RESUMO
JOURNAL/nrgr/04.03/01300535-202509000-00032/figure1/v/2024-11-05T132919Z/r/image-tiff Postoperative cognitive dysfunction is a severe complication of the central nervous system that occurs after anesthesia and surgery, and has received attention for its high incidence and effect on the quality of life of patients. To date, there are no viable treatment options for postoperative cognitive dysfunction. The identification of postoperative cognitive dysfunction hub genes could provide new research directions and therapeutic targets for future research. To identify the signaling mechanisms contributing to postoperative cognitive dysfunction, we first conducted Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses of the Gene Expression Omnibus GSE95426 dataset, which consists of mRNAs and long non-coding RNAs differentially expressed in mouse hippocampus 3 days after tibial fracture. The dataset was enriched in genes associated with the biological process "regulation of immune cells," of which Chil1 was identified as a hub gene. Therefore, we investigated the contribution of chitinase-3-like protein 1 protein expression changes to postoperative cognitive dysfunction in the mouse model of tibial fracture surgery. Mice were intraperitoneally injected with vehicle or recombinant chitinase-3-like protein 1 24 hours post-surgery, and the injection groups were compared with untreated control mice for learning and memory capacities using the Y-maze and fear conditioning tests. In addition, protein expression levels of proinflammatory factors (interleukin-1ß and inducible nitric oxide synthase), M2-type macrophage markers (CD206 and arginase-1), and cognition-related proteins (brain-derived neurotropic factor and phosphorylated NMDA receptor subunit NR2B) were measured in hippocampus by western blotting. Treatment with recombinant chitinase-3-like protein 1 prevented surgery-induced cognitive impairment, downregulated interleukin-1ß and nducible nitric oxide synthase expression, and upregulated CD206, arginase-1, pNR2B, and brain-derived neurotropic factor expression compared with vehicle treatment. Intraperitoneal administration of the specific ERK inhibitor PD98059 diminished the effects of recombinant chitinase-3-like protein 1. Collectively, our findings suggest that recombinant chitinase-3-like protein 1 ameliorates surgery-induced cognitive decline by attenuating neuroinflammation via M2 microglial polarization in the hippocampus. Therefore, recombinant chitinase-3-like protein 1 may have therapeutic potential for postoperative cognitive dysfunction.
RESUMO
The Editors of Medical Science Monitor wish to inform you that the above manuscript has been retracted from publication due to concerns with the credibility and originality of the study, the manuscript content, and the Figure images. Reference: Yihua Zhang, Yang Tan, Hao Wang, Minhui Xu, Lunshan Xu. Long Non-Coding RNA Plasmacytoma Variant Translocation 1 (PVT1) Enhances Proliferation, Migration, and Epithelial-Mesenchymal Transition (EMT) of Pituitary Adenoma Cells by Activating ß-Catenin, c-Myc, and Cyclin D1 Expression. Med Sci Monit, 2019; 25: 7652-7659. DOI: 10.12659/MSM.917110.
Assuntos
Movimento Celular , Proliferação de Células , Ciclina D1 , Transição Epitelial-Mesenquimal , Neoplasias Hipofisárias , Proteínas Proto-Oncogênicas c-myc , RNA Longo não Codificante , beta Catenina , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Humanos , Transição Epitelial-Mesenquimal/genética , beta Catenina/metabolismo , beta Catenina/genética , Proliferação de Células/genética , Movimento Celular/genética , Neoplasias Hipofisárias/genética , Neoplasias Hipofisárias/metabolismo , Neoplasias Hipofisárias/patologia , Ciclina D1/metabolismo , Ciclina D1/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Linhagem Celular Tumoral , Adenoma/genética , Adenoma/metabolismo , Adenoma/patologia , Regulação Neoplásica da Expressão GênicaRESUMO
L-type amino acid transporter 1 (LAT1) is upregulated in various cancer types and contributes to disease progression. Previous studies have demonstrated or suggested that hypoxia-inducible factors (HIFs), the key transcription factors in hypoxic responses, control the expression of LAT1 gene in several types of cancer cells. However, this regulatory relationship has not been investigated yet in colorectal cancer (CRC), one of the cancer types in which the increased LAT1 expression holds prognostic significance. In this study, we found that neither LAT1 mRNA nor protein is induced under hypoxic condition (1% O2) in CRC HT-29 cells in vitro, regardless of the prominent HIF-1/2α accumulation and HIFs-dependent upregulation of glucose transporter 1. The hypoxic treatment generally did not increase either the mRNA or protein expression of LAT1 in eight CRC cell lines tested, in contrast to the pronounced upregulation by amino acid restriction. Interestingly, knockdown of von Hippel-Lindau ubiquitin ligase to inhibit the proteasomal degradation of HIFs caused an accumulation of HIF-2α and increased the LAT1 expression in certain CRC cell lines. This study contributes to delineating the molecular mechanisms responsible for the pathological expression of LAT1 in CRC cells, emphasizing the ambiguity of HIFs-dependent transcriptional upregulation of LAT1 across cancer cells.
Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Neoplasias Colorretais , Regulação Neoplásica da Expressão Gênica , Subunidade alfa do Fator 1 Induzível por Hipóxia , Transportador 1 de Aminoácidos Neutros Grandes , Humanos , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Transportador 1 de Aminoácidos Neutros Grandes/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Células HT29 , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Linhagem Celular Tumoral , Hipóxia Celular , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 1/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Regulação para CimaRESUMO
Calcific aortic valve disease (CAVD) is becoming an increasingly important global medical problem, but effective pharmacological treatments are lacking. Noncoding RNAs play a pivotal role in the progression of cardiovascular diseases, but their relationship with CAVD remains unclear. Sequencing data revealed differential expression of many noncoding RNAs in normal and calcified aortic valves, with significant differences in circHIPK3 and miR-182-5p expression. Overexpression of circHIPK3 ameliorated aortic valve lesions in a CAVD mouse model. In vitro experiments demonstrated that circHIPK3 inhibits the osteogenic response of aortic valve interstitial cells. Mechanistically, DEAD-box helicase 5 (DDX5) recruits methyltransferase 3 (METTL3) to promote the N6-methyladenosine (m6A) modification of circHIPK3. Furthermore, m6A-modified circHIPK3 increases the stability of Kremen1 (Krm1) mRNA, and Krm1 is a negative regulator of the Wnt/ß-catenin pathway. Additionally, miR-182-5p suppresses the expression of Dickkopf2 (Dkk2), the ligand of Krm1, and attenuates the Krm1-mediated inhibition of Wnt signaling. Activation of the Wnt signaling pathway significantly contributes to the promotion of aortic valve calcification. Our study describes the role of the Krm1-Dkk2 axis in inhibiting Wnt signaling in aortic valves and suggests that noncoding RNAs are upstream regulators of this process.
Assuntos
Estenose da Valva Aórtica , Valva Aórtica , Calcinose , Regulação da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intercelular , MicroRNAs , Animais , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Valva Aórtica/patologia , Valva Aórtica/metabolismo , Camundongos , Calcinose/genética , Calcinose/metabolismo , Calcinose/patologia , Estenose da Valva Aórtica/genética , Estenose da Valva Aórtica/metabolismo , Estenose da Valva Aórtica/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Via de Sinalização Wnt , Modelos Animais de Doenças , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Humanos , Metiltransferases/metabolismo , Metiltransferases/genética , RNA Circular/genética , RNA Circular/metabolismo , MasculinoRESUMO
L-type amino acid transporter 1 (LAT1) is specifically expressed in many malignancies, contributes to the transport of essential amino acids, such as leucine, and regulates the mammalian target of rapamycin (mTOR) signaling pathway. We investigated the expression profile and functional role of LAT1 in prostate cancer using JPH203, a specific inhibitor of LAT1. LAT1 was highly expressed in castration-resistant prostate cancer (CRPC) cells, including C4-2 and PC-3 cells, but its expression level was low in castration-sensitive LNCaP cells. JPH203 significantly inhibited [14C] leucine uptake in CRPC cells but had no effect in LNCaP cells. JPH203 inhibited the proliferation, migration, and invasion of CRPC cells but not of LNCaP cells. In C4-2 cells, Cluster of differentiation (CD) 24 was identified by RNA sequencing as a novel downstream target of JPH203. CD24 was downregulated in a JPH203 concentration-dependent manner and suppressed activation of the Wnt/ß-catenin signaling pathway. Furthermore, an in vivo study showed that JPH203 inhibited the proliferation of C4-2 cells in a castration environment. The results of this study indicate that JPH203 may exert its antitumor effect in CRPC cells via mTOR and CD24.
Assuntos
Antígeno CD24 , Movimento Celular , Proliferação de Células , Transportador 1 de Aminoácidos Neutros Grandes , Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Linhagem Celular Tumoral , Animais , Proliferação de Células/efeitos dos fármacos , Antígeno CD24/metabolismo , Camundongos , Movimento Celular/efeitos dos fármacos , Via de Sinalização Wnt/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/antagonistas & inibidores , Benzoxazóis/farmacologia , Leucina/farmacologia , Leucina/análogos & derivados , Camundongos Nus , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Tirosina/análogos & derivadosRESUMO
Amino acid transporter LAT1 is highly upregulated in various cancer types, including cholangiocarcinoma (CHOL), and contributes to the rapid proliferation of cancer cells and disease progression. However, the molecular mechanisms underlying the pathological upregulation of LAT1 remain largely unknown. This study pursued the possibility of miRNA-mediated regulation of the LAT1 expression in CHOL cells. Using online target prediction methods, we extracted five candidate miRNAs commonly predicted to regulate the LAT1 expression. Three of them, miR-194-5p, miR-122-5p, and miR-126-3p, were significantly downregulated in CHOL cancer compared to normal tissues. Correlation analysis revealed weak-to-moderate negative correlations between the expression of these miRNAs and LAT1 mRNA in CHOL cancer tissues. We selected miR-194-5p and miR-122-5p for further analyses and found that both miRNAs functionally target 3'UTR of LAT1 mRNA by a luciferase-based reporter assay. Transfection of the miRNA mimics significantly suppressed the LAT1 expression at mRNA and protein levels and inhibited the proliferation of CHOL cells, with a trend of affecting intracellular amino acids and amino acid-related signaling pathways. This study indicates that the decreased expression of these LAT1-targeting tumor-suppressive miRNAs contributes to the upregulation of LAT1 and the proliferation of CHOL cells, highlighting their potential for developing novel cancer therapeutics and diagnostics.
Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Colangiocarcinoma/genética , Colangiocarcinoma/patologia , Linhagem Celular Tumoral , Ductos Biliares Intra-Hepáticos/metabolismo , Ductos Biliares Intra-Hepáticos/patologia , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/patologia , RNA Mensageiro/genética , Regulação Neoplásica da Expressão Gênica , Proliferação de Células/genéticaRESUMO
L-type amino acid transporter 1 (LAT1) is recognized as a promising target for cancer therapy; however, the cellular adaptive response to its pharmacological inhibition remains largely unexplored. This study examined the adaptive response to LAT1 inhibition using nanvuranlat, a high-affinity LAT1 inhibitor. Proteomic analysis revealed the activation of a stress-induced transcription factor ATF4 following LAT1 inhibition, aligning with the known cellular responses to amino acid deprivation. This activation was linked to the GCN2-eIF2α pathway which regulates translation initiation. Our results show that ATF4 upregulation counteracts the suppressive effect of nanvuranlat on cell proliferation in pancreatic ductal adenocarcinoma cell lines, suggesting a role for ATF4 in cellular adaptation to LAT1 inhibition. Importantly, dual targeting of LAT1 and ATF4 exhibited more substantial anti-proliferative effects in vitro than individual treatments. This study underscores the potential of combining LAT1 and ATF4 inhibition as a therapeutic strategy in cancer treatment.
Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Regulação para Cima , Proteômica , Aminoácidos/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Carcinoma Ductal Pancreático/tratamento farmacológico , Transportador 1 de Aminoácidos Neutros Grandes/genética , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Linhagem Celular Tumoral , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismoRESUMO
L-type amino acid transporter 1 (LAT1) is a transmembrane protein responsible for transporting large neutral amino acids. While numerous LAT1-targeted compound delivery for the brain and tumors have been investigated, their LAT1 selectivity often remains ambiguous despite high LAT1 affinity. This study assessed the LAT1 selectivity of phenylalanine (Phe) analogs, focusing on their structure-activity characteristics. We discovered that 2-iodo-L-phenylalanine (2-I-Phe), with an iodine substituent at position 2 in the benzene ring, markedly improves LAT1 affinity and selectivity compared to parent amino acid Phe, albeit at the cost of reduced transport velocity. L-Phenylglycine (Phg), one carbon shorter than Phe, was found to be a substrate for LAT1 with a lower affinity, exhibiting a low level of selectivity for LAT1 equivalent to Phe. Notably, (R)-2-amino-1,2,3,4-tetrahydro-2-naphthoic acid (bicyclic-Phe), with an α-methylene moiety akin to the α-methyl group in α-methyl-L-phenylalanine (α-methyl-Phe), a known LAT1-selective compound, showed similar LAT1 transport maximal velocity to α-methyl-Phe, but with higher LAT1 affinity and selectivity. In vivo studies revealed tumor-specific accumulation of bicyclic-Phe, underscoring the importance of LAT1-selectivity in targeted delivery. These findings emphasize the potential of bicyclic-Phe as a promising LAT1-selective component, providing a basis for the development of LAT1-targeting compounds based on its structural framework.
Assuntos
Aminoácidos , Fenilalanina , Fenilalanina/metabolismo , Aminoácidos/metabolismo , Encéfalo/metabolismo , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Transporte BiológicoRESUMO
L-type amino acid transporter 1 (LAT1, SLC7A5) is upregulated in various cancers and associated with disease progression. Nanvuranlat (Nanv; JPH203, KYT-0353), a selective LAT1 inhibitor, suppresses the uptake of large neutral amino acids required for rapid growth and proliferation of cancer cells. Previous studies have suggested that the inhibition of LAT1 by Nanv induces the cell cycle arrest at G0/G1 phase, although the underlying mechanisms remain unclear. Using pancreatic cancer cells arrested at the restriction check point (R) by serum deprivation, we found that the Nanv drastically suppresses the G0/G1-S transition after release. This blockade of the cell cycle progression was accompanied by a sustained activation of p38 mitogen-activated protein kinase (MAPK) and subsequent phosphorylation-dependent proteasomal degradation of cyclin D1. Isoform-specific knockdown of p38 MAPK revealed the predominant contribution of p38α. Proteasome inhibitors restored the cyclin D1 amount and released the cell cycle arrest caused by Nanv. The increased phosphorylation of p38 MAPK and the decrease of cyclin D1 were recapitulated in xenograft tumor models treated with Nanv. This study contributes to delineating the pharmacological activities of LAT1 inhibitors as anti-cancer agents and provides significant insights into the molecular basis of the amino acid-dependent cell cycle checkpoint at G0/G1 phase.
Assuntos
Ciclina D1 , Neoplasias , Humanos , Ciclina D1/genética , Ciclina D1/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Fase G1 , Fosforilação , Pontos de Checagem do Ciclo Celular , Proliferação de Células/genéticaRESUMO
L-type amino acid transporter 1 (LAT1, SLC7A5) is an amino acid transporter expressed in various carcinomas, and it is postulated to play an important role in the proliferation of cancer cells through the uptake of essential amino acids. Cabazitaxel is a widely used anticancer drug for treating castration-resistant prostate cancer (CRPC); however, its effectiveness is lost when cancer cells acquire drug resistance. In this study, we investigated the expression of LAT1 and the effects of a LAT1-specific inhibitor, JPH203, in cabazitaxel-resistant prostate cancer cells. LAT1 was more highly expressed in the cabazitaxel-resistant strains than in the normal strains. Administration of JPH203 inhibited the growth, migration, and invasive ability of cabazitaxel-resistant strains in vitro. Phosphoproteomics using liquid chromatography-mass spectrometry to comprehensively investigate changes in phosphorylation due to JPH203 administration revealed that cell cycle-related pathways were affected by JPH203, and that JPH203 significantly reduced the kinase activity of cyclin-dependent kinases 1 and 2. Moreover, JPH203 inhibited the proliferation of cabazitaxel-resistant cells in vivo. Taken together, the present study results suggest that LAT1 might be a valuable therapeutic target in cabazitaxel-resistant prostate cancer.
Assuntos
Benzoxazóis , Transportador 1 de Aminoácidos Neutros Grandes , Neoplasias da Próstata , Taxoides , Tirosina/análogos & derivados , Masculino , Humanos , Fosforilação , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Quinases Ciclina-Dependentes/metabolismo , Linhagem Celular TumoralRESUMO
Postoperative cognitive dysfunction (POCD) is characterized by impaired cognitive function following general anesthesia and surgery. Oxidative stress is a significant pathophysiological manifestation underlying POCD. Previous studies have reported that the decline of nicotinamide adenine dinucleotide (NAD+) -dependent sirtuin 1 (SIRT1) contributes to the activation of oxidative stress. In this study, we investigated whether pretreatment of nicotinamide mononucleotide (NMN), an NAD+ intermediate, improves oxidative stress and cognitive function in POCD. The animal model of POCD was established in C57BL/6 J mice through 6 h isoflurane anesthesia-induced cognitive impairment. Mice were intraperitoneally injected with NMN for 7 days prior to anesthesia, after which oxidative stress and cognitive function were assessed. The level of oxidative stress was determined using flow cytometry analysis and assey kits. The fear condition test and the Y-maze test were utilized to evaluate contextual and spatial memory. Our results showed that cognitive impairment and increased oxidative stress were observed in POCD mice, as well as downregulation of NAD+ levels and related protein expressions of SIRT1 and nicotinamide phosphoribosyltransferase (NAMPT) in the hippocampus. And NMN supplementation could effectively prevent the decline of NAD+ and related proteins, and reduce oxidative stress and cognitive disorders after POCD. Mechanistically, the findings suggested that protection on cognitive function mediated by NMN pretreatment in POCD mice may be regulated by NAD+-SIRT1 signaling pathway. This study indicated that NMN preconditioning reduced oxidative stress damage and alleviated cognitive impairment in POCD mice.
Assuntos
Anestesia , Disfunção Cognitiva , Isoflurano , Camundongos , Animais , Mononucleotídeo de Nicotinamida/farmacologia , Mononucleotídeo de Nicotinamida/metabolismo , NAD , Sirtuína 1/metabolismo , Camundongos Endogâmicos C57BL , Disfunção Cognitiva/induzido quimicamenteRESUMO
Metastasis is the leading cause of mortality in cancer patients. L-type amino acid transporter 1 (LAT1, SLC7A5) is a Na+-independent neutral amino acid transporter highly expressed in various cancers to support their growth. Although high LAT1 expression is closely associated with cancer metastasis, its role in this process remains unclear. This study aimed to investigate the effect of LAT1 inhibition on cancer metastasis using B16-F10 melanoma mouse models. Our results demonstrated that nanvuranlat (JPH203), a high-affinity LAT1-selective inhibitor, suppressed B16-F10 cell proliferation, migration, and invasion. Similarly, LAT1 knockdown reduced cell proliferation, migration, and invasion. LAT1 inhibitors and LAT1 knockdown diminished B16-F10 lung metastasis in a lung metastasis model. Furthermore, nanvuranlat and LAT1 knockdown suppressed lung, spleen, and lymph node metastasis in an orthotopic metastasis model. We discovered that the LAT1 inhibitor reduced the cell surface expression of integrin αvß3. Our findings revealed that the downregulation of the mTOR signaling pathway, induced by LAT1 inhibitors, decreased the expression of integrin αvß3, contributing to the suppression of metastasis. These results highlight the critical role of LAT1 in cancer metastasis and suggest that LAT1 inhibition may serve as a potential target for anti-metastasis cancer therapy.
Assuntos
Neoplasias Pulmonares , Melanoma Experimental , Segunda Neoplasia Primária , Animais , Camundongos , Sistemas de Transporte de Aminoácidos , Modelos Animais de Doenças , Integrina alfaVbeta3 , Transportador 1 de Aminoácidos Neutros Grandes/genética , Neoplasias Pulmonares/genética , Melanoma Experimental/genéticaRESUMO
BACKGROUND: Cytotoxic anticancer drugs widely used in cancer chemotherapy have some limitations, such as the development of side effects and drug resistance. Furthermore, monotherapy is often less effective against heterogeneous cancer tissues. Combination therapies of cytotoxic anticancer drugs with molecularly targeted drugs have been pursued to solve such fundamental problems. Nanvuranlat (JPH203 or KYT-0353), an inhibitor for L-type amino acid transporter 1 (LAT1; SLC7A5), has novel mechanisms of action to suppress the cancer cell proliferation and tumor growth by inhibiting the transport of large neutral amino acids into cancer cells. This study investigated the potential of the combined use of nanvuranlat and cytotoxic anticancer drugs. METHODS: The combination effects of cytotoxic anticancer drugs and nanvuranlat on cell growth were examined by a water-soluble tetrazolium salt assay in two-dimensional cultures of pancreatic and biliary tract cancer cell lines. To elucidate the pharmacological mechanisms underlying the combination of gemcitabine and nanvuranlat, we investigated apoptotic cell death and cell cycle by flow cytometry. The phosphorylation levels of amino acid-related signaling pathways were analyzed by Western blot. Furthermore, growth inhibition was examined in cancer cell spheroids. RESULTS: All the tested seven types of cytotoxic anticancer drugs combined with nanvuranlat significantly inhibited the cell growth of pancreatic cancer MIA PaCa-2 cells compared to their single treatment. Among them, the combined effects of gemcitabine and nanvuranlat were relatively high and confirmed in multiple pancreatic and biliary tract cell lines in two-dimensional cultures. The growth inhibitory effects were suggested to be additive but not synergistic under the tested conditions. Gemcitabine generally induced cell cycle arrest at the S phase and apoptotic cell death, while nanvuranlat induced cell cycle arrest at the G0/G1 phase and affected amino acid-related mTORC1 and GAAC signaling pathways. In combination, each anticancer drug basically exerted its own pharmacological activities, although gemcitabine more strongly influenced the cell cycle than nanvuranlat. The combination effects of growth inhibition were also verified in cancer cell spheroids. CONCLUSIONS: Our study demonstrates the potential of first-in-class LAT1 inhibitor nanvuranlat as a concomitant drug with cytotoxic anticancer drugs, especially gemcitabine, on pancreatic and biliary tract cancers.
RESUMO
BACKGROUND: Cancer-upregulated L-type amino acid transporter 1 (LAT1; SLC7A5) supplies essential amino acids to cancer cells. LAT1 substrates are not only needed for cancer rapid growth, but involved in cellular signaling. LAT1 has been proposed as a potential target for cancer treatment-its inhibitor, JPH203, is currently in clinical trials and targets biliary tract cancer (BTC). Here, we revealed to what extent LAT1 inhibitor affects intracellular amino acid content and what kind of cellular signals are directly triggered by LAT1 inhibition. METHODS: Liquid chromatography assay combined with o-phthalaldehyde- and 9-fluorenyl-methylchloroformate-based derivatization revealed changes in intracellular amino acid levels induced by LAT1 inhibition with JPH203 treatment in three BTC cell lines. Tandem mass tag-based quantitative phosphoproteomics characterized the effect of JPH203 treatment on BTC cells, and suggested key regulators in LAT1-inhibited cells. We further studied one of the key regulators, CK2 protein kinase, by using Western blot, enzymatic activity assay, and co-immunoprecipitation. We evaluated anticancer effects of combination of JPH203 with CK2 inhibitor using cell growth and would healing assay. RESULTS: JPH203 treatment decreased intracellular levels of LAT1 substrates including essential amino acids of three BTC cell lines, immediately and drastically. We also found levels of some of these amino acids were partially recovered after longer-time treatment. Therefore, we performed phosphoproteomics with short-time JPH203 treatment prior to the cellular compensatory response, and revealed hundreds of differentially phosphorylated sites. Commonly downregulated phosphorylation sites were found on proteins involved in the cell cycle and RNA splicing. Our phosphoproteomics also suggested key regulators immediately responding to LAT1 inhibition. Focusing on one of these regulators, protein kinase CK2, we revealed LAT1 inhibition decreased phosphorylation of CK2 substrate without changing CK2 enzymatic activity. Furthermore, LAT1 inhibition abolished interaction between CK2 and its regulatory protein NOLC1, which suggests regulatory mechanism of CK2 substrate protein specificity controlled by LAT1 inhibition. Moreover, we revealed that the combination of JPH203 with CK2 inhibitor resulted in the enhanced inhibition of proliferation and migration of BTC cells. CONCLUSION: This study provides new perspectives on LAT1-dependent cellular processes and a rationale for therapeutics targeting reprogrammed cancer metabolism.
RESUMO
Postoperative cognitive dysfunction (POCD) is a common complication following anesthesia and surgery that might lead to a decline in learning and memory. Oxidative stress damage is one of the pathogenic mechanisms underlying POCD. Recent studies had shown that the integrated stress response (ISR) is closely related to oxidative stress. The core response of the ISR is phosphorylation of eIF2α. Various cellular stress stimuli trigger activation of eIF2α kinases, thus causing phosphorylation of eIF2α. ISR is associated with many neurodegenerative diseases; however, the relationship between POCD and ISR has not been defined. In the present study, the tibias in 4-month-old male C57BL/6 mice were fractured under isoflurane anesthesia to establish the POCD animal model. Cognitive function was assessed by fear conditioning tests and the Y-maze from 3 to 14 days post-surgery. Western blot was used to determine the levels of PeIF2α, eIF2α, ATF4, GADD34, CHOP, BDNF, proBDNF, and p-NR2B expression. The levels of reactive oxygen species (ROS), superoxide dismutase (SOD), and malondialdehyde (MDA) were measured to determine oxidative stress in hippocampal tissues. After tibial fracture surgery in mice, the hippocampus had increased levels of PeIF2α, ATF4, GADD34, and CHOP protein, ROS-positive cells, and average fluorescence intensity, SOD activity was decreased, and the MDA level was increased. The ISR inhibitor, ISRIB, reduced the levels of PeIF2α, ATF4, GADD34, and CHOP protein, and alleviated oxidative stress in the hippocampus of POCD mice. Moreover, ISRIB ameliorated cognitive dysfunction in POCD mice. Our findings suggested that targeting ISR may represent an effective approach to combat POCD.
RESUMO
L-type amino acid transporter 1 (LAT1; SLC7A5), which preferentially transports large neutral amino acids, is highly upregulated in various cancers. LAT1 supplies cancer cells with amino acids as substrates for enhanced biosynthetic and bioenergetic reactions and stimulates signalling networks involved in the regulation of survival, growth and proliferation. LAT1 inhibitors show anti-cancer effects and a representative compound, JPH203, is under clinical evaluation. However, pharmacological impacts of LAT1 inhibition on the cellular amino acid transport and the translational activity in cancer cells that are conceptually pivotal for its anti-proliferative effect have not been elucidated yet. Here, we demonstrated that JPH203 drastically inhibits the transport of all the large neutral amino acids in pancreatic ductal adenocarcinoma cells. The inhibitory effects of JPH203 were observed even in competition with high concentrations of amino acids in a cell culture medium. The analyses of the nutrient-sensing mTORC1 and GAAC pathways and the protein synthesis activity revealed that JPH203 downregulates the global translation. This study demonstrates a predominant contribution of LAT1 to the transport of large neutral amino acids in cancer cells and the suppression of protein synthesis by JPH203 supposed to underly its broad anti-proliferative effects across various types of cancer cells.
Assuntos
Aminoácidos Neutros , Neoplasias , Aminoácidos , Linhagem Celular Tumoral , Transportador 1 de Aminoácidos Neutros Grandes/genética , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismoRESUMO
Objective: To develop and authenticate a risk stratification framework and nomogram for ascertaining cancer-specific survival (CSS) among the pediatric brainstem gliomas. Methods: For patients less than 12 years, according to Surveillance, Epidemiology, and End Results (SEER), information from 1998 to 2016 is found in their databases. The survival outcomes, treatments, and demographic clinicopathologic conditions are scrutinized per the database validation, and training cohorts are divided and validated using multivariate Cox regression analysis. A nomogram was designed, and predominantly, the risk stratification conceptualization engaged selected tenets according to the multivariate analysis. The model's authenticity was substantiated through C-index measure and calibration curves. Results: There are 806 pediatric concerns of histologically concluded brainstem glioma in the research. According to multivariate analysis, age, grade, radiotherapy, and race (with P value < 0.05) depicted independent prognostic variations of the pediatric gliomas. The nomogram's C-index was approximately 0.75 and an accompanied predictive capability for CSS. Conclusion: The nomogram constructed in this glioma's context is the primary predictor of using risk stratification. A combination of nomograms with the risk stratification mechanism assists clinicians in monitoring high-risk individuals and engage targeted accessory treatment.
Assuntos
Neoplasias Encefálicas/mortalidade , Tronco Encefálico/patologia , Glioma/mortalidade , Neoplasias Encefálicas/terapia , Criança , Pré-Escolar , Estudos de Coortes , Glioma/terapia , Humanos , Lactente , Análise Multivariada , Nomogramas , Prognóstico , Análise de Regressão , Medição de Risco/métodos , Programa de SEERRESUMO
Glutamate is a pivotal excitatory neurotransmitter in mammalian brains, but excessive glutamate causes numerous neural disorders. Almost all extracellular glutamate is retrieved by the glial transporter, Excitatory Amino Acid Transporter 2 (EAAT2), belonging to the SLC1A family. However, in some cancers, EAAT2 expression is enhanced and causes resistance to therapies by metabolic disturbance. Despite its crucial roles, the detailed structural information about EAAT2 has not been available. Here, we report cryo-EM structures of human EAAT2 in substrate-free and selective inhibitor WAY213613-bound states at 3.2 Å and 2.8 Å, respectively. EAAT2 forms a trimer, with each protomer consisting of transport and scaffold domains. Along with a glutamate-binding site, the transport domain possesses a cavity that could be disrupted during the transport cycle. WAY213613 occupies both the glutamate-binding site and cavity of EAAT2 to interfere with its alternating access, where the sensitivity is defined by the inner environment of the cavity. We provide the characterization of the molecular features of EAAT2 and its selective inhibition mechanism that may facilitate structure-based drug design for EAAT2.
Assuntos
Transportador 2 de Aminoácido Excitatório/química , Ácido Glutâmico , Animais , Sítios de Ligação , Encéfalo/metabolismo , Transportador 2 de Aminoácido Excitatório/genética , Transportador 2 de Aminoácido Excitatório/metabolismo , Transportador 3 de Aminoácido Excitatório/genética , Transportador 3 de Aminoácido Excitatório/metabolismo , Ácido Glutâmico/metabolismo , Humanos , Mamíferos/metabolismo , Neuroglia/metabolismoRESUMO
OAT10 (SLC22A13) is a transporter highly expressed in renal tubules and transporting organic anions including nicotinate, ß-hydroxybutyrate, p-aminohippurate, and orotate. In transport assays using Xenopus oocytes and HEK293 cells, we found that apparent substrate selectivity of OAT10 was different between the expression systems, particularly less pronounced uptake of ß-hydroxybutyrate in HEK293 cells. Because functional coupling between transporters may interfere with functional properties of the transporter, we searched for endogenous transporters in HEK293 cells that could affect OAT10. By means of comprehensive approach with co-immunoprecipitation followed by LC-MS/MS analysis, we identified monocarboxylate transporter MCT1 (SLC16A1) as physically coupled with OAT10. The knockdown of MCT1 in OAT10-expressing HEK293 cells increased the uptake of ß-hydroxybutyrate and nicotinate, common substrates of OAT10 and MCT1, whereas the uptake of orotate, a substrate of only OAT10, was not affected. MCT1 is supposed to act as an escape route and mediate the efflux of nicotinate and ß-hydroxybutyrate taken up by OAT10 localized nearby MCT1, as suggested by co-immunoprecipitation. This functional coupling would explain altered apparent substrate selectivity in HEK293 cells compared with Xenopus oocytes. The findings in this study warn in transporter studies that the expression system can interfere with assessing correct transport properties due to unexpected interactions with endogenous transporters.