Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 308
Filtrar
1.
Clin Res Hepatol Gastroenterol ; 48(4): 102318, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38471582

RESUMO

BACKGROUND: Concurrent chemo-radiotherapy (CCRT) is the preferred non-surgical treatment for patients with locally advanced esophageal squamous cell carcinoma (ESCC). Unfortunately, some patients respond poorly, which leads to inappropriate or excessive treatment and affects patient survival. To accurately predict the response of ESCC patients to CCRT, we developed classification models based on the clinical, serum proteomic and radiomic data. METHODS: A total of 138 ESCC patients receiving CCRT were enrolled in this study and randomly split into a training cohort (n = 92) and a test cohort (n = 46). All patients were classified into either complete response (CR) or incomplete response (non-CR) groups according to RECIST1.1. Radiomic features were extracted by 3Dslicer. Serum proteomic data was obtained by Olink proximity extension assay. The logistic regression model with elastic-net penalty and the R-package "rms" v6.2-0 were applied to construct classification and nomogram models, respectively. The area under the receiver operating characteristic curves (AUC) was used to evaluate the predictive performance of the models. RESULTS: Seven classification models based on multi-omics data were constructed, of which Model-COR, which integrates five clinical, five serum proteomic, and seven radiomic features, achieved the best predictive performance on the test cohort (AUC = 0.8357, 95 % CI: 0.7158-0.9556). Meanwhile, patients predicted to be CR by Model-COR showed significantly longer overall survival than those predicted to be non-CR in both cohorts (Log-rank P = 0.0014 and 0.027, respectively). Furthermore, two nomogram models based on multi-omics data also performed well in predicting response to CCRT (AUC = 0.8398 and 0.8483, respectively). CONCLUSION: We developed and validated a multi-omics based classification model and two nomogram models for predicting the response of ESCC patients to CCRT, which achieved the best prediction performance by integrating clinical, serum Olink proteomic, and radiomic data. These models could be useful for personalized treatment decisions and more precise clinical radiotherapy and chemotherapy for ESCC patients.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Neoplasias Esofágicas/terapia , Carcinoma de Células Escamosas do Esôfago/terapia , Multiômica , Proteômica , Resposta Patológica Completa , Quimiorradioterapia , Estudos Retrospectivos
2.
J Pathol ; 263(1): 74-88, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38411274

RESUMO

Fascin actin-bundling protein 1 (Fascin) is highly expressed in a variety of cancers, including esophageal squamous cell carcinoma (ESCC), working as an important oncogenic protein and promoting the migration and invasion of cancer cells by bundling F-actin to facilitate the formation of filopodia and invadopodia. However, it is not clear how exactly the function of Fascin is regulated by acetylation in cancer cells. Here, in ESCC cells, the histone acetyltransferase KAT8 catalyzed Fascin lysine 41 (K41) acetylation, to inhibit Fascin-mediated F-actin bundling and the formation of filopodia and invadopodia. Furthermore, NAD-dependent protein deacetylase sirtuin (SIRT) 7-mediated deacetylation of Fascin-K41 enhances the formation of filopodia and invadopodia, which promotes the migration and invasion of ESCC cells. Clinically, the analysis of cancer and adjacent tissue samples from patients with ESCC showed that Fascin-K41 acetylation was lower in the cancer tissue of patients with lymph node metastasis than in that of patients without lymph node metastasis, and low levels of Fascin-K41 acetylation were associated with a poorer prognosis in patients with ESCC. Importantly, K41 acetylation significantly blocked NP-G2-044, one of the Fascin inhibitors currently being clinically evaluated, suggesting that NP-G2-044 may be more suitable for patients with low levels of Fascin-K41 acetylation, but not suitable for patients with high levels of Fascin-K41 acetylation. © 2024 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Proteínas de Transporte , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Proteínas dos Microfilamentos , Sirtuínas , Humanos , Acetilação , Actinas/metabolismo , Linhagem Celular Tumoral , Neoplasias Esofágicas/patologia , Histona Acetiltransferases/metabolismo , Metástase Linfática , Sirtuínas/metabolismo
4.
Mol Oncol ; 17(11): 2451-2471, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37753805

RESUMO

During malignant tumour development, the extracellular matrix (ECM) is usually abnormally regulated. Dysregulated expression of lysyl oxidase-like 2 (LOXL2), matrix metalloproteinase 9 (MMP9) and lipocalin 2 (LCN2) are associated with ECM remodelling. In this study, protein-protein interaction assays indicated that LCN2 and LOXL2 interactions and LCN2 and MMP9 interactions occurred both intracellularly and extracellularly, but interactions between LOXL2 and MMP9 only occurred intracellularly. The LCN2/LOXL2/MMP9 ternary complex promoted migration and invasion of oesophageal squamous cell carcinoma (ESCC) cells, as well as tumour growth and malignant progression in vivo, while the iron chelator deferoxamine mesylate (DFOM) inhibited ESCC tumour growth. Co-overexpression of LCN2, LOXL2 and MMP9 enhanced the ability of tumour cells to degrade fibronectin and Matrigel, increased the formation and extension of filopodia, and promoted the rearrangement of microfilaments through upregulation of profilin 1. In addition, the LCN2/LOXL2/MMP9 ternary complex promoted the expression of testican-1 (SPOCK1), and abnormally activated the FAK/AKT/GSK3ß signalling pathway. In summary, the LCN2/LOXL2/MMP9 ternary complex promoted the migration and invasion of cancer cells and malignant tumour progression through multiple mechanisms and could be a potential therapeutic target.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Lipocalina-2/genética , Metaloproteinase 9 da Matriz/metabolismo , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas do Esôfago/genética , Transdução de Sinais , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Proteoglicanas/metabolismo , Aminoácido Oxirredutases/genética , Aminoácido Oxirredutases/metabolismo
5.
Biochim Biophys Acta Rev Cancer ; 1878(6): 188966, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37657681

RESUMO

Vesicle trafficking is an unceasing and elaborate cellular process that functions in material transport and information delivery. Recent studies have identified the small GTPase, Ras-related protein in brain 11A (RAB11A), as a key regulator in this process. Aberrant RAB11A expression has been reported in several types of cancers, suggesting the important functions and characteristics of RAB11A in cancer. These discoveries are of great significance because therapeutic strategies based on the physiological and pathological status of RAB11A might make cancer treatment more effective, as the molecular mechanisms of cancer development have not been completely revealed. However, these studies on RAB11A have not been reviewed and discussed specifically. Therefore, we summarize and discuss the recent findings of RAB11A involvement in different biological processes, including endocytic recycling regulation, receptors and adhesion molecules recycling, exosome secretion, phagophore formation and cytokinesis, as well as regulatory mechanisms in several tumor types. Moreover, contradictory effects of RAB11A have also been observed in different types of cancers, implying the dual characteristics of RAB11A in cancer, which are either oncogenic or tumor-suppressive. This review on the functions and characteristics of RAB11A highlights the value of RAB11A in inducing multiple important phenotypes based on vesicle trafficking and therefore will offer insights for future studies to reveal the molecular mechanisms, clinical significance, and therapeutic targeting of RAB11A in different cancers.


Assuntos
Proteínas de Transporte , Neoplasias , Humanos , Transporte Biológico , Neoplasias/genética
6.
Genome Biol ; 24(1): 193, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37620896

RESUMO

BACKGROUND: As one of the most common malignancies, esophageal cancer has two subtypes, squamous cell carcinoma and adenocarcinoma, arising from distinct cells-of-origin. Distinguishing cell-type-specific molecular features from cancer-specific characteristics is challenging. RESULTS: We analyze whole-genome bisulfite sequencing data on 45 esophageal tumor and nonmalignant samples from both subtypes. We develop a novel sequence-aware method to identify large partially methylated domains (PMDs), revealing profound heterogeneity at both methylation level and genomic distribution of PMDs across tumor samples. We identify subtype-specific PMDs that are associated with repressive transcription, chromatin B compartments and high somatic mutation rate. While genomic locations of these PMDs are pre-established in normal cells, the degree of loss is significantly higher in tumors. We find that cell-type-specific deposition of H3K36me2 may underlie genomic distribution of PMDs. At a smaller genomic scale, both cell-type- and cancer-specific differentially methylated regions (DMRs) are identified for each subtype. Using binding motif analysis within these DMRs, we show that a cell-type-specific transcription factor HNF4A maintains the binding sites that it generates in normal cells, while establishing new binding sites cooperatively with novel partners such as FOSL1 in esophageal adenocarcinoma. Finally, leveraging pan-tissue single-cell and pan-cancer epigenomic datasets, we demonstrate that a substantial fraction of cell-type-specific PMDs and DMRs identified here in esophageal cancer are actually markers that co-occur in other cancers originating from related cell types. CONCLUSIONS: These findings advance our understanding of DNA methylation dynamics at various genomic scales in normal and malignant states, providing novel mechanistic insights into cell-type- and cancer-specific epigenetic regulations.


Assuntos
Adenocarcinoma , Carcinoma de Células Escamosas , Neoplasias Esofágicas , Humanos , Epigênese Genética , Neoplasias Esofágicas/genética , Adenocarcinoma/genética , Carcinoma de Células Escamosas/genética , Cromatina
7.
Dokl Biochem Biophys ; 510(1): 132-143, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37582875

RESUMO

LOX (Lysyl oxidase) family participates in the catalysis of collagen and elastin to maintain ECM homeostasis. Glioma is the most common primary brain tumor and LOX family has not been systemic studied in glioma. In this study, we found LOX family members are upregulated expressed in gliomas samples. A protein-protein interaction network (PPIN) was construct to visualize and understand the differential expression pattern, as well as functional annotation, for LOX family and their interacting proteins, which involved in collagen fibril organization and MAPK signaling pathway. Through subcellular localization distribution, the LOX family members distribute both intracellular and extracellular. All five LOX members are consistently significantly correlate with dendritic cell both in immune infiltrate of GBM and LGG. Survival analysis showed that high expression of LOX family is associated with a poor prognosis of gliomas patients. These analyses provide important clues to identify the potential biological roles for LOX family in gliomas, which might serve as diagnosis markers.


Assuntos
Glioma , Proteína-Lisina 6-Oxidase , Humanos , Proteína-Lisina 6-Oxidase/genética , Proteína-Lisina 6-Oxidase/análise , Proteína-Lisina 6-Oxidase/metabolismo , Relevância Clínica , Colágeno/metabolismo , Glioma/genética
8.
Mol Cell Proteomics ; 22(8): 100593, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37328063

RESUMO

Proteins containing a CAAX motif at the C-terminus undergo prenylation for localization and activity and include a series of key regulatory proteins, such as RAS superfamily members, heterotrimeric G proteins, nuclear lamina protein, and several protein kinases and phosphatases. However, studies of prenylated proteins in esophageal cancer are limited. Here, through research on large-scale proteomic data of esophageal cancer in our laboratory, we found that paralemmin-2 (PALM2), a potential prenylated protein, was upregulated and associated with poor prognosis in patients. Low-throughput verification showed that the expression of PALM2 in esophageal cancer tissues was higher than that in their paired normal esophageal epithelial tissues, and it was generally expressed in the membrane and cytoplasm of esophageal cancer cells. PALM2 interacted with the two subunits of farnesyl transferase (FTase), FNTA and FNTB. Either the addition of an FTase inhibitor or mutation in the CAAX motif of PALM2 (PALM2C408S) impaired its membranous localization and reduced the membrane location of PALM2, indicating PALM2 was prenylated by FTase. Overexpression of PALM2 enhanced the migration of esophageal squamous cell carcinoma cells, whereas PALM2C408S lost this ability. Mechanistically, PALM2 interacted with the N-terminal FERM domain of ezrin of the ezrin/radixin/moesin (ERM) family. Mutagenesis indicated that lysine residues K253/K254/K262/K263 in ezrin's FERM domain and C408 in PALM2's CAAX motif were important for PALM2/ezrin interaction and ezrin activation. Knockout of ezrin prevented enhanced cancer cell migration by PALM2 overexpression. PALM2, depending on its prenylation, increased both ezrin membrane localization and phosphorylation of ezrin at Y146. In summary, prenylated PALM2 enhances the migration of cancer cells by activating ezrin.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Movimento Celular , Neoplasias Esofágicas/metabolismo , Proteômica
9.
Front Bioeng Biotechnol ; 11: 1181117, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37334265

RESUMO

Background: Patients with unilateral post-LASIK keratectasia (KE) have clinical ectasia in one eye but not in the fellow eye. As serious complications, these cases are rarely reported but are worth investigating. This study aimed to explore the characteristics of unilateral KE and the accuracy of corneal tomographic and biomechanical parameters to detect KE and distinguish fellow eyes from control eyes. Methods: The study analyzed 23 KE eyes, 23 KE fellow eyes, and 48 normal eyes from age- and sex-matched patients who had undergone LASIK. The Kruskal-Wallis test and further paired comparisons were performed to compare the clinical measurements of the three groups. The receiver operating characteristic curve was used to evaluate the ability to distinguish KE and fellow eyes from the control eyes. Binary logistic regression with the forward stepwise method was performed to produce a combined index, and the DeLong test was used to compare the discriminability difference of the parameters. Results: Males accounted for 69.6% of patients with unilateral KE. The duration between corneal surgery and the onset of ectasia ranged from 4 months to 18 years, with a median time of 10 years. The KE fellow eye had a higher posterior evaluation (PE) value than the control eyes (5 vs. 2, p = 0.035). Diagnostic tests showed that PE, posterior radius of curvature (3 mm), anterior evaluation (FE), and Corvis biomechanical index-laser vision correction (CBI-LVC) were sensitive indicators for distinguishing KE in the control eyes. The ability of PE to detect the KE fellow eye from the control eye was 0.745 (0.628 and 0.841), with 73.91% sensitivity and 68.75% specificity at a cut-off value of 3. The ability of a combined index, constructed using PE and FE, to distinguish fellow eyes of KE from controls was 0.831 (0.723 and 0.909), which was higher than that of PE and FE individually (p < 0.05). Conclusion: The fellow eyes of patients with unilateral KE had significantly higher PE values than control eyes, and a combination of PE and FE enhanced this differentiation in a Chinese population. More attention should be paid to the long-term follow-up of patients after LASIK and to be wary of the occurrence of early KE.

10.
Oncogene ; 42(30): 2315-2328, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37353616

RESUMO

SOX2 is highly expressed and controls tumor initiation and cancer stem cell function in various squamous cell carcinomas including esophageal squamous cancer. However, the molecular mechanism leading to SOX2 overexpression in cancer is incompletely understood. Here, we identified CHIP, a chaperone-associated ubiquitin E3 ligase, as a novel negative regulator of SOX2 protein stability and tumorigenic activity in esophageal squamous carcinoma cells. We showed that CHIP interacted with SOX2 primarily via chaperone HSP70, together they catalyzed SOX2 ubiquitination and degradation via proteasome. In contrast, HSP90 promoted SOX2 stability and inhibition of HSP90 activity induced SOX2 ubiquitination and degradation. Notably, unlike the case in normal esophageal tissues where CHIP was detected in both the cytoplasm and nucleus, CHIP in clinical esophageal tumor specimens was predominantly localized in the cytoplasm. Consistent with this observation, we observed increased expression of exportin-1/CRM-1 in clinical esophageal tumor specimens. We further demonstrated that CHIP catalyzed SOX2 ubiquitination and degradation primarily in the nuclear compartment. Taken together, our study has identified CHIP as a key suppressor of SOX2 protein stability and tumorigenic activity and revealed CHIP nuclear exclusion as a potential mechanism for aberrant SOX2 overexpression in esophageal cancer. Our study also suggests HSP90 inhibitors as potential therapeutic agents for SOX2-positive cancers.


Assuntos
Neoplasias Esofágicas , Ubiquitina-Proteína Ligases , Humanos , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Complexo de Endopeptidases do Proteassoma/metabolismo , Chaperonas Moleculares/metabolismo , Neoplasias Esofágicas/genética , Estabilidade Proteica , Fatores de Transcrição SOXB1/metabolismo
11.
Oncogene ; 42(30): 2297-2314, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37349645

RESUMO

Esophageal squamous cell carcinoma (ESCC) is one of the deadliest forms of human malignancy that currently lacks approved targeted therapeutics. Accumulating evidence suggests that SOX2 overexpression is a key driving factor for ESCC and various squamous cell carcinoma. Here, through screening a small-molecule kinase inhibitor library, we identified GSK3ß as a kinase that is critically required for robust SOX2 expression in ESCC cells. GSK3ß did not promote SOX2 transcriptionally but was required for SOX2 protein stability. We demonstrated that GSK3ß interacts with and phosphorylates SOX2 at residue S251, which blocks SOX2 from ubiquitination and proteasome-dependent degradation instigated by ubiquitin E3 ligase CUL4ADET1-COP1. Pharmacological inhibition or knockdown of GSK3ß by RNA interference selectively impaired SOX2-positive ESCC cell proliferation, cancer stemness, and tumor growth in mouse xenograft model, suggesting that GSK3ß promotes ESCC tumorigenesis primarily by driving SOX2 overexpression. GSK3ß was found to be frequently overexpressed in clinical esophageal tumors, and there was a positive correlation between GSK3ß and SOX2 protein levels. Notably, we found that SOX2 enhanced GSK3ß expression transcriptionally, suggesting the existence of a vicious cycle that drives a coordinated GSK3ß and SOX2 overexpression in ESCC cells. Finally, we demonstrated in tumor xenograft model that GSK3ß inhibitor AR-A014418 was effective in suppressing SOX2-positive ESCC tumor progression and inhibited tumor progression cooperatively with chemotherapeutic agent carboplatin. In conclusion, we uncovered a novel role for GSK3ß in driving SOX2 overexpression and tumorigenesis and provided evidence that targeting GSK3ß may hold promise for the treatment of recalcitrant ESCCs.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Animais , Camundongos , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Neoplasias Esofágicas/patologia , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Linhagem Celular Tumoral , Carcinogênese/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Proteínas Culina/genética , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo
12.
Biomedicines ; 11(4)2023 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-37189802

RESUMO

(1) Background: Esophageal cancer (EC) is an important global health challenge. Due to the lack of necessary biomarkers and therapeutic targets, the survival of EC patients is poor. The EC proteomic data of 124 patients recently published by our group provides a database for research in this field. (2) Methods: Bioinformatics analysis was used to identify DNA replication and repair-related proteins in EC. Proximity ligation assay, colony formation assay, DNA fiber assay, and flow cytometry were used to study the effects of related proteins on EC cells. Kaplan-Meier survival analysis was used to evaluate the relationship between gene expression and the survival time of EC patients. (3) Results: Chromatin assembly factor 1 subunit A (CHAF1A) was highly correlated with proliferating cell nuclear antigen (PCNA) expression in EC. CHAF1A and PCNA colocalized in the nucleus of EC cells. Compared with the knockdown of CHAF1A or PCNA alone, the double knockdown of CHAF1A and PCNA could significantly inhibit EC cell proliferation. Mechanistically, CHAF1A and PCNA synergistically accelerated DNA replication and promoted S-phase progression. EC patients with high expression of both CHAF1A and PCNA had a worse survival rate. (4) Conclusion: we identify CHAF1A and PCNA as key cell cycle-related proteins leading to the malignant progression of EC, and these proteins could serve as important prognostic biomarkers and targets for EC.

13.
J Exp Clin Cancer Res ; 42(1): 136, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37254126

RESUMO

BACKGROUND: Increasing evidence indicates that the tumor microenvironment (TME) is a crucial determinant of cancer progression. However, the clinical and pathobiological significance of stromal signatures in the TME, as a complex dynamic entity, is still unclear in esophageal squamous cell carcinoma (ESCC). METHODS: Herein, we used single-cell transcriptome sequencing data, imaging mass cytometry (IMC) and multiplex immunofluorescence staining to characterize the stromal signatures in ESCC and evaluate their prognostic values in this aggressive disease. An automated quantitative pathology imaging system determined the locations of the lamina propria, stroma, and invasive front. Subsequently, IMC spatial analyses further uncovered spatial interaction and distribution. Additionally, bioinformatics analysis was performed to explore the TME remodeling mechanism in ESCC. To define a new molecular prognostic model, we calculated the risk score of each patient based on their TME signatures and pTNM stages. RESULTS: We demonstrate that the presence of fibroblasts at the tumor invasive front was associated with the invasive depth and poor prognosis. Furthermore, the amount of α-smooth muscle actin (α-SMA)+ fibroblasts at the tumor invasive front positively correlated with the number of macrophages (MØs), but negatively correlated with that of tumor-infiltrating granzyme B+ immune cells, and CD4+ and CD8+ T cells. Spatial analyses uncovered a significant spatial interaction between α-SMA+ fibroblasts and CD163+ MØs in the TME, which resulted in spatially exclusive interactions to anti-tumor immune cells. We further validated the laminin and collagen signaling network contributions to TME remodeling. Moreover, compared with pTNM staging, a molecular prognostic model, based on expression of α-SMA+ fibroblasts at the invasive front, and CD163+ MØs, showed higher accuracy in predicting survival or recurrence in ESCC patients. Regression analysis confirmed this model is an independent predictor for survival, which also identifies a high-risk group of ESCC patients that can benefit from adjuvant therapy. CONCLUSIONS: Our newly defined biomarker signature may serve as a complement for current clinical risk stratification approaches and provide potential therapeutic targets for reversing the fibroblast-mediated immunosuppressive microenvironment.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas/patologia , Linfócitos T CD8-Positivos/metabolismo , Prognóstico , Fibroblastos/metabolismo , Microambiente Tumoral
14.
Int J Radiat Oncol Biol Phys ; 117(4): 966-978, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37244629

RESUMO

PURPOSE: The overall survival of patients with esophageal squamous cell carcinoma (ESCC) is not high due to the lack of markers to evaluate concurrent chemoradiation therapy (CCRT) resistance. The aim of this study is to use proteomics to identify a protein related to radiation therapy resistance and explore its molecular mechanisms. METHODS AND MATERIALS: Proteomic data for pretreatment biopsy tissues from 18 patients with ESCC who underwent CCRT (complete response [CR] group, n = 8; incomplete response [

15.
Mol Cell Proteomics ; 22(6): 100551, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37076047

RESUMO

Esophageal cancer is the seventh most common cancer in the world. Although traditional treatment methods such as radiotherapy and chemotherapy have good effects, their side effects and drug resistance remain problematic. The repositioning of drug function provides new ideas for the research and development of anticancer drugs. We previously showed that the Food and Drug Administration-approved drug sulconazole can effectively inhibit the growth of esophageal cancer cells, but its molecular mechanism is not clear. Here, our study demonstrated that sulconazole had a broad spectrum of anticancer effects. It can not only inhibit the proliferation but also inhibit the migration of esophageal cancer cells. Both transcriptomic sequencing and proteomic sequencing showed that sulconazole could promote various types of programmed cell death and inhibit glycolysis and its related pathways. Experimentally, we found that sulconazole induced apoptosis, pyroptosis, necroptosis, and ferroptosis. Mechanistically, sulconazole triggered mitochondrial oxidative stress and inhibited glycolysis. Finally, we showed that low-dose sulconazole can increase radiosensitivity of esophageal cancer cells. Taken together, these new findings provide strong laboratory evidence for the clinical application of sulconazole in esophageal cancer.


Assuntos
Neoplasias Esofágicas , Proteômica , Humanos , Linhagem Celular Tumoral , Neoplasias Esofágicas/metabolismo , Tolerância a Radiação , Estresse Oxidativo , Apoptose , Glicólise
16.
Biomolecules ; 13(3)2023 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-36979412

RESUMO

Ras-related associated with diabetes (RRAD), a member of the Ras-related GTPase superfamily, is primarily a cytosolic protein that actives in the plasma membrane. RRAD is highly expressed in type 2 diabetes patients and as a biomarker of congestive heart failure. Mounting evidence showed that RRAD is important for the progression and metastasis of tumor cells, which play opposite roles as an oncogene or tumor suppressor gene depending on cancer and cell type. These findings are of great significance, especially given that relevant molecular mechanisms are being discovered. Being regulated in various pathways, RRAD plays wide spectrum cellular activity including tumor cell division, motility, apoptosis, and energy metabolism by modulating tumor-related gene expression and interacting with multiple downstream effectors. Additionally, RRAD in senescence may contribute to its role in cancer. Despite the twofold characters of RRAD, targeted therapies are becoming a potential therapeutic strategy to combat cancers. This review will discuss the dual identity of RRAD in specific cancer type, provides an overview of the regulation and downstream effectors of RRAD to offer valuable insights for readers, explore the intracellular role of RRAD in cancer, and give a reference for future mechanistic studies.


Assuntos
Diabetes Mellitus Tipo 2 , Neoplasias , Proteínas ras , Humanos , Biomarcadores , Diabetes Mellitus Tipo 2/metabolismo , Neoplasias/metabolismo , Proteínas ras/metabolismo
17.
Immun Inflamm Dis ; 11(2): e780, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36840482

RESUMO

BACKGROUND: The risk of hepatitis B virus (HBV) reactivation after biologic and targeted synthetic disease-modifying antirheumatic drugs (b/tsDMARDs) therapy in patients with rheumatoid arthritis (RA) combined with HBsAg-/HBcAb+ is still inconsistent. METHODS: We conducted a systematic review of existing databases from 1977 to August 22, 2021. Studies of RA patients combined with HBsAg-/HBcAb +, treated with b/tsDMARDs and the reported number of HBV reactivation were included. RESULTS: We included 26 studies of 2252 HBsAg-/HBcAb+ RA patients treated with b/tsDMARDs. The pooled HBV reactivation rate was 2.0% (95% confidence interval [CI]: 0.01-0.04; I2 = 66%, p < .01). In the subgroup analysis, the HBV reactivation rate of rituximab (RTX), abatacept, and inhibitors of Janus kinase (JAK), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) were 9.0% (95% CI: 0.04-0.15; I2 = 61%, p = .03), 6.0% (95% CI: 0.01-0.13; I2 = 40%, p = .19), 1.0% (95% CI: 0.00-0.03; I2 = 41%, p = .19), 0.0% (95% CI: 0.00-0.02; I2 = 0%, p = .43), 0.0% (95% CI: 0.00-0.01; I2 = 0%, p = .87), respectively. While HBsAb- patients have a significant risk of reactivation (odds ratio [OR] = 4.56, 95% CI = 2.45-8.48; I2 = 7%, p = .37), low HBsAb+ group also display a significant risk of reactivation (OR = 5.45, 95% CI: 1.35-21.94; I2 = 0%, p = .46). CONCLUSIONS: This meta-analysis demonstrates the highest potential risk of HBV reactivation in HBsAg-/HBcAb+ RA patients receiving RTX treatment, especially HBsAb- patients. Our study furthers the understanding of the prophylactic use of anti-HBV drugs in such patients. However, it is relative safety to use the inhibitors of IL-6, TNF-α, and JAK in these patients.


Assuntos
Artrite Reumatoide , Produtos Biológicos , Hepatite B , Inibidores de Janus Quinases , Humanos , Artrite Reumatoide/tratamento farmacológico , Produtos Biológicos/efeitos adversos , Produtos Biológicos/uso terapêutico , Hepatite B/induzido quimicamente , Hepatite B/tratamento farmacológico , Anticorpos Anti-Hepatite B , Antígenos de Superfície da Hepatite B , Vírus da Hepatite B/fisiologia , Interleucina-6 , Inibidores de Janus Quinases/efeitos adversos , Inibidores de Janus Quinases/uso terapêutico , Rituximab/efeitos adversos , Rituximab/uso terapêutico , Fator de Necrose Tumoral alfa
19.
Cell Death Differ ; 30(2): 527-543, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36526897

RESUMO

Anillin (ANLN) is a mitosis-related protein that promotes contractile ring formation and cytokinesis, but its cell cycle-dependent degradation mechanisms in cancer cells remain unclear. Here, we show that high expression of ANLN promotes cytokinesis and proliferation in esophageal squamous cell carcinoma (ESCC) cells and is associated with poor prognosis in ESCC patients. Furthermore, the findings of the study showed that the deubiquitinating enzyme USP10 interacts with ANLN and positively regulates ANLN protein levels. USP10 removes the K11- and K63-linked ubiquitin chains of ANLN through its deubiquitinase activity and prevents ANLN ubiquitin-mediated degradation. Importantly, USP10 promotes contractile ring assembly at the cytokinetic furrow as well as cytokinesis by stabilizing ANLN. Interestingly, USP10 and the E3 ubiquitin ligase APC/C co-activator Cdh1 formed a functional complex with ANLN in a non-competitive manner to balance ANLN protein levels. In addition, the macrolide compound FW-04-806 (F806), a natural compound with potential for treating ESCC, inhibited the mitosis of ESCC cells by targeting USP10 and promoting ANLN degradation. F806 selectively targeted USP10 and inhibited its catalytic activity but did not affect the binding of Cdh1 to ANLN and alters the balance of the USP10-Cdh1-ANLN complex. Additionally, USP10 expression was positively correlated with ANLN level and poor prognosis of ESCC patients. Overall, targeting the USP10-ANLN axis can effectively inhibit ESCC cell-cycle progression.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Carcinoma de Células Escamosas do Esôfago/genética , Neoplasias Esofágicas/metabolismo , Proteínas Contráteis/metabolismo , Ubiquitina/metabolismo , Proliferação de Células , Linhagem Celular Tumoral , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo
20.
Ann Surg Oncol ; 30(4): 2242-2243, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36581725

RESUMO

The past eighth edition of the American Joint Committee on Cancer (AJCC)/International Union against Cancer (UICC) pathologic tumor-node-metastasis (pTNM) staging system for esophageal squamous cell carcinoma (ESCC) patients, which also is the gold standard of postoperative treatment decision-making, needs to be continuously improved. To improve the efficiency of the staging system, the proteomic data from Chinese ESCC patients was combined with preoperative radiomic data and pTNM data to establish the multiomic RadpTNM and ProtRadpTNM models and compare them with the traditional pTNM staging system. The results suggest that both the RadpTNM and ProtRadpTNM models are significantly better than the traditional pTNM staging system. Future prospective multicentered cohort studies in Asian and Caucasian patients with ESCC are warranted to evaluate the efficiency of the multiomic models.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Carcinoma de Células Escamosas do Esôfago/cirurgia , Carcinoma de Células Escamosas do Esôfago/patologia , Prognóstico , Estadiamento de Neoplasias , Neoplasias Esofágicas/patologia , Multiômica , Proteômica , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA