Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
ACS Nano ; 18(8): 6638-6649, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38350032

RESUMO

Strong metal-support interactions (SMSIs) are well-known in the field of heterogeneous catalysis to induce the encapsulation of platinum (Pt) group metals by oxide supports through high temperature H2 reduction. However, demonstrations of SMSI overlayers have largely been limited to reducible oxides, such as TiO2 and Nb2O5. Here, we show that the amorphous native surface oxide of plasmonic aluminum nanocrystals (AlNCs) exhibits SMSI-induced encapsulation of Pt following reduction in H2 in a Pt structure dependent manner. Reductive treatment in H2 at 300 °C induces the formation of an AlOx SMSI overlayer on Pt clusters, leaving Pt single-atom sites (Ptiso) exposed available for catalysis. The remaining exposed Ptiso species possess a more uniform local coordination environment than has been observed on other forms of Al2O3, suggesting that the AlOx native oxide of AlNCs presents well-defined anchoring sites for individual Pt atoms. This observation extends our understanding of SMSIs by providing evidence that H2-induced encapsulation can occur for a wider variety of materials and should stimulate expanded studies of this effect to include nonreducible oxides with oxygen defects and the presence of disorder. It also suggests that the single-atom sites created in this manner, when combined with the plasmonic properties of the Al nanocrystal core, may allow for site-specific single-atom plasmonic photocatalysis, providing dynamic control over the light-driven reactivity in these systems.

2.
Oncol Lett ; 26(6): 542, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38020304

RESUMO

Epigenetic modification is crucial for transmitting genetic information, while abnormalities in DNA methylation modification are primarily associated with cancer and neurological diseases. As a multifunctional epigenetic modifier, ubiquitin like with PHD and ring finger domains 1 (UHRF1) mainly affects cell energy metabolism and cell cycle control. It also inhibits the transcription of tumor suppressor genes through DNA and/or histone methylation modifications, promoting the occurrence and development of cancer. Therefore, comprehensively understanding the molecular mechanism of the epigenetic modification of UHRF1 in tumors will help identify targets for inhibiting the expression and function of UHRF1. Notably, each domain of UHRF1 functions as a whole and differently. Thus, the abnormality of any domain can lead to a change in phenotype or disease. However, the specific regulatory mechanism and proteins of each domain have not been fully elucidated. The present review aimed to contribute to the study of the regulatory mechanism of UHRF1 to a greater extent in different cancers and provide ideas for drug research by clarifying the function of UHRF1 domains.

3.
Nat Mater ; 22(8): 1022-1029, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37349398

RESUMO

In analogy to natural enzymes, an elaborated design of catalytic systems with a specifically tailored local chemical environment could substantially improve reaction kinetics, effectively combat catalyst poisoning effect and boost catalyst lifetime under unfavourable reaction conditions. Here we report a unique design of 'Ni(OH)2-clothed Pt-tetrapods' with an amorphous Ni(OH)2 shell as a water dissociation catalyst and a proton conductive encapsulation layer to isolate the Pt core from bulk alkaline electrolyte while ensuring efficient proton supply to the active Pt sites. This design creates a favourable local chemical environment to result in acidic-like hydrogen evolution reaction kinetics with a lowest Tafel slope of 27 mV per decade and a record-high specific activity and mass activity in alkaline electrolyte. The proton conductive Ni(OH)2 shell can also effectively reject impurity ions and retard the Oswald ripening, endowing a high tolerance to solution impurities and exceptional long-term durability that is difficult to achieve in the naked Pt catalysts. The markedly improved hydrogen evolution reaction activity and durability in an alkaline medium promise an attractive catalyst material for alkaline water electrolysers and renewable chemical fuel generation.

4.
Clin Transl Oncol ; 25(10): 2938-2949, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37017923

RESUMO

Renal cell carcinoma (RCC) with poor prognosis and high incidence rate is a common malignant disease. Current therapies could bring little benefit for the patients with advanced-stage RCC. PDIA2 is an isomerase responsible for protein folding and its role in cancer including RCC is under investigation. In this study, we found that PDIA2 was expressed much higher in RCC tissues than the control but the methylation level of PDIA2 promoter was lower based on the TCGA data. Patients with higher PDIA2 expression exerted worse survival. In clinical specimen, PDIA2 expression was correlated to patients' clinical factors such as TNM stage (I/II vs III/IV, p = 0.025) and tumor size (≤ 7 cm vs > 7 cm, p = 0.004). Moreover, K-M analysis showed that PDIA2 was associated with patients' survival in RCC. PDIA2 was expressed much higher in cancer cells A498 than 786-O than that in 293 T cells. After PDIA2 was knocked down, cell proliferation, migration and invasion was potently inhibited. But cell apoptotic rate increased reversely. Furthermore, the efficacy of Sunitinib on RCC cells was strengthened after PDIA2 knockdown. In addition, knockdown of PDIA2 gene leaded to downregulation of levels of JNK1/2, phosphorylated JNK1/2, c-JUN, and Stat3. But this inhibition was partially released when JNK1/2 was overexpressed. In consistent, cell proliferation was also partially recovered. In summary, PDIA2 plays important role in progression of RCC and JNK signaling pathway might be regulated by PDIA2. This study suggests PDIA2 as a candidate target for therapy of RCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Neoplasias Renais/patologia , Sistema de Sinalização das MAP Quinases , Prognóstico
5.
J Foot Ankle Surg ; 62(2): 398-404, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36588066

RESUMO

Regarding the treatment of ankle arthritis, the choice of arthroscopic ankle arthrodesis (AAA) or open ankle arthrodesis (OAA) remains controversial. To guide clinical decision-making, we conducted a meta-analysis on the optimal treatment of ankle arthrodesis. We identified eligible studies published from June 1, 1969 to June 1, 2020 using the Cochrane Library, PubMed, OVID, Embase, and Medline searched the references of relevant studies. Randomized and non-randomized studies that compared outcomes of AAA and OAA were included. After the methodologic assessment, available data were extracted and statistically reviewed. The primary outcomes were overall complications rate, tourniquet time, length of the hospital stay, non-union rate, and rate to fusion. The secondary outcomes were delayed union and postoperative infection rate. We included 9 studies comparing arthroscopic and open in patients with ankle arthrodesis, comprising 467 participants. AAA had the advantage of demonstrating a lower overall complication rate (odds ratio [OR], 0.44 [95% confidence interval [CI], 0.26-0.73]; p = .002), shorter intraoperative tourniquet time (mean difference [MD], -16.49 [95% CI, -23.51 to -9.46]; p < .001), shorter length of the hospital stay (MD -1.75, 95% CI -1.94 to -1.2, p < .001),lower non-union rate (OR, -0.07 [95% CI, -0.13 to -0.02]; p <.01) and higher rate to fusion (OR, 4.2 [95% CI, 1.96-8.99]; p < .001) in comparison with OAA. Yet, no significant differences were found in delayed union (OR, 0.46 [95% CI, 0.10-2.04]; p = .30) and postoperative infection rate (OR, 0.45 [95% CI, 0.17-1.15]; p = .09) between the groups. Our results suggest that arthroscopic ankle arthrodesis is superior to open ankle arthrodesis alone in the treatment of ankle arthritis based on the overall complication rate, intraoperative tourniquet time, length of the hospital stay, non-union rate and rate to fusion. However, further high-quality randomized controlled trials with appropriate blinding methods are needed to confirm the findings.


Assuntos
Tornozelo , Artrite , Humanos , Tornozelo/cirurgia , Articulação do Tornozelo/cirurgia , Resultado do Tratamento , Artroscopia/métodos , Estudos Retrospectivos , Artrite/cirurgia , Artrodese/métodos , Complicações Pós-Operatórias
6.
Anal Biochem ; 659: 114936, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36220375

RESUMO

Indoleamine 2,3-dioxygenase 1 (IDO1) plays a critical role in inflammatory and immunometabolism programming through catalyzing the oxidation of tryptophan (Trp) into downstream N-formylkynurenine. IDO1 is typically up-regulated in malignant tumors, making it a potential biomarker for cancer diagnosis. Here we show an effective strategy for tumor cell detection by integrating IDO1 activity assay with single cell-encapsulated droplets on a microfluidic platform for high-throughput bioanalysis. Mixed cells, as well as other cofactors, are encapsulated in individual droplets, which act as dynamic microreactors for IDO1-catalyzed oxidation of Trp. After pico-injection of a biosensing ensemble consisting of the macrocycle cucurbit [8]uril (Q8) and a fluorescent guest, rapid and robust screening of tumor cells by fluorescence signal is achieved in a few minutes reporting to Trp depletion, expanding the scope of conventional antibody-based detection of protein biomarkers. The results represent the first example of quantifying IDO1 enzymatic activity at the single cell level with a high-throughput performance, therefore promising warning signs and early diagnosis of tumor cells.


Assuntos
Neoplasias , Triptofano , Humanos , Triptofano/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/análise , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Triptofano Oxigenase , Neoplasias/diagnóstico , Oxirredução , Cinurenina/metabolismo
7.
Drug Des Devel Ther ; 16: 2479-2495, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35941928

RESUMO

Background: Acute pancreatitis (AP) is an inflammatory disorder of the exocrine pancreas without specific treatment. Shenmai injection (SMI) was reported to eliminate the severity of experimental AP. This study aimed to explore the mechanisms underlying the synergistic protective effects of SMI on AP based on network pharmacology and experimental validation. Methods: Network pharmacology analysis and molecular docking based on identified components were performed to construct the potential therapeutic targets and pathways. The principal components of SMI were detected via ultra-high-performance liquid chromatography-coupled with quadrupole time-of-flight mass spectrometry (UHPLC-QTOF/MS). Effect of SMI and the identified components on cellular injury and IL6/STAT3 signaling was assessed on mouse pancreatic acinar cell line 266-6 cells. Finally, 4% sodium taurocholate (NaT) was used to induce AP model to assess the effects of SMI in treating AP and validate the potential molecular mechanisms. Results: By searching the TCMSP and ETCM databases, 119 candidate components of SMI were obtained. UHPLC-QTOF/MS analysis successfully determined the representative components of SMI: ginsenoside Rb1, ginsenoside Rg1, ginsenoside Re, and ophiopogonin D. Fifteen hub targets and eight related pathways were obtained to establish the main pharmacology network. Subnetwork analysis and molecular docking indicated that the effects of these four main SMI components were mostly related to the interleukin (IL) 6/STAT3 pathway. In vitro, SMI, ginsenoside Rb1, ginsenoside Rg1, ginsenoside Re, and ophiopogonin D increased the cell viability of NaT-stimulated mouse pancreatic acinar 266-6 cells and decreased IL6 and STAT3 expression. In vivo, 10 mL/kg SMI significantly alleviated the pancreatic histopathological changes and the expression of IL6 and STAT3 in the AP mice. Conclusion: This study demonstrated SMI may exert anti-inflammatory effects against AP by suppressing IL6/STAT3 activation, thus providing a basis for its potential use in clinical practice and further study in treating AP.


Assuntos
Medicamentos de Ervas Chinesas , Pancreatite , Doença Aguda , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Combinação de Medicamentos , Interleucina-6 , Camundongos , Simulação de Acoplamento Molecular , Farmacologia em Rede , Pancreatite/metabolismo
8.
Cell Death Discov ; 8(1): 356, 2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-35961973

RESUMO

FTO, as an m6A mRNA demethylase, is involved in various cancers. However, the role of FTO in clear cell renal cell carcinoma (ccRCC) remains unclear. In the present study, we discovered FTO is upregulated in ccRCC. Functionally, knockdown of FTO significantly impairs the proliferation and migration ability of ccRCC cells. Mechanistically, our data suggest FTO promotes the proliferation and migration of ccRCC through preventing degradation of PDK1 mRNA induced by YTHDF2 in an m6A-dependent mechanism. Overall, our results identify the protumorigenic role of FTO through the m6A/YTHDF2/PDK1 pathway, which could be a promising therapeutic target for ccRCC.

9.
Exp Ther Med ; 23(3): 247, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35222724

RESUMO

Lung cancer causes thousands of deaths worldwide every year, and present therapeutics show little benefit for advanced-stage patients. Researchers do not know why and how lung cancer begins. Lactamase ß (LACTB) is a tumor-suppressor in some cancers. However, its role in lung cancer is unknown. By analyzing the TCGA database and Kaplan-Meier Plotter database, LACTB was found to be downregulated in lung cancer tissues but the methylation level was increased. Patients with high LACTB expression exhibited improved survival. Then, in vitro assays demonstrated that LACTB overexpression inhibited cell migration and invasion, and induced apoptosis in H1299 and H1975 cells. Knockdown of LACTB caused the reverse effects. Moreover, a much higher apoptotic rate and more potent inhibitory effects on H1299 and H1975 cells were obtained when LACTB was combined with docetaxel. In addition, members of the epithelial-mesenchymal transition (EMT) signaling pathway were assessed using western blot analysis. The expression of E-cadherin was decreased while levels of N-cadherin and vimentin were increased after knockdown of LACTB in lung cancer cells. By contrast, overexpression of LACTB increased the level of E-cadherin but decreased N-cadherin and vimentin. Therefore, LACTB is a tumor suppressor in lung cancer that inhibits cell migration and invasion and induces cell apoptosis. Meanwhile, LACTB was found to strengthen the anticancer role of docetaxel and to suppress the EMT pathway in lung cancer.

10.
Artigo em Inglês | MEDLINE | ID: mdl-36612924

RESUMO

In industrial site groundwater, heavy metal pollution is relatively common, causing great harm to the surrounding environment and human health. To explore the relationships between the heavy metal concentration, health risks and microbial community distribution, the groundwater from a polluted site at an abandoned processing plant in Hezhou City, China, is taken as the research object. A health risk assessment model recommended by the United States Environmental Protection Agency (US EPA) is used for the evaluation, and high-throughput sequencing technology is used to analyze the characteristics of the microbial community in the groundwater. The results show that the heavy metal pollution levels of five monitoring wells are different. The monitoring well labelled HLJ2 is polluted by Cu, Mn, Ni and Cd, and the other four monitoring wells are polluted by As and Cd to varying degrees. The carcinogenic risk values of heavy metals in the groundwater environments of the five monitoring wells are all greater than the acceptable range, and only the noncarcinogenic risk value of the HLJ2 monitoring well exceeds 1, which greatly impacts health. The risks posed by the contaminants in the site groundwater through the ingestion route of drinking water are greater than those caused by the ingestion route of skin contact. The groundwater environments of the five monitoring wells contain Proteobacteria and Patescibacteria, indicating that these two bacteria have certain tolerances to heavy metal pollution. The microbial community composition varies between the monitoring wells, suggesting that different concentrations and types of heavy metal contamination promote different types of bacterial growth. Studies have shown that Proteobacteria have many heavy metal resistance genes, improving their tolerance in heavy metal-polluted environments; additionally, Proteobacteria can transport heavy metals, which is conducive to the restoration of polluted sites.


Assuntos
Água Subterrânea , Metais Pesados , Humanos , Cádmio/análise , Monitoramento Ambiental , Metais Pesados/análise , Medição de Risco , China , Bactérias , Proteobactérias
11.
Cell Cycle ; 20(13): 1242-1252, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34196584

RESUMO

Emerging research indicates that miRNAs can regulate cancer progression by influencing molecular pathways. Here, we studied miR-665, part of the DLK1-DIO3 miRNA cluster, which is downregulated by upstream methylation in bladder cancer. MiR-665 overexpression significantly downregulated the expression of SMAD3, phospho-SMAD3, and SNAIL, reversed epithelial-mesenchymal transition progression, and inhibited the migration of bladder cancer cells. To predict potential targets of miR-665, we used online databases and subsequently determined that miR-665 binds directly to the 3' untranslated region of SMAD3. Moreover, silencing of SMAD3 with small interfering RNAs phenocopied the effect of miR-665 overexpression, and overexpression of SMAD3 restored miR-665-overexpression-induced metastasis. This study revealed the role of the miR-665/SMAD3/SNAIL axis in bladder cancer, as well as the potential of miR-665 as a promising therapeutic target.


Assuntos
Transição Epitelial-Mesenquimal , MicroRNAs/metabolismo , Proteína Smad3/metabolismo , Fatores de Transcrição da Família Snail/metabolismo , Neoplasias da Bexiga Urinária/metabolismo , Regiões 3' não Traduzidas , Sítios de Ligação , Linhagem Celular Tumoral , Movimento Celular , Bases de Dados Genéticas , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , Invasividade Neoplásica , Fosforilação , Transdução de Sinais , Proteína Smad3/genética , Fatores de Transcrição da Família Snail/genética , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia
12.
Cell Cycle ; 20(12): 1181-1194, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34024251

RESUMO

BACKGROUND: hsa_circ_0006168 is an oncogenic circular RNA in esophageal cancer. However, its role remains unclarified in tumor progression of gliomas, especially in glioblastoma (GBM). METHODS: Cell counting kit-8 assay, transwell assays, western blotting, and xenograft experiment, as well as colony formation assay and flow cytometry were performed to measure cell proliferation and motility. Expression of hsa_circ_0006168, microRNA (miR)-628-3p, insulin­like growth factor 1 receptor (IGF1R), and Ras/extracellular signal regulated kinases (Erk)-related proteins were determined by quantitative real-time polymerase chain reaction and western blotting. The physical interaction was confirmed by dual-luciferase reporter assay and RNA pull-down assay. RESULTS: hsa_circ_0006168 and IGF1R were upregulated, and miR-628-5p was downregulated in human GBM tissues and cells. Functionally, blocking hsa_circ_0006168 and overexpressing miR-628-5p suppressed cell proliferation, migration, invasion, and expression of Vimentin and Snail (mesenchymal markers) in A172 and LN229 cells, accompanied with increased E-cadherin (epithelial marker), decreased colony formation, and promoted apoptosis rate. Silencing miR-628-5p counteracted the suppression of hsa_circ_0006168 deficiency on these behaviors, and restoring IGF1R blocked miR-628-5p-mediated inhibition as well. More importantly, hsa_circ_0006168 knockdown could delay xenograft tumor growth in vivo and lower Ras and phosphorylated Erk1/2 expression in vitro and in vivo. Mechanically, hsa_circ_0006168 targeted and sponged miR-628-5p, and IFG1R was a novel target for miR-628-5p. Inhibiting miR-628-5p could abrogate in vitro role of hsa_circ_0006168 knockdown, and similarly IGF1R upregulation counteracted miR-628-5p role. CONCLUSION: Silencing hsa_circ_0006168 might suppress GBM proliferation and motility via serving as competitive endogenous RNA for miR-628-5p and regulating IGF1R/Ras/Erk pathway.


Assuntos
Neoplasias Encefálicas/metabolismo , Movimento Celular/genética , Proliferação de Células/genética , Glioblastoma/metabolismo , Sistema de Sinalização das MAP Quinases/genética , MicroRNAs/metabolismo , RNA Circular/metabolismo , Receptor IGF Tipo 1/metabolismo , Animais , Apoptose/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Estudos de Casos e Controles , Linhagem Celular Tumoral , Regulação para Baixo/genética , Feminino , Inativação Gênica , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/genética , Pessoa de Meia-Idade , RNA Circular/genética , Receptor IGF Tipo 1/genética , Transfecção , Carga Tumoral/genética , Regulação para Cima/genética , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Small ; 17(16): e2004454, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33306278

RESUMO

Carbon-based single-atom catalysts (CSACs) have recently received extensive attention in catalysis research. However, the preparation process of CSACs involves a high-temperature treatment, during which metal atoms are mobile and aggregated into nanoparticles, detrimental to the catalytic performance. Herein, an ion-imprinting derived strategy is proposed to synthesize CSACs, in which isolated metal-nitrogen-carbon (Me-N4 -Cx ) moiety covalently binds oxygen atoms in Si-based molecular sieve frameworks. Such a feature makes Me-N4 -Cx moiety well protected/confined during the heat treatment, resulting in the final material enriched with single-atom metal active sites. As a proof of concept, a single-atom Fe-N-C catalyst is synthesized by using this ion-imprinting derived strategy. Experimental results and theoretical calculations demonstrate high concentration of single FeN4 active sites distributed in this catalyst, resulting in an outstanding oxygen reduction reaction (ORR) performance with a half-wave potential of 0.908 V in alkaline media.

14.
Research (Wash D C) ; 2020: 4724505, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33145493

RESUMO

Single-atom nanozymes (SANs) possess unique features of maximum atomic utilization and present highly assembled enzyme-like structure and remarkable enzyme-like activity. By introducing SANs into immunoassay, limitations of ELISA such as low stability of horseradish peroxidase (HRP) can be well addressed, thereby improving the performance of the immunoassays. In this work, we have developed novel Fe-N-C single-atom nanozymes (Fe-Nx SANs) derived from Fe-doped polypyrrole (PPy) nanotube and substituted the enzymes in ELISA kit for enhancing the detection sensitivity of amyloid beta 1-40. Results indicate that the Fe-Nx SANs contain high density of single-atom active sites and comparable enzyme-like properties as HRP, owing to the maximized utilization of Fe atoms and their abundant active sites, which could mimic natural metalloproteases structures. Further designed SAN-linked immunosorbent assay (SAN-LISA) demonstrates the ultralow limit of detection (LOD) of 0.88 pg/mL, much more sensitive than that of commercial ELISA (9.98 pg/mL). The results confirm that the Fe-Nx SANs can serve as a satisfactory replacement of enzyme labels, which show great potential as an ultrasensitive colorimetric immunoassay.

15.
Mol Cancer ; 19(1): 152, 2020 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-33121495

RESUMO

BACKGROUND: N6-methyladenosine (m6A) is the most abundant modification in mRNA of humans. Emerging evidence has supported the fact that m6A is comprehensively involved in various diseases especially cancers. As a crucial reader, YTHDF2 usually mediates the degradation of m6A-modified mRNAs in m6A-dependent way. However, the function and mechanisms of m6A especially YTHDF2 in prostate cancer (PCa) still remain elusive. METHODS: To investigate the functions and mechanisms of YTHDF2 in PCa, in vitro, in vivo biofunctional assays and epigenetics experiments were performed. Endogenous expression silencing of YTHDF2 and METTL3 was established with lentivirus-based shRNA technique. Colony formation, flow cytometry and trans-well assays were performed for cell function identifications. Subcutaneous xenografts and metastatic mice models were combined with in vivo imaging system to investigate the phenotypes when knocking down YTHDF2 and METTL3. m6A RNA immunoprecipitation (MeRIP) sequencing, mRNA sequencing, RIP-RT-qPCR and bioinformatics analysis were mainly used to screen and validate the direct common targets of YTHDF2 and METTL3. In addition, TCGA database was also used to analyze the expression pattern of YTHDF2, METTL3 and the common target LHPP in PCa, and their correlation with clinical prognosis. RESULTS: The upregulated YTHDF2 and METTL3 in PCa predicted a worse overall survival rate. Knocking down YTHDF2 or METTL3 markedly inhibited the proliferation and migration of PCa in vivo and in vitro. LHPP and NKX3-1 were identified as the direct targets of both YTHDF2 and METTL3. YTHDF2 directly bound to the m6A modification sites of LHPP and NKX3-1 to mediate the mRNA degradation. Knock-down of YTHDF2 or METTL3 significantly induced the expression of LHPP and NKX3-1 at both mRNA and protein level with inhibited phosphorylated AKT. Overexpression of LHPP and NKX3-1 presented the consistent phenotypes and AKT phosphorylation inhibition with knock-down of YTHDF2 or METTL3. Phosphorylated AKT was consequently confirmed as the downstream of METTL3/YTHDF2/LHPP/NKX3-1 to induce tumor proliferation and migration. CONCLUSION: We propose a novel regulatory mechanism in which YTHDF2 mediates the mRNA degradation of the tumor suppressors LHPP and NKX3-1 in m6A-dependent way to regulate AKT phosphorylation-induced tumor progression in prostate cancer. We hope our findings may provide new concepts of PCa biology.


Assuntos
Adenosina/análogos & derivados , Regulação Neoplásica da Expressão Gênica , Metiltransferases/metabolismo , Neoplasias da Próstata/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Estabilidade de RNA , Proteínas de Ligação a RNA/metabolismo , Adenosina/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Proliferação de Células , Humanos , Masculino , Metiltransferases/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Fosforilação , Prognóstico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas de Ligação a RNA/genética , Taxa de Sobrevida , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Food Nutr Res ; 642020.
Artigo em Inglês | MEDLINE | ID: mdl-33061882

RESUMO

BACKGROUND: Diabetic cardiomyopathy (DCM) is a serious complication of diabetes that can lead to significant mortality. Cyclocarya paliurus is a tree, the leaves of which are often utilized to prevent and treat diabetes mellitus. Whether C. paliurus leaves can prevent or treat DCM, however, it remains to be formally assessed. The present study was therefore designed to assess the ability of C. paliurus to protect against DCM in db/db mice. METHODS: Male wild-type (WT) and db/db mice were administered C. paliurus ethanol leaf extracts (ECL) or appropriate vehicle controls daily via gavage, and levels of blood glucose in treated animals were assessed on a weekly basis. After a 10-week treatment, the levels of cardiac troponin I (cTn-I), lactate dehydrogenase (LDH), creatine kinase MB (CK-MB), aspartate transaminase (AST), total triglycerides (TG), and total cholesterol (TC) in serum were measured. Activities of malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) and the levels of tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), and IL-6 in heart tissues were detected. Hematoxylin-eosin (HE) and Masson staining were conducted. The protein expression that related with oxidative stress and inflammatory reaction was evaluated by Western blotting. RESULTS: Compared with WT mice, the TG, TC, and blood glucose levels in db/db mice increased significantly, which were reduced by ECL treatment. Compared with WT mice, the levels of LDH, CK-MB, AST, and cTn-I in serum and MDA in heart tissues of db/db mice increased significantly. Activities of SOD, GSH-Px, and CAT in heart tissues of db/db mice decreased significantly. The levels of inflammatory cytokines (TNF-α, IL-1ß, and IL-6) in heart tissues of db/db mice increased remarkably. However, ECL treatment improved the above pathological changes significantly. ECL alleviated pathological injury and fibrosis in heart tissues of mice. Western blotting showed that ECL increased Bcl-2 level and decreased Bax, cle-caspase-3, and cle-caspase-9 expression. Furthermore, ECL inhibited NF-κB nuclear translocation and increased PI3K and p-Akt expressions. CONCLUSION: Our results indicate that ECL treatment can markedly reduce pathological cardiac damage in db/db mice through antiapoptotic, antifibrotic, and anti-inflammatory mechanisms. Specifically, this extract was able to suppress NF-κB activation via the PI3K/Akt signaling pathway. Given its diverse activities and lack of significant side effects, ECL may thus have therapeutic value for the treatment of DCM.

17.
Chemistry ; 26(20): 4592-4598, 2020 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-32053247

RESUMO

C-N bond formation is regarded as a very useful and fundamental reaction for the synthesis of nitrogen-containing molecules in both organic and pharmaceutical chemistry. Noble-metal and homogeneous catalysts have frequently been used for C-N bond formation, however, these catalysts have a number of disadvantages, such as high cost, toxicity, and low atom economy. In this work, a low-toxic and cheap iron complex (iron ethylene-1,2-diamine) has been loaded onto carbon nanotubes (CNTs) to prepare a heterogeneous single-atom catalyst (SAC) named Fe-Nx /CNTs. We employed this SAC in the synthesis of C-N bonds for the first time. It was found that Fe-Nx /CNTs is an efficient catalyst for the synthesis of C-N bonds starting from aromatic amines and ketones. Its catalytic performance was excellent, giving yields of up to 96 %, six-fold higher than the yields obtained with noble-metal catalysts, such as AuCl3 /CNTs and RhCl3 /CNTs. The catalyst showed efficacy in the reactions of thirteen aromatic amine substrates, without the need for additives, and seventeen enaminones were obtained. High-angle annular dark-field scanning transmission electron microscopy in combination with X-ray absorption spectroscopy revealed that the iron species were well dispersed in the Fe-Nx /CNTs catalyst as single atoms and that Fe-Nx might be the catalytic active species. This Fe-Nx /CNTs catalyst has potential industrial applications as it could be cycled seven times without any significant loss of activity.

18.
ACS Appl Mater Interfaces ; 11(43): 39820-39826, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31560188

RESUMO

Recently, electrocatalysts based on anchored dispersive/isolated single metal atoms on conductive carbon supports have demonstrated great promise to substitute costly Pt for the oxygen reduction reaction (ORR) in the field of fuel cells or metal-air batteries. However, developments of cost-efficient single-atom Fe catalysts with high activities are still facing various hardships. Here, we developed a facile way to synthesize isolated iron atoms anchored on the carbon nanotube (CNT) involving a one-pot pyrrole polymerization on a self-degraded organic template and a subsequent pyrolysis. The as-obtained electrocatalyst possessed unique characteristics of abundant nanopores in the wall of conductive CNTs to host the abundant atomic Fe-Nx active sites, showing ultrahigh ORR activity (half-wave potential: 0.93 V, kinetic current density: 59.8 mA/cm2 at 0.8 V), better than that of commercial Pt/C (half-wave potential: 0.91 V; kinetic current density: 38.0 mA/cm2 at 0.8 V) in an alkaline electrolyte. Furthermore, good ORR activity has been proven in acidic solution with a half-wave-potential of 0.73 V.

19.
Nano Lett ; 19(6): 3730-3736, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31038977

RESUMO

We demonstrate the 2-D anisotropic formation of ultrathin free-floating Pt nanoplates from the assembly of small nanocrystals using T7 peptide (Ac-TLTTLTN-CONH2). As-formed nanoplates are rich in grain boundaries that can promote their catalytic activities. Furthermore, we demonstrate that a minor number of Pd atoms can selectively deposit on and stabilize the grain boundaries, which leads to enhanced structure stability. The Pd-enhanced Pt polycrystal nanoplates show great oxygen reduction reaction activities with 15.5 times higher specific activity and 13.7 times higher mass activity than current state-of-the-art commercial Pt/C electrocatalysts as well as 2.5 times higher mass activity for hydrogen evolution reaction compared with Pt/C.


Assuntos
Nanoestruturas/química , Oxigênio/química , Peptídeos/química , Platina/química , Catálise , Eletricidade , Modelos Moleculares , Nanopartículas/química , Nanopartículas/ultraestrutura , Nanoestruturas/ultraestrutura , Oxirredução , Paládio/química
20.
J Magn Reson Imaging ; 50(4): 1125-1132, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30848041

RESUMO

BACKGROUND: The axillary lymph node status is critical for breast cancer staging and individualized treatment planning. PURPOSE: To assess the effect of determining axillary lymph node (ALN) metastasis by breast MRI-derived radiomic signatures, and compare the discriminating abilities of different MR sequences. STUDY TYPE: Retrospective. POPULATION: In all, 120 breast cancer patients, 59 with ALN metastasis and 61 without metastasis, all confirmed by pathology. FIELD STRENGTH/SEQUENCE: 3 .0T scanner with T1 -weighted imaging, T2 -weighted imaging, diffusion-weighted imaging, and dynamic contrast-enhanced (DCE) sequences. ASSESSMENT: Typical morphological and texture features of the segmented tumor were extracted from four sequences, ie, T1 WI, T2 WI, DWI, and the second postcontrast phase (CE2) of the dynamic contrast-enhanced sequences. Additional contrast enhancement kinetic features were extracted from all DCE sequences (one pre- and seven postcontrast phases). Linear discriminant analysis classifiers were built and compared when using features from an individual sequence or the combination of the sequences in differentiating the ALN metastasis status. STATISTICAL TESTS: Mann-Whitney U-test, Fisher's exact test, least absolute shrinkage selection operator (LASSO) regression, and receiver operating characteristic analysis were performed. RESULTS: The accuracy/AUC of the four sequences was 79%/0.87, 77%/0.85, 74%/0.79, and 79%/0.85 for the T1 WI, CE2, T2 WI, and DWI, respectively. When CE2 was augmented by adding kinetic features, the model achieved the highest performance (accuracy = 0.86 and AUC = 0.91). When all features from the four sequences and the kinetics were combined, it did not lead to a further increase in the performance (P = 0.48). DATA CONCLUSION: Breast tumor's radiomic signatures from preoperative breast MRI sequences are associated with the ALN metastasis status, where CE2 phase and the contrast enhancement kinetic features lead to the highest classification effect. Level of Evidence 3 Technical Efficacy Stage 2 J. Magn. Reson. Imaging 2019;50:1125-1132.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Interpretação de Imagem Assistida por Computador/métodos , Metástase Linfática/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Adulto , Axila , Mama/diagnóstico por imagem , Mama/patologia , Diagnóstico Diferencial , Estudos de Viabilidade , Feminino , Humanos , Linfonodos/diagnóstico por imagem , Pessoa de Meia-Idade , Invasividade Neoplásica , Reprodutibilidade dos Testes , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA