Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
1.
Am J Cancer Res ; 14(4): 1866-1879, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38726275

RESUMO

Although the formation of NETs contributes to cancer cell invasion and distant metastasis, its role in the pathological progression of limb ischemia remains unknown. This study investigated the functional significance of NETs in cell-cell crosstalk during limb ischemia. The changes of cell subsets in lower limb ischemia samples were detected by single-cell RNA sequencing. The expression of neutrophil extracellular traps (NETs) related markers in lower limb ischemia samples was detected by immunohistochemistry and Western blotting. The signaling pathway of NETs activation in fibroblasts was verified by immunofluorescence, PCR and Western blotting. Through single-cell RNA sequencing (scRNA-seq), we identified 9 distinct cell clusters, with significantly upregulated activation levels in fibroblasts and neutrophils and phenotypic transformation of smooth muscle cells (SMCs) into a proliferative state in ischemic tissue. At the same time, the interaction between fibroblasts and smooth muscle cells was significantly enhanced in ischemic tissue. NETs levels rise and fibroblast activation is induced in ischemic conditions. Mechanistically, activated fibroblasts promote smooth muscle cell proliferation through the Wnt5a pathway. In ischemic mice, inhibition of Wnt5a mitigated vascular remodeling and subsequent ischemia. These findings highlighting the role of cell-cell crosstalk in ischemia and vascular remodeling. We found that the NETs-initiated fibroblast-SMC interaction is a critical regulator of limb ischemia via Wnt5a pathway, a potential therapeutic target for the treatment.

2.
Cell Rep ; 43(5): 114237, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38753484

RESUMO

Cardiac dysfunction, an early complication of endotoxemia, is the major cause of death in intensive care units. No specific therapy is available at present for this cardiac dysfunction. Here, we show that the N-terminal gasdermin D (GSDMD-N) initiates mitochondrial apoptotic pore and cardiac dysfunction by directly interacting with cardiolipin oxidized by complex II-generated reactive oxygen species (ROS) during endotoxemia. Caspase-4/11 initiates GSDMD-N pores that are subsequently amplified by the upregulation and activation of NLRP3 inflammation through further generation of ROS. GSDMD-N pores form prior to BAX and VDAC1 apoptotic pores and further incorporate into BAX and VDAC1 oligomers within mitochondria membranes to exacerbate the apoptotic process. Our findings identify oxidized cardiolipin as the definitive target of GSDMD-N in mitochondria of cardiomyocytes during endotoxin-induced myocardial dysfunction (EIMD), and modulation of cardiolipin oxidation could be a therapeutic target early in the disease process to prevent EIMD.


Assuntos
Cardiolipinas , Endotoxemia , Peptídeos e Proteínas de Sinalização Intracelular , Miócitos Cardíacos , Oxirredução , Proteínas de Ligação a Fosfato , Espécies Reativas de Oxigênio , Cardiolipinas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Endotoxemia/metabolismo , Endotoxemia/patologia , Proteínas de Ligação a Fosfato/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Camundongos , Humanos , Camundongos Endogâmicos C57BL , Masculino , Apoptose , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Mitocôndrias/metabolismo , Gasderminas
3.
Cell Mol Life Sci ; 80(10): 300, 2023 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-37740736

RESUMO

AIMS: Mesenchymal stem cells (MSCs) present in the heart cannot differentiate into cardiomyocytes, but may play a role in pathological conditions. Therefore, the aim of this study was to scrutinise the role and mechanism of MSC differentiation in vivo during heart failure. METHODS AND RESULTS: We performed single-cell RNA sequencing of total non-cardiomyocytes from murine and adult human hearts. By analysing the transcriptomes of single cells, we illustrated the dynamics of the cell landscape during the progression of heart hypertrophy, including those of stem cell antigen-1 (Sca1)+ stem/progenitor cells and fibroblasts. By combining genetic lineage tracing and bone marrow transplantation models, we demonstrated that non-bone marrow-derived Sca1+ cells give rise to fibroblasts. Interestingly, partial depletion of Sca1+ cells alleviated the severity of myocardial fibrosis and led to a significant improvement in cardiac function in Sca1-CreERT2;Rosa26-eGFP-DTA mice. Similar non-cardiomyocyte cell composition and heterogeneity were observed in human patients with heart failure. Mechanistically, our study revealed that Sca1+ cells can transform into fibroblasts and affect the severity of fibrosis through the Wnt4-Pdgfra pathway. CONCLUSIONS: Our study describes the cellular landscape of hypertrophic hearts and reveals that fibroblasts derived from Sca1+ cells with a non-bone marrow source largely account for cardiac fibrosis. These findings provide novel insights into the pathogenesis of cardiac fibrosis and have potential therapeutic implications for heart failure. Non-bone marrow-derived Sca1+ cells differentiate into fibroblasts involved in cardiac fibrosis via Wnt4-PDGFRα pathway.

4.
Am J Physiol Cell Physiol ; 325(5): C1228-C1243, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37721000

RESUMO

Extracellular adenosine triphosphate (ATP) is one of the most abundant biochemical constitutes within the stem cell microenvironment and is postulated to play critical roles in cell migration. However, it is unclear whether ATP regulates the cell migration of CD34+ vascular wall-resident stem/progenitor cells (VW-SCs) and participates in angiogenesis. Therefore, the biological mechanisms of cell migration mediated by ATP was determined by in vivo subcutaneous matrigel plug assay, ex vivo aortic ring assay, in vitro transwell migration assay, and other molecular methods. In the present study, ATP dose-dependently promoted CD34+ VW-SCs migration, which was more obviously attenuated by inhibiting or knocking down P2Y2 than P2Y6. Furthermore, it was confirmed that ATP potently promoted the migration of resident CD34+ cells from cultured aortic artery rings and differentiation into endothelial cells in matrigel plugs by using inducible lineage tracing Cd34-CreERT2; R26-tdTomato mice, whereas P2Y2 and P2Y6 blocker greatly inhibited the effect of ATP. In addition, ATP enhanced the protein expression of stromal interaction molecule 1 (STIM1) on cell membrane, blocking the calcium release-activated calcium (CRAC) channel with shSTIM1 or BTP2 apparently inhibited ATP-evoked intracellular Ca2+ elevation and channel opening, thereby suppressing ATP-driven cell migration. Moreover, extracellular signal-regulated protein kinase (ERK) inhibitor PD98059 and p38 inhibitor SB203580 remarkably inhibited ERK and p38 phosphorylation, cytoskeleton rearrangement, and subsequent cell migration. Unexpectedly, it was found that knocking down STIM1 greatly inhibited ATP-triggered ERK/p38 activation. Taken together, it was suggested that P2Y2 signaled through the CRAC channel mediated Ca2+ influx and ERK/p38 pathway to reorganize the cytoskeleton and promoted the migration of CD34+ VW-SCs.NEW & NOTEWORTHY In this study, we observed that the purinergic receptor P2Y2 is critical in the regulation of vascular wall-resident CD34+ cells' migration. ATP could activate STIM1-mediated extracellular Ca2+ entry by triggering STIM1 translocation to the plasma membrane, and knockdown of STIM1 prevented ERK/p38 activation-mediated cytoskeleton rearrangement and cell migration.

5.
J Heart Lung Transplant ; 42(12): 1651-1665, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37634574

RESUMO

BACKGROUND: Endothelium dysfunction is a central problem for early rejection due to the host alloimmune response and the late status of arteriosclerosis in heart transplantation. However, reliable pieces of evidence are still limited concerning the source of the regenerated endothelium within the transplanted heart. METHODS: We analyzed single-cell RNA sequencing data and constructed an inducible lineage tracing mouse, combined heart transplantation with bone marrow transplantation and a parabiosis model, cellular components, and endothelial cell populations in cardiac graft lesions. RESULTS: Our single-cell RNA sequencing analysis of a transplanted heart allowed for the establishment of an endothelial cell atlas with a heterogeneous population, including arterial, venous, capillary, and lymphatic endothelial cells. Along with genetic cell lineage tracing, we demonstrated that the donor cells were mostly replaced by recipient cells in the cardiac allograft, up to 83.29% 2 weeks after transplantation. Furthermore, recipient nonbone marrow CD34+ endothelial progenitors contributed significantly to extracellular matrix organization and immune regulation, with higher apoptotic ability in the transplanted hearts. Mechanistically, peripheral blood-derived human endothelial progenitor cells differentiate into endocardial cells via Vascular endothelial growth factor receptor-mediated pathways. Host circulating CD34+ endothelial progenitors could repair the damaged donor endothelium presumably through CCL3-CCR5 chemotaxis. Partial depletion of host CD34+ cells resulted in delayed endothelial regeneration. CONCLUSIONS: We created an annotated fate map of endothelial cells in cardiac allografts, indicating how recipient CD34+ cells could replace the donor endothelium via chemokine CCL3-CCR5 interactions. The mechanisms we discovered could have a potential therapeutic effect on the long-term outcomes of heart transplantation.


Assuntos
Transplante de Coração , Camundongos , Humanos , Animais , Células Endoteliais , Fator A de Crescimento do Endotélio Vascular , Doadores de Tecidos , Endotélio , Endotélio Vascular/patologia
6.
Cell Commun Signal ; 21(1): 173, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37430253

RESUMO

AIMS: Vascular resident stem cells expressing stem cell antigen-1 (Sca-1+ cells) promote vascular regeneration and remodelling following injury through migration, proliferation and differentiation. The aim of this study was to examine the contributions of ATP signalling through purinergic receptor type 2 (P2R) isoforms in promoting Sca-1+ cell migration and proliferation after vascular injury and to elucidate the main downstream signalling pathways. METHODS AND RESULTS: ATP-evoked changes in isolated Sca-1+ cell migration were examined by transwell assays, proliferation by viable cell counting assays and intracellular Ca2+ signalling by fluorometry, while receptor subtype contributions and downstream signals were examined by pharmacological or genetic inhibition, immunofluorescence, Western blotting and quantitative RT-PCR. These mechanisms were further examined in mice harbouring TdTomato-labelled Sca-1+ cells with and without Sca-1+-targeted P2R knockout following femoral artery guidewire injury. Stimulation with ATP promoted cultured Sca-1+ cell migration, induced intracellular free calcium elevations primarily via P2Y2R stimulation and accelerated proliferation mainly via P2Y6R stimulation. Enhanced migration was inhibited by the ERK blocker PD98059 or P2Y2R-shRNA, while enhanced proliferation was inhibited by the P38 inhibitor SB203580. Femoral artery guidewire injury of the neointima increased the number of TdTomato-labelled Sca-1+ cells, neointimal area and the ratio of neointimal area to media area at 3 weeks post-injury, and all of these responses were reduced by P2Y2R knockdown. CONCLUSIONS: ATP induces Sca-1+ cell migration through the P2Y2R-Ca2+-ERK signalling pathway, and enhances proliferation through the P2Y6R-P38-MAPK signalling pathway. Both pathways are essential for vascular remodelling following injury. Video Abstract.


Assuntos
Remodelação Vascular , Lesões do Sistema Vascular , Animais , Camundongos , Proliferação de Células , Transdução de Sinais , Movimento Celular , Trifosfato de Adenosina
7.
Basic Res Cardiol ; 118(1): 17, 2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-37147443

RESUMO

The ambiguous results of multiple CD34+ cell-based therapeutic trials for patients with heart disease have halted the large-scale application of stem/progenitor cell treatment. This study aimed to delineate the biological functions of heterogenous CD34+ cell populations and investigate the net effect of CD34+ cell intervention on cardiac remodeling. We confirmed, by combining single-cell RNA sequencing on human and mouse ischemic hearts and an inducible Cd34 lineage-tracing mouse model, that Cd34+ cells mainly contributed to the commitment of mesenchymal cells, endothelial cells (ECs), and monocytes/macrophages during heart remodeling with distinct pathological functions. The Cd34+-lineage-activated mesenchymal cells were responsible for cardiac fibrosis, while CD34+Sca-1high was an active precursor and intercellular player that facilitated Cd34+-lineage angiogenic EC-induced postinjury vessel development. We found through bone marrow transplantation that bone marrow-derived CD34+ cells only accounted for inflammatory response. We confirmed using a Cd34-CreERT2; R26-DTA mouse model that the depletion of Cd34+ cells could alleviate the severity of ventricular fibrosis after ischemia/reperfusion (I/R) injury with improved cardiac function. This study provided a transcriptional and cellular landscape of CD34+ cells in normal and ischemic hearts and illustrated that the heterogeneous population of Cd34+ cell-derived cells served as crucial contributors to cardiac remodeling and function after the I/R injury, with their capacity to generate diverse cellular lineages.


Assuntos
Células Endoteliais , Traumatismo por Reperfusão , Camundongos , Animais , Humanos , Remodelação Ventricular , Coração , Antígenos CD34 , Isquemia
8.
Sci Adv ; 9(15): eadd2632, 2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-37043578

RESUMO

CD34+ cells improve the perfusion and function of ischemic limbs in humans and mice. However, there is no direct evidence of the differentiation potential and functional role of these cells in the ischemic muscle microenvironment. Here, we combined the single-cell RNA sequencing and genetic lineage tracing technology, then provided exact single-cell atlases of normal and ischemic limb tissues in human and mouse, and consequently found that bone marrow (BM)-derived macrophages with antigen-presenting function migrated to the ischemic site, while resident macrophages underwent apoptosis. The macrophage oncostatin M (OSM) regulatory pathway was specifically turned on by ischemia. Simultaneously, BM CD34+-derived proregenerative fibroblasts were recruited to the ischemia niche, where they received macrophage-released OSM and promoted angiopoietin-like protein-associated angiogenesis. These findings provided mechanisms on the cellular events and cell-cell communications during tissue ischemia and regeneration and provided evidence that CD34+ cells serve as fibroblast progenitors promoting tissue regeneration.


Assuntos
Isquemia , Transdução de Sinais , Humanos , Camundongos , Animais , Oncostatina M/metabolismo , Macrófagos/metabolismo , Fibroblastos/metabolismo
9.
ACS Appl Mater Interfaces ; 15(8): 10477-10491, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36790347

RESUMO

Imaging-guided percutaneous microwave thermotherapy has been regarded as an important alternative nonsurgical therapeutic strategy for hepatocellular carcinoma (HCC) that provides excellent local tumor control and favorable survival benefit. However, providing a high-resolution, real-time, and noninvasive imaging technique for intraoperative guidance and controlling postoperative residual tumor recurrence are urgent needs for the clinical setting. In this study, a cisplatin (CDDP)-loaded nanocapsule (NPs@CDDP) with microwave responsive property was prepared to simultaneously serve as a contrast agent of emerging thermoacoustic imaging and a sensitizing agent of microwave thermo-chemotherapy. Accompanying the enzymolysis in the tumor microenvironment, the NPs@CDDP responsively release l-arginine (l-Arg) and CDDP. l-Arg with excellent microwave-absorbing property allowed it to serve as a thermoacoustic imaging contrast agent for accurately delineating the tumor and remarkably increasing tumor temperature under ultralow power microwave irradiation. Apart from the chemotherapeutic effect, CDDP elevated the intracellular H2O2 level through cascade reactions and further accelerated the continuous transformation of l-Arg to nitric oxide (NO), which endowed the NPs@CDDP with NO-generation capability. Notably, the high concentration of intracellular NO was proved to aggravate lipid peroxidation and greatly improved the efficacy of microwave thermo-chemotherapy. Thereby, NPs@CDDP was expected to serve as a theranostic agent integrating the functions of tumor microenvironment-responsive drug delivery system, contrast agent of thermoacoustic imaging, thermal sensitizing agent, and NO nanogenerator, which was promising to provide a potential imaging-guided therapeutic strategy for HCC.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Óxido Nítrico/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Micro-Ondas , Meios de Contraste/uso terapêutico , Peróxido de Hidrogênio , Cisplatino/uso terapêutico , Antineoplásicos/uso terapêutico , Microambiente Tumoral
10.
J Extracell Vesicles ; 12(2): e12307, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36754903

RESUMO

Extracellular vesicles (EVs) contain more than 100 proteins. Whether there are EVs proteins that act as an 'organiser' of protein networks to generate a new or different biological effect from that identified in EV-producing cells has never been demonstrated. Here, as a proof-of-concept, we demonstrate that EV-G12D-mutant KRAS serves as a leader that forms a protein complex and promotes lung inflammation and tumour growth via the Fn1/IL-17A/FGF21 axis. Mechanistically, in contrast to cytosol derived G12D-mutant KRAS complex from EVs-producing cells, EV-G12D-mutant KRAS interacts with a group of extracellular vesicular factors via fibronectin-1 (Fn1), which drives the activation of the IL-17A/FGF21 inflammation pathway in EV recipient cells. We show that: (i), depletion of EV-Fn1 leads to a reduction of a number of inflammatory cytokines including IL-17A; (ii) induction of IL-17A promotes lung inflammation, which in turn leads to IL-17A mediated induction of FGF21 in the lung; and (iii) EV-G12D-mutant KRAS complex mediated lung inflammation is abrogated in IL-17 receptor KO mice. These findings establish a new concept in EV function with potential implications for novel therapeutic interventions in EV-mediated disease processes.


Assuntos
Vesículas Extracelulares , Neoplasias Pulmonares , Pneumonia , Camundongos , Animais , Interleucina-17/metabolismo , Interleucina-17/uso terapêutico , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas Mutantes/metabolismo , Proteínas Mutantes/uso terapêutico , Vesículas Extracelulares/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Pneumonia/genética
11.
Stem Cell Res Ther ; 14(1): 33, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36805782

RESUMO

BACKGROUND: CD34+ cells have been used to treat the patients with heart failure, but the outcome is variable. It is of great significance to scrutinize the fate and the mechanism of CD34+ cell differentiation in vivo during heart failure and explore its intervention strategy. METHODS: We performed single-cell RNA sequencing (scRNA-seq) of the total non-cardiomyocytes and enriched Cd34-tdTomato+ lineage cells in the murine (male Cd34-CreERT2; Rosa26-tdTomato mice) pressure overload model (transverse aortic constriction, TAC), and total non-cardiomyocytes from human adult hearts. Then, in order to determine the origin of CD34+ cell that plays a role in myocardial fibrosis, bone marrow transplantation model was performed. Furthermore, to further clarify the role of CD34 + cells in myocardial remodeling in response to TAC injury, we generated Cd34-CreERT2; Rosa26-eGFP-DTA (Cre/DTA) mice. RESULTS: By analyzing the transcriptomes of 59,505 single cells from the mouse heart and 22,537 single cells from the human heart, we illustrated the dynamics of cell landscape during the progression of heart hypertrophy, including CD34+ cells, fibroblasts, endothelial and immune cells. By combining genetic lineage tracing and bone marrow transplantation models, we demonstrated that non-bone-marrow-derived CD34+ cells give rise to fibroblasts and endothelial cells, while bone-marrow-derived CD34+ cell turned into immune cells only in response to pressure overload. Interestingly, partial depletion of CD34+ cells alleviated the severity of myocardial fibrosis with a significant improvement of cardiac function in Cd34-CreERT2; Rosa26-eGFP-DTA model. Similar changes of non-cardiomyocyte composition and cellular heterogeneity of heart failure were also observed in human patient with heart failure. Furthermore, immunostaining showed a double labeling of CD34 and fibroblast markers in human heart tissue. Mechanistically, our single-cell pseudotime analysis of scRNA-seq data and in vitro cell culture study revealed that Wnt-ß-catenin and TGFß1/Smad pathways are critical in regulating CD34+ cell differentiation toward fibroblasts. CONCLUSIONS: Our study provides a cellular landscape of CD34+ cell-derived cells in the hypertrophy heart of human and animal models, indicating that non-bone-marrow-derived CD34+ cells differentiating into fibroblasts largely account for cardiac fibrosis. These findings may provide novel insights for the pathogenesis of cardiac fibrosis and have further potential therapeutic implications for the heart failure.


Assuntos
Células Endoteliais , Insuficiência Cardíaca , Adulto , Humanos , Masculino , Animais , Camundongos , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/terapia , Coração , Miocárdio , Antígenos CD34/genética , Fibrose
12.
Mater Today Bio ; 18: 100542, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36647538

RESUMO

Chemo-photodynamic therapy shows great potential for cancer treatment. However, the rational integration of chemotherapeutic agents and photosensitizers to construct an intelligent nanoplatform with synergistic therapeutic effect is still a great challenge. In this work, curcumin-loaded reduction-responsive prodrug nanoparticles of new indocyanine green (Cur@IR820-ss-PEG) were developed for synergistic cancer chemo-photodynamic therapy. Cur@IR820-ss-PEG exhibit high drug loading content and special worm-like morphology, contributing to their efficient cellular uptake. Due to the presence of the disulfide bond between IR820 and PEG, Cur@IR820-ss-PEG display reduction responsive drug release behaviors. The efficient cellular uptake and reduction triggered drug release of Cur@IR820-ss-PEG lead to their enhanced in vitro cytotoxicity against 4T1cells as compared to the mixture of IR820 and curcumin (IR820/Cur) under laser irradiation. Besides, Cur@IR820-ss-PEG exhibit prolonged blood half-life time, better tumor accumulation and retention, enhanced tumor hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial cell growth factor (VEGF) suppression effect as compared to IR820/Cur. In vivo antitumor activity study, Cur@IR820-ss-PEG effectively inhibit the tumor angiogenesis, which potentiates the PDT efficacy and leads to the best in vivo antitumor effect of Cur@IR820-ss-PEG. This work provides a novel and relatively simple strategy for synergistic cancer chemo-photodynamic therapy.

13.
Circulation ; 147(6): 482-497, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36515099

RESUMO

BACKGROUND: Transplant arteriosclerosis is a major complication in long-term survivors of heart transplantation. Increased lymph flow from donor heart to host lymph nodes has been reported to play a role in transplant arteriosclerosis, but how lymphangiogenesis affects this process is unknown. METHODS: Vascular allografts were transplanted among various combinations of mice, including wild-type, Lyve1-CreERT2;R26-tdTomato, CAG-Cre-tdTomato, severe combined immune deficiency, Ccr2KO, Foxn1KO, and lghm/lghdKO mice. Whole-mount staining and 3-dimensional reconstruction identified lymphatic vessels within the grafted arteries. Lineage tracing strategies delineated the cellular origin of lymphatic endothelial cells. Adeno-associated viral vectors and a selective inhibitor were used to regulate lymphangiogenesis. RESULTS: Lymphangiogenesis within allograft vessels began at the anastomotic sites and extended from preexisting lymphatic vessels in the host. Tertiary lymphatic organs were identified in transplanted arteries at the anastomotic site and lymphatic vessels expressing CCL21 (chemokine [C-C motif] ligand 21) were associated with these immune structures. Fibroblasts in the vascular allografts released VEGF-C (vascular endothelial growth factor C), which stimulated lymphangiogenesis into the grafts. Inhibition of VEGF-C signaling inhibited lymphangiogenesis, neointima formation, and adventitial fibrosis of vascular allografts. These studies identified VEGF-C released from fibroblasts as a signal stimulating lymphangiogenesis extending from the host into the vascular allografts. CONCLUSIONS: Formation of lymphatic vessels plays a key role in the immune response to vascular transplantation. The inhibition of lymphangiogenesis may be a novel approach to prevent transplant arteriosclerosis.


Assuntos
Arteriosclerose , Transplante de Coração , Vasos Linfáticos , Camundongos , Animais , Humanos , Linfangiogênese , Fator C de Crescimento do Endotélio Vascular/genética , Fator C de Crescimento do Endotélio Vascular/metabolismo , Fator C de Crescimento do Endotélio Vascular/farmacologia , Transplante de Coração/efeitos adversos , Células Endoteliais/metabolismo , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Doadores de Tecidos , Vasos Linfáticos/patologia , Arteriosclerose/metabolismo
14.
Front Pharmacol ; 13: 1078047, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36532724

RESUMO

About 230 million people worldwide suffer from peripheral arterial disease (PAD), and the prevalence is increasing year by year. Multiple risk factors, including smoking, dyslipidemia, diabetes, and hypertension, can contribute to the development of PAD. PAD is typically characterized by intermittent claudication and resting pain, and there is a risk of severe limb ischemia, leading to major adverse limb events, such as amputation. Currently, a major progress in the research field of the pathogenesis of vascular remodeling, including atherosclerosis and neointima hyperplasia has been made. For example, the molecular mechanisms of endothelial dysfunction and smooth muscle phenotype switching have been described. Interestingly, a series of focused studies on fibroblasts of the vessel wall has demonstrated their impact on smooth muscle proliferation and even endothelial function via cell-cell communications. In this review, we aim to focus on the functional changes of peripheral arterial cells and the mechanisms of the pathogenesis of PAD. At the same time, we summarize the progress of the current clinical treatment and potential therapeutic methods for PAD and shine a light on future perspectives.

15.
Drug Dev Res ; 83(8): 1923-1933, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36301989

RESUMO

New indocyanine green (IR820) is an indocyanine green analog which has attracted increasing attention in cancer phototherapy for the prominent absorbance at near-infrared region and improved stability. However, the lack of tumor targeting ability is still an obstacle that severely limits the application of IR820. Lactobionic acid (LA) is a ligand for the asialoglycoprotein receptors which are overexpressed on the membrane of hepatocellular carcinoma cells. In this work, three conjugates of LA and IR-820, namely LA-IR820, LA-SS-IR820, and LA-DEG-IR820, were developed for targeted photodynamic therapy of hepatocellular carcinoma (HCC). The in vitro photodynamic effect study shows that LA-IR820, LA-SS-IR820 and LA-DEG-IR820 exhibit similar singlet oxygen quantum yield as compared to free IR820. The cellular uptake study demonstrates that LA-IR820, LA-SS-IR820, and LA-DEG-IR820 exhibit enhanced cellular uptake amount as compared to free IR820 due to the ligand-receptor interactions between LA and asialoglycoprotein receptor overexpressed on the membrane of HepG2 cells. Among these three conjugates, LA-IR820 with hydrodynamic diameter of 154.6 ± 6.1 nm exhibits the highest cellular uptake amount. The cellular reactive oxygen species (ROS) generation study shows that LA-IR820, LA-SS-IR820 and LA-DEG-IR820 display enhanced cellular ROS level as compared to free IR820 and LA-IR820 exhibits the highest cellular ROS level upon 600 mW/cm2 660 nm laser irradiation. As a result, LA-IR820, LA-SS-IR820 and LA-DEG-IR820 exhibit enhanced photocytotoxicity against HepG2 cells as compared to free IR820 and LA-IR820 exhibits the highest photocytotoxicity. LA-IR820, LA-SS-IR820, and LA-DEG-IR820 show significant potential for the targeted photodynamic therapy of HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Fotoquimioterapia , Humanos , Fármacos Fotossensibilizantes/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Verde de Indocianina , Espécies Reativas de Oxigênio , Ligantes , Neoplasias Hepáticas/tratamento farmacológico , Linhagem Celular Tumoral
16.
Cell Rep ; 39(12): 110981, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35732119

RESUMO

Vascular bypass surgery continues to use autologous grafts and often suffers from a shortage of donor grafts. Decellularized xenografts derived from porcine veins provide a promising candidate because of their abundant availability and low immunogenicity. Unfortunately, transplantation outcomes are far from satisfactory because of insufficient regeneration and adverse pathologic remodeling. Herein, a nitrate-functionalized prosthesis has been incorporated into a decellularized porcine vein graft to fabricate a bio-hybrid vascular graft with local delivery of nitric oxide (NO). Exogenous NO efficiently promotes vascular regeneration and attenuates intimal hyperplasia and vascular calcification in both rabbit and mouse models. The underlying mechanism was investigated using a Sca1 2A-CreER; Rosa-RFP genetic-lineage-tracing mouse model that reveals that Sca1+ stem/progenitor cells (SPCs) are major contributors to vascular regeneration and remodeling, and NO plays a critical role in regulating SPC fate. These results support the translational potential of this off-the-shelf vascular graft.


Assuntos
Ataxias Espinocerebelares , Enxerto Vascular , Animais , Modelos Animais de Doenças , Humanos , Hiperplasia/etiologia , Camundongos , Óxido Nítrico , Coelhos , Células-Tronco , Suínos , Enxerto Vascular/efeitos adversos
17.
Circ Res ; 130(2): 213-229, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-34870453

RESUMO

BACKGROUND: Vascular calcification is a prevalent complication in chronic kidney disease and contributes to increased cardiovascular morbidity and mortality. XBP1 (X-box binding protein 1), existing as the XBP1u (unspliced XBP1) and XBP1s (spliced XBP1) forms, is a key component of the endoplasmic reticulum stress involved in vascular diseases. However, whether XBP1u participates in the development of vascular calcification remains unclear. METHODS: We aim to investigate the role of XBP1u in vascular calcification. XBP1u protein levels were reduced in high phosphate-induced calcified vascular smooth muscle cells, calcified aortas from mice with adenine diet-induced chronic renal failure, and calcified radial arteries from patients with chronic renal failure. RESULTS: Inhibition of XBP1u rather than XBP1s upregulated in the expression of the osteogenic markers Runx2 (runt-related transcription factor 2) and Msx2 (msh homeobox 2), and exacerbated high phosphate-induced vascular smooth muscle cell calcification, as verified by calcium deposition and Alizarin red S staining. In contrast, XBP1u overexpression in high phosphate-induced vascular smooth muscle cells significantly inhibited osteogenic differentiation and calcification. Consistently, smooth muscle cell-specific XBP1 deficiency in mice markedly aggravated the adenine diet- and 5/6 nephrectomy-induced vascular calcification compared with that in the control littermates. Further interactome analysis revealed that XBP1u is bound directly to ß-catenin, a key regulator of vascular calcification, via amino acid (aa) 205-230 in its C-terminal degradation domain. XBP1u interacted with ß-catenin to promote its ubiquitin-proteasomal degradation and thus inhibited ß-catenin/TCF (T-cell factor)-mediated Runx2 and Msx2 transcription. Knockdown of ß-catenin abolished the effect of XBP1u deficiency on vascular smooth muscle cell calcification, suggesting a ß-catenin-mediated mechanism. Moreover, the degradation of ß-catenin promoted by XBP1u was independent of GSK-3ß (glycogen synthase kinase 3ß)-involved destruction complex. CONCLUSIONS: Our study identified XBP1u as a novel endogenous inhibitor of vascular calcification by counteracting ß-catenin and promoting its ubiquitin-proteasomal degradation, which represents a new regulatory pathway of ß-catenin and a promising target for vascular calcification treatment.


Assuntos
Splicing de RNA , Calcificação Vascular/metabolismo , Proteína 1 de Ligação a X-Box/metabolismo , beta Catenina/metabolismo , Animais , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Células HEK293 , Proteínas de Homeodomínio/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos de Músculo Liso/metabolismo , Proteólise , Ratos , Ratos Sprague-Dawley , Ubiquitinação , Calcificação Vascular/genética , Proteína 1 de Ligação a X-Box/genética
19.
Biochem Biophys Rep ; 27: 101091, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34381883

RESUMO

Peroxisome proliferator-activated receptor (PPAR) α is widely expressed in the vasculature and has pleiotropic and lipid-lowering independent effects, but its role in the growth and function of vascular smooth muscle cells (VSMCs) during vascular pathophysiology is still unclear. Herein, VSMC-specific PPARα-deficient mice (Ppara ΔSMC) were generated by Cre-LoxP site-specific recombinase technology and VSMCs were isolated from mice aorta. PPARα deficiency attenuated VSMC apoptosis induced by angiotensin (Ang) II and hydrogen peroxide, and increased the migration of Ang II-challenged cells.

20.
J Mol Cell Cardiol ; 156: 57-68, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33745891

RESUMO

Cardiovascular diseases are leading causes that threaten people's life. To investigate cells that are involved in disease development and tissue repair, various technologies have been introduced. Among these technologies, lineage tracing is a powerful tool to track the fate of cells in vivo, providing deep insights into cellular behavior and plasticity. In cardiac diseases, newly formed cardiomyocytes and endothelial cells are found from proliferation of local cells, while fibroblasts and macrophages are originated from diverse cell sources. Similarly, in response to vascular injury, various sources of cells including media smooth muscle cells, endothelium, resident progenitors and bone marrow cells are involved in lesion formation and/or vessel regeneration. In summary, current review summarizes the development of lineage tracing techniques and their utilizations in investigating roles of different cell types in cardiovascular diseases.


Assuntos
Biomarcadores , Doenças Cardiovasculares/etiologia , Linhagem da Célula/genética , Rastreamento de Células/métodos , Suscetibilidade a Doenças , Variação Genética , Miócitos Cardíacos/metabolismo , Animais , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/metabolismo , Células Endoteliais/metabolismo , Humanos , Macrófagos/metabolismo , Microscopia/métodos , Miócitos Cardíacos/citologia , Miócitos de Músculo Liso/metabolismo , Organogênese/genética , Células-Tronco/metabolismo , Imagem com Lapso de Tempo/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA