options for GBM treatment.


Assuntos
Neoplasias Encefálicas , Proteínas que Contêm Bromodomínio , Glioblastoma , Animais , Criança , Humanos , Camundongos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Proteínas que Contêm Bromodomínio/antagonistas & inibidores , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Estudos Prospectivos , Sindecana-1/antagonistas & inibidores , Fatores de Transcrição/genética
4.
Front Pharmacol ; 13: 965789, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36059989

RESUMO

Introduction: Temozolomide (TMZ) is the first-line drug for glioblastoma (GBM), but it is limited in clinical use due to the drug resistance, poor brain targeting, and side effects. Temozolomide hexadecyl ester (TMZ16e), a TMZ derivative with high lipophilicity, membrane permeability, and high anti-glioma properties, has the potential to reverse drug resistance. In this study, anti-ephrin type-A receptor 3 (EphA3) modified TMZ16e loaded nanoparticles (NPs) were prepared for targeted GBM therapy via intranasal administration to deliver TMZ16e to the brain, treat drug-resistant glioma effectively, and reduce peripheral toxicity. Methods: TMZ16e loaded NPs were prepared by emulsion solvent evaporation method followed by modified with anti-EphA3 (anti-EphA3-TMZ16e-NPs). In vitro evaluations were performed by an MTT assay and flow cytometry analysis. The orthotopic nude mice models were used to evaluate the anti-glioma effect in vivo. Additionally, we investigated the anti-drug resistant mechanism by western blot analysis. Results: The particle size of the prepared NPs was less than 200 nm, and the zeta potential of TMZ16e-NPs and anti-EphA3-TMZ16e-NPs were -23.05 ± 1.48 mV and -28.65 ± 1.20mV, respectively, which is suitable for nasal delivery. In vitro studies have shown that anti-EphA3 modification increased the cellular uptake of nanoparticles in T98G cells. The cytotoxicity in the anti-EphA3-TMZ16e-NPs treated group was significantly higher than that of the TMZ16e-NPs, TMZ16e, and TMZ groups (p < 0.01), and the cell cycle was blocked. Western blotting analysis showed that the TMZ16e-loaded NPs were able to effectively downregulate the expression level of O6-methylguanine-deoxyribonucleic acid-methyltransferase (MGMT) protein in T98G cells and reverse drug resistance. In vivo studies showed that the median survival time of tumor-bearing nude mice in the anti-EphA3-TMZ16e-NPs group was extended to 41 days, which was 1.71-fold higher than that of the saline group and the TUNEL staining results of the brain tissue section indicated that the TMZ16e-loaded NPs could elevate apoptosis in T98G cells. Conclusion: In conclusion, the TMZ16e-loaded NPs can be effectively delivered to the brain and targeted to gliomas, exhibiting better anti-glioma activity, indicating they possess great potential in the treatment of drug-resistant glioma.

5.
Mol Pharm ; 19(4): 1219-1229, 2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35262365

RESUMO

Temozolomide (TMZ) is a standard-of-care chemotherapeutic drug for the treatment of glioblastoma (GBM), but TMZ-acquired resistance limits its therapeutic effect. In this study, TMZ-loaded gold nanoparticles (TMZ@GNPs) with anti-EphA3 modification on the surface (anti-EphA3-TMZ@GNPs) were synthesized for chemical and auxiliary plasma photothermal treatment (GNPs-PPTT), aiming to overcome the problem of glioma resistance to TMZ and improve the therapeutic effects of GBM. The prepared anti-EphA3-TMZ@GNPs were spherical with a particle size of 45.88 ± 1.9 nm, and the drug loading was 7.31 ± 0.38%. In vitro, cell-culture-based experiments showed that anti-EphA3 increased the cellular uptake of GNPs in T98G cells. Upon laser irradiation, the cytotoxicity and apoptosis rate in the anti-EphA3-TMZ@GNPs-treated group were significantly higher than those in the GNPs and nonphotothermal groups (p < 0.001). The Western blot analysis showed that the GNPs-PPTT-mediated killing of tumor cells induced apoptosis by regulating the apoptotic signaling molecules and cell cycle inhibitors; the expression of MGMT significantly decreased upon p53 induction, thereby reversing drug resistance. After photothermal treatment, the survival time of the subcutaneous GBM model of nude mice in the anti-EphA3-TMZ@GNPs group was prolonged to 46 days, 1.64-fold longer as compared to that in the TMZ group. Based on H&E and TUNEL staining, GNPs-PPTT could elevate apoptosis in T98G cells. In vivo thermal imaging results showed that GNPs could enter the brain via intranasal administration and be eliminated in 2 days, indicating that GNPs are safe for brain. In conclusion, GNPs-PPTT could effectively induce apoptosis in glioma cells and reverse TMZ resistance, thereby, indicative of a promising treatment strategy for GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Nanopartículas Metálicas , Animais , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Apoptose , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Ouro/química , Nanopartículas Metálicas/química , Camundongos , Camundongos Nus , Preparações Farmacêuticas , Terapia Fototérmica , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Front Cell Dev Biol ; 10: 794012, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35350377

RESUMO

Neonatal hypoxic-ischemic brain damage (HIBD) often results in various neurological deficits. Among them, a common, yet often neglected, symptom is circadian rhythm disorders. Previous studies revealed that the occurrence of cysts in the pineal gland, an organ known to regulate circadian rhythm, is associated with circadian problems in children with HIBD. However, the underlying mechanisms of pineal dependent dysfunctions post HIBD remain largely elusive. Here, by performing 10x single cell RNA sequencing, we firstly molecularly identified distinct pineal cell types and explored their transcriptome changes at single cell level at 24 and 72 h post neonatal HIBD. Bioinformatic analysis of cell prioritization showed that both subtypes of pinealocytes, the predominant component of the pineal gland, were mostly affected. We then went further to investigate how distinct pineal cell types responded to neonatal HIBD. Within pinealocytes, we revealed a molecularly defined ß to α subtype conversion induced by neonatal HIBD. Within astrocytes, we discovered that all three subtypes responded to neonatal HIBD, with differential expression of reactive astrocytes markers. Two subtypes of microglia cells were both activated by HIBD, marked by up-regulation of Ccl3. Notably, microglia cells showed substantial reduction at 72 h post HIBD. Further investigation revealed that pyroptosis preferentially occurred in pineal microglia through NLRP3-Caspase-1-GSDMD signaling pathway. Taken together, our results delineated temporal changes of molecular and cellular events occurring in the pineal gland following neonatal HIBD. By revealing pyroptosis in the pineal gland, our study also provided potential therapeutic targets for preventing extravasation of pineal pathology and thus improving circadian rhythm dysfunction in neonates with HIBD.

7.
Mikrochim Acta ; 189(1): 26, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34904180

RESUMO

The conducting polymer polypyrrole nanocones wrapped by metal cobalt (Co/PPy) are a promising platform for the detection of sodium nitrite, which can be obtained by an electrochemical deposition technique under a mild condition. Co/PPy nanocone arrays combined the high conductivity and large specific surface area of PPy nanocones with the redox properties of metal cobalt, and their 3D structure can provide more active sites for nitrite detection. Owing to the microstructure and excellent electrical properties of the nanocomposite, Co/PPy nanocone arrays were convenient to construct a high-performance nitrite sensor. The microscopic morphology and composition of Co/PPy nanocone arrays were characterized by SEM, FT-IR, XPS, and XRD, and their electrochemical performances were also investigated. The experimental results showed that Co/PPy nanocones exhibited excellent performance for nitrite determination. The sensors were used for the determination of nitrite in pickled Chinese cabbage and water samples, and the results were consistent with those of spectrophotometry. Hence, the synthesized Co/PPy nanocone arrays have a broad application prospect in food safety, environmental protection, and industrial manufacturing.

8.
Front Pharmacol ; 12: 720307, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34483932

RESUMO

Glioblastoma multiforme (GBM) is one of the most malignant primary tumors in humans. Despite standard therapeutic strategy with tumor resection combined with radiochemotherapy, the prognosis remains disappointed. Recently, deubiquitinating enzymes (DUBs) has been reported as potential cancer therapy targets due to their multifunctions involved in the regulation of tumorigenesis, cell cycle, apoptosis, and autophagy. In this study, we found that knockdown of ubiquitin specific protease (USP5), a family member of DUB, could significantly suppress GBM cell line U251 and DBTRG-05MG proliferation and colony formation by inducing cell cycle G1/S arrest, which was correlated with downregulation of CyclinD1 protein level. CyclinD1 had been reported to play a critical role in the tumorigenesis and development of GBM via regulating cell cycle transition. Overexpression of USP5 could significantly extend the half-life of CyclinD1, while knockdown of USP5 decreased the protein level of CyclinD1, which could be restored by proteasome inhibitor MG-132. Indeed, USP5 was found to directly interact with CyclinD1, and decrease its K48-linked polyubiquitination level. Furthermore, knockdown of USP5 in U251 cells remarkably inhibited tumor growth in vivo. Taken together, these findings demonstrate that USP5 plays a critical role in tumorigenesis and progression of GBM by stabilizing CyclinD1 protein. Targeting USP5 could be a potential therapeutic strategy for GBM.

9.
Toxicol Appl Pharmacol ; 422: 115560, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33957192

RESUMO

Antipsychotic polypharmacy (APP), as one maintenance treatment strategy in patients with schizophrenia, has gained popularity in real-world clinical settings. Risperidone (RIS) and clozapine (CLZ) are the most commonly prescribed second-generation antipsychotics, and they are often used in combination as APP. In this study, the pharmacokinetics of RIS and CLZ in rats were examined after co-administration to explore the reliability and rationality of co-medication with RIS and CLZ. In addition, the effects of CLZ on RIS metabolism and transport in vitro were investigated. The results illustrated that in the 7-day continuous administration test in rats, when co-administered with CLZ, the area under curve and peak concentrations of RIS were increased by 2.2- and 3.1-fold at the first dose, respectively, increased by 3.4- and 6.2-fold at the last dose, respectively. The metabolite-to-parent ratio of RIS was approximately 22% and 33% lower than those of RIS alone group at the first and last doses, respectively. Moreover, CLZ significantly increased RIS concentrations in the brain (3.0-4.8 folds) and cerebrospinal fluid (2.1-3.5 folds) in rats, which was slightly lower than the impact of verapamil on RIS after co-medication. Experiments in vitro indicated that CLZ competitively inhibited the conversion of RIS to 9-hydroxy-RIS with the inhibition constants of 1.36 and 3.0 µM in rat and human liver microsomes, respectively. Furthermore, the efflux ratio of RIS in Caco-2 monolayers was significantly reduced by CLZ at 1 µM. Hence, CLZ may affect the exposure of RIS by inhibiting its metabolism and P-glycoprotein-mediated transport. These findings highlighted that APP with RIS and CLZ might increase the plasma concentrations of RIS and 9-hydroxy-RIS beyond the safety ranges and cause toxic side effects.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Antipsicóticos/farmacocinética , Clozapina/farmacocinética , Absorção Intestinal/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Microssomos Hepáticos/efeitos dos fármacos , Risperidona/farmacocinética , Animais , Antipsicóticos/toxicidade , Biotransformação , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Células CACO-2 , Clozapina/toxicidade , Interações Medicamentosas , Humanos , Mucosa Intestinal/metabolismo , Masculino , Microssomos Hepáticos/metabolismo , Ratos Sprague-Dawley , Medição de Risco , Risperidona/toxicidade , Distribuição Tecidual
10.
BMC Infect Dis ; 20(1): 542, 2020 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-32711473

RESUMO

BACKGROUND: To evaluate whether soluble triggering receptor expressed on myeloid cells-1 (sTREM-1) can be used as an early predictor of ventilator-associated pneumonia (VAP). METHODS: Ventilated neonatal patients admitted into the neonatology department between January 2017 and January 2018 were divided into VAP (n = 30) and non-VAP (n = 30) groups. Serum sTREM, procalcitonin (PCT), C-reactive protein and interleukin-6 levels were measured at 0, 24, 72, and 120 h after initiation of mechanical ventilation (MV). Correlations between blood biomarker concentrations and VAP occurrence were analyzed. Predictive factors for VAP were identified by logistic regression analysis and Hosmer-Lemeshow test, and the predictive value of sTREM-1 and biomarker combinations for VAP was determined by receiver operating characteristic curve analysis. RESULTS: The serum sTREM-1 concentration was significantly higher in the VAP group than in the non-VAP group after 72 and 120 h of MV (72 h: 289.5 (179.6-427.0) vs 202.9 (154.8-279.6) pg/ml, P < 0.001; 120 h: 183.9 (119.8-232.1) vs 141.3 (99.8-179.1) pg/ml, P = 0.042). The area under the curve (AUC) for sTREM-1 at 72 h was 0.902 with a sensitivity of 90% and specificity of 77% for the optimal cut-off value of 165.05 pg/ml. Addition of PCT to sTERM-1 at 72 h further improved the predictive value, with this combination having an AUC of 0.971 (95% confidence interval: 0.938-1.000), sensitivity of 0.96, specificity of 0.88, and Youden index of 0.84. CONCLUSION: sTREM-1 is a reliable predictor of VAP in neonates, and combined measurement of serum levels of sTREM-1 and PCT after 72 h of MV provided the most accurate prediction of VAP in neonatal patients.


Assuntos
Pneumonia Associada à Ventilação Mecânica/sangue , Pneumonia Associada à Ventilação Mecânica/diagnóstico , Pró-Calcitonina/sangue , Respiração Artificial/efeitos adversos , Receptor Gatilho 1 Expresso em Células Mieloides/sangue , Biomarcadores/sangue , Proteína C-Reativa/análise , Feminino , Humanos , Recém-Nascido , Interleucina-6/sangue , Masculino , Projetos Piloto , Valor Preditivo dos Testes , Estudos Prospectivos , Curva ROC , Sensibilidade e Especificidade
11.
Neural Regen Res ; 15(11): 2154-2161, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32394974

RESUMO

Transient receptor potential melastatin 2 (TRPM2) is an important ion channel that represents a potential target for treating injury caused by cerebral ischemia. However, it is unclear whether reducing TRPM2 expression can help repair cerebral injury, and if so what the mechanism underlying this process involves. This study investigated the protective effect of reducing TRPM2 expression on pheochromocytoma (PC12) cells injured by oxygen-glucose deprivation (OGD). PC12 cells were transfected with plasmid encoding TRPM2 shRNAS, then subjected to OGD by incubation in glucose-free medium under hypoxic conditions for 8 hours, after which the cells were allowed to reoxygenate for 24 hours. Apoptotic cells, mitochondrial membrane potentials, reactive oxygen species levels, and cellular calcium levels were detected using flow cytometry. The relative expression of C-X-C motif chemokine ligand 2 (CXCL2), NACHT, LRR, and PYD domain-containing protein 3 (NALP3), and caspase-1 were detected using fluorescence-based quantitative reverse transcription-polymerase chain reaction and western blotting. The rates of apoptosis, mitochondrial membrane potentials, reactive oxygen species levels, and cellular calcium levels in the TRPM2-shRNA + OGD group were lower than those observed in the OGD group. Taken together, these results suggest that TRPM2 knockdown reduces OGD-induced neuronal injury, potentially by inhibiting apoptosis and reducing oxidative stress levels, mitochondrial membrane potentials, intracellular calcium concentrations, and NLRP3 inflammasome activation.

12.
Ital J Pediatr ; 46(1): 67, 2020 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-32448169

RESUMO

BACKGROUND: A prompt diagnosis of HIE remains a challenge clinically. This study aimed to identify potential biomarkers of neonatal hypoxic-ischemic encephalopathy (HIE) via a novel proteomic approach, the isobaric tags for absolute and relative quantification (iTRAQ) method. METHODS: Blood samples were collected from neonates with mild (n = 4), moderate (n = 4), or severe (n = 4) HIE who were admitted to the neonatal intensive care unit of Children's Hospital of Soochow University between Oct 2015 and Oct 2017. iTRAQ was performed in HIE patients and healthy controls (n = 4). Bioinformatics analyses including Gene Ontology and KEGG pathway enrichment analysis were performed to evaluate the potential features and capabilities of the identified differentially expressed proteins. RESULTS: A total of 51 commonly differentially expressed proteins were identified among the comparisons between mild, moderate, and severe HIE as well as healthy controls. Haptoglobin (HP) and S100A8 were most significantly up-regulated in patients with HIE and further validated via real-time PCR and western blotting. The differentially expressed proteins represented multiple biological processes, cellular components and molecular functions and were markedly enriched in complement and coagulation cascades. CONCLUSIONS: HP and S100A8 may serve as a potential biomarker for neonatal HIE and reflects the severity of HIE. The complement and coagulation cascades play crucial roles in the development of neonatal HIE.


Assuntos
Calgranulina A/sangue , Haptoglobinas/metabolismo , Hipóxia-Isquemia Encefálica/sangue , Hipóxia-Isquemia Encefálica/diagnóstico , Biomarcadores/sangue , Estudos de Casos e Controles , Feminino , Humanos , Hipóxia-Isquemia Encefálica/etiologia , Recém-Nascido , Masculino , Proteômica , Índice de Gravidade de Doença
13.
J Cancer ; 11(11): 3274-3287, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32231733

RESUMO

Neuroblastoma (NB) is the most common extra-cranial solid tumor in childhood with the overall 5 years' survival less than 40%. Polo-like kinase 1 (PLK1) is a serine/threonine-protein kinase expressed during mitosis and over expressed in multiple cancers, including neuroblastoma. We found that higher PLK1 expression related to poor outcome of NB patients. BI2536, a small molecule inhibitor against PLK1, significantly reduced cell viability in a panel of NB cell lines, with IC50 less than 100 nM. PLK1 inhibition by BI 2536 treatment induced cell cycle arrest at G2/M phase and cell apoptosis in NB cells. Realtime PCR array revealed the PLK1 inhibition related genes, such as BIRC7, TNFSF10, LGALS1 and DAD1 et al. Moreover, autophagy activity was investigated in the NB cells treated with BI 2536. BI 2536 treatment in NB cells increased LC3-II puncta formation and LC3-II expression. Formation of autophagosome induced by BI 2536 was observed by transmission electron microscopy. However, BI2536 abrogated the autophagic flux in NB cells by reducing SQSTM1/p62 expression and AMPKαT172 phosphorylation. These results provide new clues for the molecular mechanism of cell death induced by BI 2536 and suggest that BI 2536 may act as new candidate drug for neuroblastoma.

14.
Int Immunopharmacol ; 74: 105736, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31302452

RESUMO

C646 is a newly discovered competitive p300/CREB-binding protein-specific inhibitor. Previous studies have shown its potential antitumor activity, but the immunomodulatory function of C646 remains largely unknown. In this study, we investigated the effects of C646 in cytokine expression and antibacterial activity in mouse macrophages. Results showed that C646 significantly reduced LPS-induced pro-inflammatory cytokines, which relied on suppression of JNK, ERK1/2, and NF-κB p65 signaling pathways. In addition, the inhibitory effects were not associated with modulating the expression of CD14/TLR4/MD2 complex or antagonizing its binding ability to LPS. Furthermore, C646 also down-regulated the levels of FcγR III/II and CR3 on macrophage, impaired the phagocytic ability against E. coli, and blocked phagosome-lysosome fusion. Consistent with this, C646 inhibited macrophage-associated bactericidal ability. Collectively, these data indicated that C646 exhibited potent immunomodulatory effects on macrophage both in the production of pro-inflammatory cytokines and bacterial phagocytosis.


Assuntos
Benzoatos/farmacologia , Infecções por Escherichia coli/tratamento farmacológico , Escherichia coli/fisiologia , Inflamação/tratamento farmacológico , Macrófagos/efeitos dos fármacos , Pirazóis/farmacologia , Fatores de Transcrição de p300-CBP/antagonistas & inibidores , Animais , Antígenos de Bactérias/imunologia , Células Cultivadas , Complemento C3/metabolismo , Imunomodulação , Lipopolissacarídeos/imunologia , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Nitrobenzenos , Fagocitose/efeitos dos fármacos , Pirazolonas , Transdução de Sinais
15.
Rev Esp Enferm Dig ; 111(1): 5-9, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30569728

RESUMO

BACKGROUND AND PURPOSE: epidemiological studies that assess the association of dietary total carbohydrate intake and inflammatory bowel disease risk (IBD) have yielded controversial results. Therefore, this study of various epidemiological studies was conducted in order to explore this relationship. METHODS: a systematic literature search of the PubMed, Embase, Web of Science and Medline databases was performed up to September 2017. Cohort, case-control or cross-sectional design studies were included that reported the association of dietary carbohydrate intake and IBD risk. Summary odds ratio (OR) and the corresponding 95% CI were calculated using the random effects model. RESULTS: a total of eight articles with 15 individual studies that included 1,361 cases were eligible according to the inclusion criteria. Dietary carbohydrate intake had a non-significant relationship with the risk of IBD (OR = 1.091, 95% CI = 0.817-1.455, I2 = 31.6%, pfor heterogeneity = 0.116). The pooled OR and 95% CI for ulcerative colitis (UC) and Crohn's disease (CD) with regard to dietary carbohydrate intake was 1.167 (0.777-1.752) and 1.010 (0.630-1.618), respectively. These associations were also non-significant in both European and Asia populations. CONCLUSIONS: a higher dietary total carbohydrate intake had a non-significant relationship with IBD risk. Further studies with large populations are needed to verify this relationship.


Assuntos
Carboidratos da Dieta/efeitos adversos , Doenças Inflamatórias Intestinais/etiologia , Estudos de Casos e Controles , Colite Ulcerativa/etiologia , Intervalos de Confiança , Doença de Crohn/etiologia , Estudos Transversais , Carboidratos da Dieta/administração & dosagem , Humanos , Razão de Chances , Risco
16.
Oncotarget ; 8(58): 98635-98645, 2017 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-29228716

RESUMO

Sox2 (Sry-box2) is essential for a variety of stem cells and is also expressed in colorectal cancer (CRC). However, the underlying mechanism by which Sox2 enhances CRC progression remains unclear. In the present study, we show that elevated Sox2 expression is significantly correlated with poor clinical prognosis. CRC is phenotypically heterogeneous, and harbors several subtypes of cancer cells. Elevated Sox2 expression was always detected in rounded-shape cells, which co-located to poorly differentiated regions, the invasive frontier and metastatic lesions. Knockdown of Sox2 in CRC cells not only decreased the number of round-shaped cells, but also suppressed cell migration, invasion as well as attenuated colony forming capacity and tumorigenicity. By contrast, overexpression of Sox2 in CRC cells was associated with up-regulation of multidrug resistance genes and accelerated CRC progression. Moreover, Sox2 conferred activation of Rho-ROCK signaling, whereas inhibition of ROCK signaling decreased cell migration, invasion, colony formation and self-renewal of CRC. Our results reveal that CRC is phenotypically and functionally heterogeneous. Elevated Sox2 expression activates the Rho-ROCK pathway, which in turn changes cell morphology and promotes cell migration and progression.

17.
Oncol Lett ; 14(5): 5773-5778, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29113206

RESUMO

The abnormal expression of nuclear paraspeckle assembly transcript 1 (NEAT1) may serve critical functions for the development and progression of various types of human tumor. However, the expression and biological function of NEAT1 in hepatoblastoma (HB) and the underlying mechanisms for the function of NEAT1 in HB remain largely uncharacterized. In the present study, the results of reverse transcription-quantitative polymerase chain reaction revealed that the expression of NEAT1 was significantly elevated in HB tissues. HB tissues with metastasis also exhibited significantly increased levels of NEAT1 compared with tissues without metastasis. The biological functions of NEAT1 were then assessed using gain-/loss-of-function studies. The results of in vitro assays revealed that inhibiting NEAT1 expression reduced the migration and invasion of HepG2 cells. By contrast, the induced expression of NEAT1 exhibited the opposite effect. The present study also demonstrated that the inhibition of NEAT1 expression prevented the epithelial-mesenchymal transition of HepG2 cells, whereas forced expression of NEAT1 exhibited the opposite effect. In addition, it was confirmed that NEAT1 could modulate the expression of microRNA (miR)-129-5p in HepG2 cells, and that NEAT1 may exert its effect on the metastatic behaviors and epithelial-mesenchymal transition of HepG2 cells by inhibiting miR-129-5p. In conclusion, the present study indicated that NEAT1 expression was aberrantly increased in HB and that it may promote the metastasis of HB cells by inhibiting miR-129-5p. Targeting NEAT1 may potentially be a novel therapeutic option for treating patients with HB.

18.
Oncol Rep ; 38(5): 2705-2716, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29048629

RESUMO

Neuroblastoma is the most common extracranial solid childhood tumor. Despite the availability of advanced multimodal therapy, high-risk patients still have low survival rates. p21-activated kinase 4 (PAK4) has been shown to regulate many cellular processes in cancer cells, including migration, polarization and proliferation. However, the role of PAK4 in neuroblastoma remains unclear. In the present study, we demonstrated that PAK4 was overexpressed in neuroblastoma tissues and was correlated with tumor malignance and prognosis. To investigate the function of PAK4 in neuroblastoma, we used a small-molecule inhibitor that targets PAK4, that is, PF-3758309. Our results showed that PF-3758309 significantly induced cell cycle arrest at the G1 phase and apoptosis in neuroblastoma cell lines. Meanwhile, the inhibition of PAK4 by PF-3758309 increased the expression of CDKN1A, BAD and BAK1 and decreased the expression of Bcl-2 and Bax. In addition, we screened the target genes of PAK4 by PCR array and found that 23 genes were upregulated (including TP53I3, TBX3, EEF1A2, CDKN1A, IFNB1 and MAPK8IP2) and 20 genes were downregulated (including TNFSF8, Bcl2-A1, Bcl2L1, SOCS3, BIRC3 and NFKB1) after PAK4 inhibition by PF-3758309. Moreover, PAK4 was found to regulate the cell cycle and apoptosis via the ERK signaling pathway. In conclusion, the present study demonstrated, for the first time, the expression and function of PAK4 in neuroblastomas and the inhibitory effect of PF-3758309, which deserves further investigation as an alternative strategy for neuroblastoma treatment.


Assuntos
Neuroblastoma/genética , Inibidores de Proteínas Quinases/farmacologia , Pirazóis/farmacologia , Pirróis/farmacologia , Quinases Ativadas por p21/genética , Quinases Ativadas por p21/metabolismo , Adulto , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Estadiamento de Neoplasias , Neuroblastoma/tratamento farmacológico , Neuroblastoma/metabolismo , Regulação para Cima/efeitos dos fármacos
19.
BMC Pediatr ; 17(1): 90, 2017 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-28351378

RESUMO

BACKGROUND: Previous studies have indicated edema may be involved in the pathophysiology following hypoxic-ischemic encephalopathy (HIE), and melatonin may exhibit neuro-protection against brain insults. However, little is known regarding the mechanisms that involve the protective effects of melatonin in the brain and peripheral tissues after HIE. The present study aimed to examine the effects of melatonin on multiple organs, and the expression of edema related proteins in a neonatal rat model of hypoxic-ischemic brain damage (HIBD). METHODS: One hundred ninety-two neonatal rats were randomly divided into three subgroups that underwent a sham surgery or HIBD. After the HIBD or sham-injury, the rats received an intraperitoneal injection of melatonin or an equal volume vehicle, respectively. We investigated the effects of melatonin on brain, kidney, and colon edema via histological examination and the expression of edema related proteins, including AQP-4, ZO-1 and occludin, via qPCR and western blot. RESULTS: Our data indicated (1) Melatonin reduced the histological injury in the brain and peripheral organs induced by HIBD as assessed via H-E staining and transmission electron microscopy. (2) Melatonin alleviated the HIBD-induced cerebral edema characterized by increased brain water content. (3) HIBD induced significant changes of edema related proteins, such as AQP-4, ZO-1 and occludin, and these changes were partially reversed by melatonin treatment. CONCLUSIONS: These findings provide substantial evidence that melatonin treatment has protective effects on the brain and peripheral organs after HIBD, and the edema related proteins, AQP4, ZO-1, and occludin, may indirectly contribute tothe mechanism of the edema protection by melatonin.


Assuntos
Edema Encefálico/prevenção & controle , Doenças do Colo/prevenção & controle , Edema/prevenção & controle , Hipóxia-Isquemia Encefálica/tratamento farmacológico , Nefropatias/prevenção & controle , Melatonina/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Animais , Animais Recém-Nascidos , Biomarcadores/metabolismo , Western Blotting , Edema Encefálico/diagnóstico , Edema Encefálico/etiologia , Edema Encefálico/metabolismo , Doenças do Colo/diagnóstico , Doenças do Colo/etiologia , Doenças do Colo/metabolismo , Edema/diagnóstico , Edema/etiologia , Edema/metabolismo , Hipóxia-Isquemia Encefálica/complicações , Hipóxia-Isquemia Encefálica/fisiopatologia , Injeções Intraperitoneais , Nefropatias/diagnóstico , Nefropatias/etiologia , Nefropatias/metabolismo , Microscopia Eletrônica de Transmissão , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Resultado do Tratamento
20.
Cancer Cell Int ; 17: 35, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28286417

RESUMO

BACKGROUND: Overexpression of cyclin D1 dependent kinases 4 and 6 (CDK4/6) is a common feature of many human cancers including leukemia. LEE011 is a novel inhibitor of both CDK4 and 6. To date, the molecular function of LEE011 in leukemia remains unclear. METHODS: Leukemia cell growth and apoptosis following LEE011 treatment was assessed through CCK-8 and annexin V/propidium iodide staining assays. Cell senescence was assessed by ß-galactosidase staining and p16INK4a expression analysis. Gene expression profiles of LEE011 treated HL-60 cells were investigated using an Arraystar Human LncRNA array. Gene ontology and KEGG pathway analysis were then used to analyze the differentially expressed genes from the cluster analysis. RESULTS: Our studies demonstrated that LEE011 inhibited proliferation of leukemia cells and could induce apoptosis. Hoechst 33,342 staining analysis showed DNA fragmentation and distortion of nuclear structures following LEE011 treatment. Cell cycle analysis showed LEE011 significantly induced cell cycle G1 arrest in seven of eight acute leukemia cells lines, the exception being THP-1 cells. ß-Galactosidase staining analysis and p16INK4a expression analysis showed that LEE011 treatment can induce cell senescence of leukemia cells. LncRNA microarray analysis showed 2083 differentially expressed mRNAs and 3224 differentially expressed lncRNAs in LEE011-treated HL-60 cells compared with controls. Molecular function analysis showed that LEE011 induced senescence in leukemia cells partially through downregulation of the transcriptional expression of MYBL2. CONCLUSIONS: We demonstrate for the first time that LEE011 treatment results in inhibition of cell proliferation and induction of G1 arrest and cellular senescence in leukemia cells. LncRNA microarray analysis showed differentially expressed mRNAs and lncRNAs in LEE011-treated HL-60 cells and we demonstrated that LEE011 induces cellular senescence partially through downregulation of the expression of MYBL2. These results may open new lines of investigation regarding the molecular mechanism of LEE011 induced cellular senescence.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA