RESUMO
Homologous recombination deficiency (HRD) is prevalent in cancer, sensitizing tumor cells to poly (ADP-ribose) polymerase (PARP) inhibition. However, the impact of HRD and related therapies on the tumor microenvironment (TME) remains elusive. Our study generates single-cell gene expression and T cell receptor profiles, along with validatory multimodal datasets from >100 high-grade serous ovarian cancer (HGSOC) samples, primarily from a phase II clinical trial (NCT04507841). Neoadjuvant monotherapy with the PARP inhibitor (PARPi) niraparib achieves impressive 62.5% and 73.6% response rates per RECIST v.1.1 and GCIG CA125, respectively. We identify effector regulatory T cells (eTregs) as key responders to HRD and neoadjuvant therapies, co-occurring with other tumor-reactive T cells, particularly terminally exhausted CD8+ T cells (Tex). TME-wide interferon signaling correlates with cancer cells upregulating MHC class II and co-inhibitory ligands, potentially driving Treg and Tex fates. Depleting eTregs in HRD mouse models, with or without PARP inhibition, significantly suppresses tumor growth without observable toxicities, underscoring the potential of eTreg-focused therapeutics for HGSOC and other HRD-related tumors.
Assuntos
Terapia Neoadjuvante , Neoplasias Ovarianas , Piperidinas , Inibidores de Poli(ADP-Ribose) Polimerases , Linfócitos T Reguladores , Microambiente Tumoral , Feminino , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/imunologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Humanos , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Linfócitos T Reguladores/efeitos dos fármacos , Animais , Camundongos , Terapia Neoadjuvante/métodos , Microambiente Tumoral/efeitos dos fármacos , Piperidinas/farmacologia , Piperidinas/uso terapêutico , Indazóis/uso terapêutico , Indazóis/farmacologia , Recombinação Homóloga , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular TumoralRESUMO
It is well established that sevoflurane exposure leads to widespread neuronal cell death in the developing brain. Adenosine deaminase acting on RNA-1 (ADAR1) dependent adenosine-to-inosine (A-to-I) RNA editing is dynamically regulated throughout brain development. The current investigation is designed to interrogate the contributed role of ADAR1 in developmental sevoflurane neurotoxicity. Herein, we provide evidence to show that developmental sevoflurane priming triggers neuronal pyroptosis, apoptosis and necroptosis (PANoptosis), and elicits the release of inflammatory factors including IL-1ß, IL-18, TNF-α and IFN-γ. Additionally, ADAR1-P150, but not ADAR1-P110, depresses cellular PANoptosis and inflammatory response by competing with Z-DNA/RNA binding protein 1 (ZBP1) for binding to Z-RNA in the presence of sevoflurane. Further investigation demonstrates that ADAR1-dependent A-to-I RNA editing mitigates developmental sevoflurane-induced neuronal PANoptosis. To restore RNA editing, we utilize adeno-associated virus (AAV) to deliver engineered circular ADAR-recruiting guide RNAs (cadRNAs) into cells, which is capable of recruiting endogenous adenosine deaminases to promote cellular A-to-I RNA editing. As anticipated, AAV-cadRNAs diminishes sevoflurane-induced cellular Z-RNA production and PANoptosis, which could be abolished by ADAR1-P150 shRNA transfection. Moreover, AAV-cadRNAs delivery ameliorates developmental sevoflurane-induced spatial and emotional cognitive deficits without influence on locomotor activity. Taken together, these results illustrate that ADAR1-P150 exhibits a prominent role in preventing ZBP1-dependent PANoptosis through A-to-I RNA editing in developmental sevoflurane neurotoxicity. Application of engineered cadRNAs to rectify the compromised ADAR1-dependent A-to-I RNA editing provides an inspiring direction for possible clinical preventions and therapeutics.
Assuntos
Adenosina Desaminase , Adenosina , Edição de RNA , Proteínas de Ligação a RNA , Sevoflurano , Animais , Adenosina/metabolismo , Adenosina Desaminase/metabolismo , Adenosina Desaminase/genética , Apoptose/efeitos dos fármacos , Inosina/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Síndromes Neurotóxicas/genética , Síndromes Neurotóxicas/metabolismo , Piroptose/efeitos dos fármacos , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genéticaRESUMO
BACKGROUND: Several types of human papillomavirus (HPV) vaccines have been approved for use in adolescent girls in China. These vaccines are regulated as non-National Immunisation Program vaccines and are optional and generally fully self-paid by vaccinees. OBJECTIVE: To assess parents' demand for HPV vaccination by eliciting their willingness-to-pay for their adolescent daughters to be vaccinated against HPV and to examine the determinants of demand for HPV vaccination in China. METHODS: A contingent valuation survey was conducted across three cities in Shandong Province in eastern China. We selected 11 junior middle schools with different socioeconomic features and randomly selected 6 classes in each school, and questionnaires were distributed to all girls aged 12-16 in the 66 classes for their parents to complete. A payment card approach was used to elicit parental willingness-to-pay for HPV vaccination for their daughters. We also collected a wide array of socioeconomic and psychological variables and interval regressions were applied to examine the determinants of parental willingness-to-pay. RESULTS: A total of 1074 eligible parents who completed valid questions were included in analyses. Over 85% of parents believed HPV vaccines were, in general, necessary and beneficiary. However, only around 10% believed that their daughters would be infected by HPV. About 8% of parents would not accept HPV vaccine even if the vaccine were free mainly due to concerns about the potential side effects and vaccine safety and quality issues, and 27.37% would only accept the vaccine if it were free. The median willingness-to-pay was 300 CNY (42 USD). Several factors were positively correlated with higher willingness-to-pay: income, urban residence (relative to rural residence), mothers (relative to fathers), parents' beliefs about vaccine benefits, whether they should make decisions for their daughters, and whether their daughters would be susceptible to HPV. Though education-level was not significantly correlated with willingness-to-pay in the main regressions, a subgroup analysis revealed interesting dynamics in the relation between education and willingness-to-pay across different income-levels. CONCLUSIONS: There is a large gap between parents' willingness-to-pay and the market price of HPV vaccine for girls in China. Parents generally believed the HPV vaccines were beneficial and necessary but when asked for their daughters, most parents did not believe their daughters would be infected by HPV despite the high prevalence in China. Future focus should be on ensuring the provision of accurate health information about HPV prevalence, vaccine quality, and safety to promote vaccine uptake, and promotional efforts tailored to different income groups might yield better effects. Government involvement in negotiating more widely acceptable and affordable prices or subsidising may be necessary for protecting high-risk population groups.
Assuntos
Infecções por Papillomavirus , Vacinas contra Papillomavirus , Pais , Humanos , China , Feminino , Vacinas contra Papillomavirus/administração & dosagem , Vacinas contra Papillomavirus/economia , Adolescente , Pais/psicologia , Criança , Infecções por Papillomavirus/prevenção & controle , Inquéritos e Questionários , Adulto , Núcleo Familiar , Masculino , Fatores Socioeconômicos , Aceitação pelo Paciente de Cuidados de Saúde , Pessoa de Meia-Idade , Papillomavirus HumanoRESUMO
Gene-editing technology shows great potential in glioblastoma (GBM) therapy. Due to the complexity of GBM pathogenesis, a single gene-editing-based therapy is unlikely to be successful; therefore, a multi-gene knockout strategy is preferred for effective GBM inhibition. Here, a non-invasive, biodegradable brain-targeted CRISPR/Cas12a nanocapsule is used that simultaneously targeted dual oncogenes, EGFR and PLK1, for effective GBM therapy. This cargo nanoencapsulation technology enables the CRISPR/Cas12a system to achieve extended blood half-life, efficient blood-brain barrier (BBB) penetration, active tumor targeting, and selective release. In U87MG cells, the combinatorial gene editing system resulted in 61% and 33% knockout of EGFR and PLK1, respectively. Following systemic administration, the CRISPR/Cas12a system demonstrated promising brain tumor accumulation that led to extensive EGFR and PLK1 gene editing in both U87MG and patient-derived GSC xenograft mouse models with negligible off-target gene editing detected through NGS. Additionally, CRISPR/Cas12a nanocapsules that concurrently targeted the EGFR and PLK1 oncogenes showed superior tumor growth suppression and significantly improved the median survival time relative to nanocapsules containing single oncogene knockouts, signifying the potency of the multi-oncogene targeting strategy. The findings indicate that utilization of the CRISPR/Cas12a combinatorial gene editing technique presents a practical option for gene therapy in GBM.
Assuntos
Neoplasias Encefálicas , Sistemas CRISPR-Cas , Edição de Genes , Glioblastoma , Nanocápsulas , Quinase 1 Polo-Like , Glioblastoma/genética , Glioblastoma/terapia , Glioblastoma/metabolismo , Animais , Camundongos , Edição de Genes/métodos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/metabolismo , Sistemas CRISPR-Cas/genética , Humanos , Modelos Animais de Doenças , Linhagem Celular Tumoral , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Camundongos Nus , Proteínas Associadas a CRISPR/genética , Proteínas Associadas a CRISPR/metabolismo , Proteínas de Bactérias , EndodesoxirribonucleasesRESUMO
BACKGROUND: Prior research exploring the correlation between the XRCC3 Thr241Met polymorphism and the susceptibility to pancreatic cancer has yielded conflicting outcomes. To date, there has been a notable absence of studies examining this polymorphism. The primary aim of the current investigation is to elucidate the potential role of the XRCC3 Thr241Met polymorphism as a risk factor in the development of pancreatic cancer. METHODS: The comprehensive literature search was meticulously conducted across primary databases, including PubMed, Embase, and CNKI (China National Knowledge Infrastructure), spanning from the inception of each database through January 2024. To synthesize the data, a meta-analysis was performed using either a fixed or random-effects model, as appropriate, to calculate the odds ratios (ORs) and their corresponding 95% confidence intervals (CIs). RESULTS: The analysis revealed significant associations between the XRCC3 Thr241Met polymorphism and an increased risk of pancreatic cancer. This was evidenced through various genetic model comparisons: allele contrast (T vs. C: OR = 0.77, 95% CI = 0.70-0.86, P < 0.001), homozygote comparison (TT vs. CC: OR = 0.71, 95% CI = 0.58-0.88, P = 0.001), heterozygote comparison (TC vs. CC: OR = 0.67, 95% CI = 0.52-0.87, P = 0.003), and a dominant genetic model (TT/TC vs. CC: OR = 0.68, 95% CI = 0.57-0.81, P < 0.001). Additionally, subgroup analyses based on ethnicity disclosed that these associations were particularly pronounced in the Caucasian population, with all genetic models showing significance (P < 0.05). CONCLUSIONS: The XRCC3 Thr241Met polymorphism has been identified as contributing to a reduced risk of pancreatic cancer in the Caucasian population. This finding underscores the need for further research to validate and expand upon our conclusions, emphasizing the urgency for continued investigations in this domain.
Assuntos
Proteínas de Ligação a DNA , Predisposição Genética para Doença , Neoplasias Pancreáticas , Polimorfismo de Nucleotídeo Único , Humanos , Neoplasias Pancreáticas/genética , Proteínas de Ligação a DNA/genética , Prognóstico , Fatores de Risco , Reparo do DNA/genética , Estudos de Casos e ControlesRESUMO
Offshore aquaculture's explosive growth improves the public food chain while also unavoidably adding new pollutants to the environment. Consequently, the protection of coastal marine eco-systems depends on the efficient treatment of wastewater from marine aquaculture. For the sulfamethazine (SMZ) of representative sulfonamides and total organic pollutants removal utilizing in-situ high salinity, this work has established an inventive and systematic treatment process coupled with iron-electrode electrochemical and ultrafiltration. Additionally, the activated dithionite (DTN) was being used in the electrochemical and ultrafiltration processes with electricity/varivalent iron (FeII/FeIII) and ceramic membrane (CM), respectively, indicated by the notations DTN@iron-electrode/EO-CM. Quenching experiments and ESR detection have identified plenty of reactive species including SO4·-, ·OH, 1O2, and O2·-, for the advanced treatment. In addition, the mass spectrometry (MS) and the Gaussian simulation calculation for these primary reaction sites revealed the dominate SMZ degradation mechanisms, including cleavage of S-N bond, hydroxylation, and Smile-type rearrangement in DTN@iron-electrode/EO process. The DTN@iron-electrode/EO effluent also demonstrated superior membrane fouling mitigation in terms of the CM process, owing to its higher specific flux. XPS and SEM confirmed the reducing membrane fouling, which showed the formation of a loose and porous cake layer. This work clarified diverse reactive species formation and detoxification with DTN@iron-electrode/EO system and offers a sustainable and efficient process for treating tailwater from coastal aquaculture.
Assuntos
Aquicultura , Cerâmica , Ferro , Oxirredução , Sulfametazina , Águas Residuárias , Poluentes Químicos da Água , Aquicultura/métodos , Poluentes Químicos da Água/química , Cerâmica/química , Águas Residuárias/química , Ferro/química , Sulfametazina/química , Eletrodos , Eliminação de Resíduos Líquidos/métodos , Membranas Artificiais , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentaçãoRESUMO
The aim is to investigate the relationship between serum coagulation parameters (PT, APTT, D-D and FDP) before hospitalization and recurrence of chronic subdural hematoma (CSDH). 236 patients with CSDH who were diagnosed for the first time and had complete medical records were followed up for at least 90 days. Fifty patients (21.2%) had relapsed. Univariate analysis was conducted including general data, imaging data and test results. Serum coagulation parameters (PT, APTT, D-D and FDP) were detected for all CSDH patients. The study identified several factors that exhibited a significant correlation with chronic subdural hematoma (CSDH) recurrence. These factors included advanced age (p = 0.01), hypertension (p = 0.04), liver disease (p = 0.01), anticoagulant drug use (p = 0.01), antiplatelet drug use (p = 0.02), bilateral hematoma (p = 0.02), and single-layer hematoma (p = 0.01). In addition, the presence of fibrin/fibrinogen degradation products (FDP) exceeding 5 mg/L demonstrated a significant relationship with CSDH recurrence (P < 0.05). Notably, the combined assessment of D-dimer (D-D) and FDP exhibited a significant difference, particularly regarding recurrence within 30 days after surgery (P < 0.05). The simultaneous elevation of serum FDP and D-D levels upon admission represents a potentially novel predictor for CSDH recurrence. This finding is particularly relevant for patients who experience recurrence within 30 days following surgical intervention. Older individuals with CSDH who undergo trepanation and drainage should be closely monitored due to their relatively higher recurrence rate.
RESUMO
BACKGROUND: Intracerebral hemorrhage (ICH) comprises primary and secondary injuries, the latter of which induces increased inflammation and apoptosis and is more severe. Activating transcription factor 6 (ATF6) is a type-II transmembrane protein in the endoplasmic reticulum (ER). ATF6 target genes could improve ER homeostasis, which contributes to cryoprotection. Hence, we predict that ATF6 will have a protective effect on brain tissue after ICH. METHOD: The ICH rat model was generated through autologous blood injection into the right basal ganglia, the expression of ATF6 after ICH was determined by WB and IF. The expression of ATF6 was effectively controlled by means of intervention, and a series of measures was used to detect cell death, neuroinflammation, brain edema, blood-brain barrier and other indicators after ICH. Finally, the effects on long-term neural function of rats were measured by behavioral means. RESULT: ATF6 was significantly increased in the ICH-induced brain tissues. Further, ATF6 was found to modulate the expression of cystathionine γ-lyase (CTH) after ICH. Upregulation of ATF6 attenuated neuronal apoptosis and inflammation in ICH rats, along with mitigation of ICH-induced brain edema, blood-brain barrier deterioration, and cognitive behavior defects. Conversely, ATF6 genetic knockdown induced effects counter to those aforementioned. CONCLUSIONS: This study thereby emphasizes the crucial role of ATF6 in secondary brain injury in response to ICH, indicating that ATF6 upregulation may potentially ameliorate ICH-induced secondary brain injury. Consequently, ATF6 could serve as a promising therapeutic target to alleviate clinical ICH-induced secondary brain injuries.
Assuntos
Fator 6 Ativador da Transcrição , Hemorragia Cerebral , Cistationina gama-Liase , Animais , Masculino , Ratos , Fator 6 Ativador da Transcrição/metabolismo , Fator 6 Ativador da Transcrição/genética , Apoptose , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Edema Encefálico/metabolismo , Lesões Encefálicas/metabolismo , Hemorragia Cerebral/metabolismo , Cistationina gama-Liase/metabolismo , Cistationina gama-Liase/genética , Modelos Animais de Doenças , Ratos Sprague-DawleyRESUMO
Based on the continuous inventory data of forest resources in Zhejiang Province in 2019 and 2021, we used statistical methods such as polynomial regression to analyze the impacts of topography and forest spatial structure on average annual diameter at breast height (DBH) growth of main pioneer tree species in natural broad-leaved mixed forests. The results showed that DBH of Schima superba, Quercus glauca, Quercus fabri, Lithocarpus glaber, Castanopsis eyrei, and Castanopsis sclerophylla were between 5-50.8, 5-41.5, 5-50.8, 5-43.9, 5-55.5, and 5-46.1 cm, respectively. We classified all the trees into three classes based on DBH: small (6-12 cm), medium (12-14 cm), and large (>26 cm). The average annual DBH growth of S. superba and Q. glauca was the highest on semi-shady slope and shady slope, with increases of 2.9%-15.7% and 1.1%-41.2%, respectively. The average annual DBH growth of large-diameter S. superba, L. glaber, C. eyrei and C. sclerophylla decreased with the increase of slope, with a maximum decrease of 27.0% for S. superba, with no significant difference among small- and medium-diameter trees as a whole. The slope position did not affect the annual DBH growth of small-diameter trees, while that of medium- and large-diameter S. superba, Q. glauca, and large-diameter Q. fabri, L. glaber decreased with the change of slope position from downhill, mesoslope, uphill to ridge, with a maximum decrease of 28.1% for L. glabe, and the major-diameter C. eyrei was on the contrary. Appropriate increase in the mingling was beneficial to the average annual DBH growth of medium- and large-diameter trees. Moderate mixing was suitable for S. superba, while low degree mixing and moderate mixing was suitable for Q. glauca, Q. fabri and L. glaber, and intensive mixing was suitable for C. eyrei and C. sclerophylla. No significant difference was observed for minor-diameter trees under the mingling. The neighborhood comparison only had a significant effect on the average annual DBH growth of large-diameter Q. glauca, Q. fabri, and L. glaber, which was significantly higher under subdominance-moderation than moderation-inferiority. The average annual DBH growth in the study area was mainly affected by aspect and mixing degree.
Assuntos
Pinus , Quercus , Árvores , Florestas , ChinaRESUMO
Acute Lung Injury (ALI) manifests as an acute exacerbation of pulmonary inflammation with high mortality. The potential application of Danshensu methyl ester (DME, synthesized in our lab) in ameliorating ALI has not been elucidated. Our results demonstrated that DME led to a remarkable reduction in lung injury. DME promoted a marked increase in antioxidant enzymes, like superoxide dismutase (SOD), and glutathione (GSH), accompanied by a substantial decrease in reactive oxygen species (ROS), myeloperoxidase (MPO), and malondialdehyde (MDA). Moreover, DME decreased the production of IL-1ß, TNF-α and IL-6, in vitro and in vivo. TLR4 and MyD88 expression is reduced in the DME-treated cells or tissues, which further leading to a decrease of p-p65 and p-IκBα. Meanwhile, DME effectively facilitated an elevation in cytoplasmic p65 expression. In summary, DME could ameliorate ALI by its antioxidant functionality and anti-inflammation effects through TLR4/NF-κB, which implied that DME may be a viable medicine for lung injury.
Assuntos
Lesão Pulmonar Aguda , Lactatos , NF-kappa B , Humanos , NF-kappa B/metabolismo , Transdução de Sinais , Lipopolissacarídeos/toxicidade , Receptor 4 Toll-Like , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , GlutationaRESUMO
Tuberous sclerosis complex (TSC) and focal cortical dysplasia (FCD) type IIb are the predominant causes of drug-refractory epilepsy in children. Dysmorphic neurons (DNs), giant cells (GCs), and balloon cells (BCs) are the most typical pathogenic profiles in cortical lesions of TSC and FCD IIb patients. However, mechanisms underlying the pathological processes of TSC and FCD IIb remain obscure. The Plexin-B2-Sema4C signalling pathway plays critical roles in neuronal morphogenesis and corticogenesis during the development of the central nervous system. However, the role of the Plexin-B2 system in the pathogenic process of TSC and FCD IIb has not been identified. In the present study, we investigated the expression and cell distribution characteristics of Plexin-B2 and Sema4C in TSC and FCD IIb lesions with molecular technologies. Our results showed that the mRNA and protein levels of Plexin-B2 expression were significantly increased both in TSC and FCD IIb lesions versus that in the control cortex. Notably, Plexin-B2 was also predominantly observed in GCs in TSC epileptic lesions and BCs in FCD IIb lesions. In contrast, the expression of Sema4C, the ligand of Plexin-B2, was significantly decreased in DNs, GCs, and BCs in TSC and FCD IIb epileptic lesions. Additionally, Plexin-B2 and Sema4C were expressed in astrocytes and microglia cells in TSC and FCD IIb lesions. Furthermore, the expression of Plexin-B2 was positively correlated with seizure frequency in TSC and FCD IIb patients. In conclusion, our results showed the Plexin-B2-Sema4C system was abnormally expressed in cortical lesions of TSC and FCD IIb patients, signifying that the Plexin-B2-Sema4C system may play a role in the pathogenic development of TSC and FCD IIb.
Assuntos
Displasia Cortical Focal , Malformações do Desenvolvimento Cortical do Grupo I , Proteínas do Tecido Nervoso , Semaforinas , Esclerose Tuberosa , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Epilepsia Resistente a Medicamentos/metabolismo , Epilepsia Resistente a Medicamentos/patologia , Epilepsia , Displasia Cortical Focal/metabolismo , Displasia Cortical Focal/patologia , Células Gigantes/metabolismo , Células Gigantes/patologia , Malformações do Desenvolvimento Cortical do Grupo I/metabolismo , Malformações do Desenvolvimento Cortical do Grupo I/patologia , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/biossíntese , Neurônios/metabolismo , Neurônios/patologia , Semaforinas/metabolismo , Semaforinas/genética , Semaforinas/biossíntese , Esclerose Tuberosa/metabolismo , Esclerose Tuberosa/patologiaRESUMO
OBJECTIVES: To observe the effect of electroacupuncture (EA) on changes of ventricular structure and function in rats with myocardial ischemia-reperfusion injury (MIRI), so as to explore its potential mechanisms underlying improvement of ventricular remodeling after MIRI. METHODS: Forty male SD rats were randomly divided into 4 groupsï¼sham operation group, model group, EA group and medication (sacubactril valsartan, LCZ696) group, with 10 rats in each group. The MIRI model was established by ligation of the left anterior descending coronary artery and reperfusion. EA (2 Hz/100 Hz, 2 mA) was applied to bilateral "Neiguan" (PC6) for 20 min, once every other day for 21 d. Rats of the medication group received gavage of LCZ696 (60 mg·kg-1·d-1). After the intervention, echocardiography was used to detect the ejection fraction (EF) and fractional shortening (FS) of the left ventricle, and the contents of serum tumor necrosis factor-α(TNF-α), vascular cell adhesion molecule-1(VCAM-1) and intercellular cell adhesion molecule-1(ICAM-1) were assayed by enzyme-linked immunosorbent assay. The pathological changes of myocardial tissue were observed after HE staining. The Masson staining was used to evaluate the myocardial collagen deposition and myocardial fibrosis. The mRNA expression levels of collagen â and â ¢ and connective tissue growth factor (CTGF) in the myocardial tissue were detected by quantitative real-time PCR, and the expression levels of IL-1ß and IL-18 were detected by Western blot. RESULTS: In contrast to the sham operation group, the EF and FS levels of the left ventricle were ob-viously decreased (P<0.001), while the contents of serum TNF-α, VCAM-1 and ICAM-1, the proportion of myocardial fibrosis area, the mRNA expression levels of myocardial collagen â , collagen â ¢ and CTGF, the expression levels of IL-1ß and IL-18 were significantly increased (P<0.001, P<0.000 1, P<0.05, P<0.01) in the model group. Compared with the model group, the EF and FS levels were remarkably increased (P<0.01), whereas the contents of serum TNF-α, VCAM-1 and ICAM-1, the proportion of myocardial fibrosis area, the mRNA expression levels of myocardial collagen â , collagen â ¢ and CTGF, and the expression levels of IL-1ß and IL-18 were significantly down-regulated (P<0.001, P<0.01, P<0.05) in both the medication and EA groups. No significant differences were found between the EA and medication groups in all the indexes mentioned above. CONCLUSIONS: EA can improve the left-ventricular fibrosis and function, delay or reverse ventricular remodeling in MIRI rats, which may be related to its functions in down-regulating myocardial inflammatory response and mRNA expression levels of myocardial collagen â , collagen â ¢ and CTGF.
Assuntos
Eletroacupuntura , Traumatismo por Reperfusão Miocárdica , Ratos , Masculino , Animais , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/terapia , Ratos Sprague-Dawley , Molécula 1 de Adesão Intercelular/genética , Interleucina-18 , Fator de Necrose Tumoral alfa/genética , Ventrículos do Coração , Molécula 1 de Adesão de Célula Vascular , Remodelação Ventricular , Colágeno , Interleucina-1beta/genética , Fibrose , RNA MensageiroRESUMO
OBJECTIVE: The main objective of this study was to build a rich and high-quality thyroid ultrasound image database (TUD) for computer-aided diagnosis (CAD) systems to support accurate diagnosis and prognostic modeling of thyroid disorders. Because most of the raw thyroid ultrasound images contain artificial markers, which seriously affect the robustness of CAD systems because of their strong prior location information, we propose a marker mask inpainting (MMI) method to erase artificial markers and improve image quality. METHODS: First, a set of thyroid ultrasound images were collected from the General Hospital of the Northern Theater Command. Then, two modules were designed in MMI, namely, the marker detection (MD) module and marker erasure (ME) module. The MD module detects all markers in the image and stores them in a binary mask. According to the binary mask, the ME module erases the markers and generates an unmarked image. Finally, a new TUD based on the marked images and unmarked images was built. The TUD is carefully annotated and statistically analyzed by professional physicians to ensure accuracy and consistency. Moreover, several normal thyroid gland images and some ancillary information on benign and malignant nodules are provided. RESULTS: Several typical segmentation models were evaluated on the TUD. The experimental results revealed that our TUD can facilitate the development of more accurate CAD systems for the analysis of thyroid nodule-related lesions in ultrasound images. The effectiveness of our MMI method was determined in quantitative experiments. CONCLUSION: The rich and high-quality resource TUD promotes the development of more effective diagnostic and treatment methods for thyroid diseases. Furthermore, MMI for erasing artificial markers and generating unmarked images is proposed to improve the quality of thyroid ultrasound images. Our TUD database is available at https://github.com/NEU-LX/TUD-Datebase.
Assuntos
Nódulo da Glândula Tireoide , Humanos , Nódulo da Glândula Tireoide/patologia , Diagnóstico por Computador/métodos , Ultrassonografia/métodos , PesquisaRESUMO
Deep learning-based methods for detecting surface defects on strip steel have advanced detection capabilities, but there are still problems of target loss, false alarms, large computation, and imbalance between detection accuracy and detection speed. In order to achieve a good balance between detection accuracy and speed, a lightweight YOLOv5 strip steel surface defect detection algorithm based on YOLOv5s is proposed. Firstly, we introduce the efficient lightweight convolutional layer called GSConv. The Slim Neck, designed based on GSConv, replaces the original algorithm's neck, reducing the number of network parameters and improving detection speed. Secondly, we incorporate SimAM, a non-parametric attention mechanism, into the improved neck to enhance detection accuracy. Finally, we utilize the SIoU function as the regression prediction loss instead of the original CIoU to address the issue of slow convergence and improve efficiency. According to experimental findings, the YOLOv5-GSS algorithm outperforms the YOLOv5 method by 2.9% on the NEU-DET dataset and achieves an average accuracy (mAP) of 83.8% with a detection speed (FPS) of 100 Hz, which is 3.8 Hz quicker than the YOLOv5 algorithm. The proposed model outperforms existing approaches and is more useful, demonstrating the efficacy of the optimization strategy.
RESUMO
BACKGROUND: Cuproptosis is a newly discovered programmed cell death dependent on mitochondrial respiratory disorder induced by copper overload. Pyruvate dehydrogenase E1 subunit beta (PDHB) is one of the cuproptosis genesand is a nuclear-encoded pyruvate dehydrogenase, which catalyzes the conversion of pyruvate to acetyl coenzyme A. However, the mechanism of PDHB in clear cell renal cell carcinoma (ccRCC) remains unclear. METHODS: We used data from TCGA and GEO to assess the expression of PDHB in normal and tumor tissues. We further analyzed the relationship between PDHB and somatic mutations and immune infiltration. Finally, we preliminarily explored the impact of PDHB on ccRCC. RESULTS: The expression level of PDHB was lower in tumor tissue compared with normal tissue. Meanwhile, the expression level of PDHB was also lower in high-grade tumors than low-grade tumors. PDHB is positively correlated with prognosis in ccRCC. Furthermore, PDHB may be associated with decreased risk of VHL, PBRM1 and KDM5C mutations. In 786-O cells, copper chloride could promote the expression of cuproptosis genes (DLAT, PDHB and FDX1) and inhibit cell growth. Last but not least, we found that PDHB could inhibit the proliferation and migration of ccRCC cells. CONCLUSION: Our results demonstrated that PDHB could inhibit the proliferation, migration and invasion in ccRCC cells, which might be a prognostic predictor of ccRCC. Targeting this molecular might provide a new therapeutic strategy for patients with advanced ccRCC.
Assuntos
Apoptose , Carcinoma de Células Renais , Carcinoma , Neoplasias Renais , Humanos , Biomarcadores , Carcinoma de Células Renais/genética , Cobre , Neoplasias Renais/genéticaRESUMO
Immunotherapy based on immune checkpoint inhibitors (ICIs) has revolutionized treatment strategies in multiple types of cancer. However, the resistance and relapse as associated with the extreme complexity of cancer-immunity interactions remain a major challenge to be resolved. Owing to the epigenome plasticity of cancer and immune cells, a growing body of evidence has been presented indicating that epigenetic treatments have the potential to overcome current limitations of immunotherapy, thus providing a rationalefor the combination of ICIs with epigenetic agents (epidrugs). In this review, we first make an overview about the epigenetic regulations in tumor biology and immunodevelopment. Subsequently, a diverse array of inhibitory agents under investigations targeted epigenetic modulators (Azacitidine, Decitabine, Vorinostat, Romidepsin, Belinostat, Panobinostat, Tazemetostat, Enasidenib and Ivosidenib, etc.) and immune checkpoints (Atezolizmab, Avelumab, Cemiplimab, Durvalumb, Ipilimumab, Nivolumab and Pembrolizmab, etc.) to increase anticancer responses were described and the potential mechanisms were further discussed. Finally, we summarize the findings of clinical trials and provide a perspective for future clinical studies directed at investigating the combination of epidrugs with ICIs as a treatment for cancer.
Assuntos
Inibidores de Checkpoint Imunológico , Neoplasias , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias/tratamento farmacológico , Nivolumabe/uso terapêutico , Ipilimumab/uso terapêutico , ImunoterapiaRESUMO
Tumor-associated macrophages (TAMs) play critical roles in reprogramming other immune cells and orchestrating antitumor immunity. However, the interplay between TAMs and tumor cells responsible for enhancing immune evasion remains insufficiently understood. Here, we revealed that interleukin (IL)-1ß was among the most abundant cytokines within the in vitro tumor-macrophage coculture system, and enhanced IL-1ß expression was associated with impaired cytotoxicity of CD8+ T cells in human ovarian cancer, indicating the possibility that IL-1ß mediated immunosuppression during tumor-TAMs crosstalk. Mechanistically, we demonstrated that IL-1ß significantly boosted programmed death-ligand 1 (PD-L1) expression in tumor cells via the activation of the nuclear factor-κb signaling cascade. Specifically, IL-1ß released from TAMs was triggered by lactate, the anaerobic metabolite of tumor cells, in an inflammasome activation-dependent manner. IL-1ß sustained and intensified immunosuppression by promoting C-C motif chemokine ligand 2 secretion in tumor cells to fuel TAMs recruitment. Importantly, IL-1ß neutralizing antibody significantly curbed tumor growth and displayed synergistic antitumor efficacies with anti-PD-L1 antibody in tumor-bearing mouse models. Together, this study presents an IL-1ß-centered immunosuppressive loop between TAMs and tumor cells, highlighting IL-1ß as a candidate therapeutic target to reverse immunosuppression and potentiate immune checkpoint blockade.
RESUMO
With the development of tissue engineering and regenerative medicine, prevascularized bone marrow mesenchymal stem cell (BMSC) sheets have been regarded as a promising method for tissue regeneration. Furthermore, the inflammatory response is one of the main regulators of vascularization and the restoration of engineered tissue function; among them, macrophages and cytokines produced by them are considered to be the decisive factors of the downstream outcomes. This study investigated the effect of macrophages on the formation of microvascular-like structures of human umbilical vein endothelial cells (HUVECs) in BMSC sheets. First, a human monocytic leukemia cell line (THP-1 cells) was differentiated into derived macrophages (M0) with phorbol 12-myristate 13-acetate and further activated into proinflammatory macrophages (M1 macrophages) with interferon-γ and lipopolysaccharide or anti-inflammatory macrophages (M2 macrophages) with interleukin-4. Then, HUVECs and prevascularized sheets were treated with conditioned media (CM) from different macrophages, and the impact of macrophage phenotypes on vascularized network formation in prevascularized cell sheets was examined by hematoxylin and eosin staining, CD31 immunofluorescence staining and enzyme-linked immunosorbent assay. Our study showed that macrophages may guide the arrangement of endothelial cells through a paracrine pathway. Cell sheets that were cultured in the CM from M2 macrophages were thinner than those cultured in other media. At various time points, the levels of tumor necrosis factor alpha and vascular endothelial growth factor in prevascularized sheets cultured with CM(M1) was higher than that in sheets cultured with other media; however, the levels of platelet-derived growth factor in prevascularized sheets cultured with CM(M2) was higher than that in sheets cultured with other media. These findings suggest that the paracrine effect of macrophages can influence the formation of microvascular networks in prevascularized sheets by regulating the arrangement of cells, the thickness of the cell sheet and the secretion of cytokines related to angiogenesis. Macrophages with different phenotypes have unique effects on prevascularized sheets.
Assuntos
Células-Tronco Mesenquimais , Fator A de Crescimento do Endotélio Vascular , Humanos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células Endoteliais da Veia Umbilical Humana , Fenótipo , Macrófagos/metabolismo , Citocinas/metabolismoRESUMO
BACKGROUND: The standard treatment for advanced T2 gastric cancer (GC) is laparoscopic or surgical gastrectomy (either partial or total) and D2 lymphadenectomy. A novel combined endoscopic and laparoscopic surgery (NCELS) has recently been proposed as a better option for T2 GC. Here we describe two case studies demonstrating the efficacy and safety of NCELS. CASE SUMMARY: Two T2 GC cases were both resected by endoscopic submucosal dissection and full-thickness resection and laparoscopic lymph nodes dissection. This method has the advantage of being more precise and minimally invasive compared to current methods. The treatment of these 2 patients was safe and effective with no complications. These cases were followed up for nearly 4 years without recurrence or metastasis. CONCLUSION: This novel method provides a minimally invasive treatment option for T2 GC, and its potential indications, effectiveness and safety needs to be further evaluated in controlled studies.
RESUMO
BACKGROUND: Ischemic stroke (IS) is a serious neurological disease that largely results in long-term disability and death. Extensive evidence has indicated that the activation of inflammation and ferroptosis significantly contribute to the development of IS pathology. However, the underlying molecular mechanism remains unclear. In this study, we aimed to identify potential biomarkers associated with IS through the construction of a competing endogenous RNA (ceRNA) network and to investigate the possible inflammatory and ferroptosis-related molecular mechanisms. RESULTS: We identified 178 differentially expressed target messenger RNAs (DETmRNAs) associated with IS. As revealed through enrichment analysis, the DEmRNAs were mainly enriched in the inflammatory signaling pathways and also related to ferroptosis mechanism. The CIBERSORT algorithm showed immune infiltration landscapes in which the naïve B cells, naïve T cells, and monocytes had statistically different numbers in the cerebral infarction group compared with the control group. A ceRNA network was constructed in this study involving 44 long non-coding RNAs (lncRNAs), 15 microRNAs (miRNAs), and 160 messenger RNAs (mRNAs). We used the receiver operating characteristic (ROC) analysis to identify three miRNAs (miR-103a-3p, miR-140-3p, and miR-17-5p), one mRNA (TLR4), and one lncRNA (NEAT1) as the potential key biomarkers of the ceRNA network. The key mRNA and lncRNA were shown to be highly related to the ferroptosis mechanism of IS. The expression of these key biomarkers was also further validated by a method of quantitative real-time polymerase chain reaction in SH-SY5Y cells, and the validated results were consistent with the findings predicted by bioinformatics. CONCLUSION: Our results suggest that the ceRNA network may exert an important role in the inflammatory and ferroptosis molecular mechanisms of IS, providing new insight into therapeutic IS targets.