Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur J Med Chem ; 275: 116579, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38889611

RESUMO

SHP2 is a non-receptor tyrosine phosphatase encoded by PTPN11, which performs the functions of regulating cell proliferation, differentiation, apoptosis, and survival through removing tyrosine phosphorylation and modulating various signaling pathways. The overexpression of SHP2 or its mutations is related to developmental diseases and several cancers. Numerous allosteric inhibitors with striking inhibitory potency against SHP2 allosteric pockets have recently been identified, and several SHP2 tunnel allosteric inhibitors have been applied in clinical trials to treat cancers. However, based on clinical results, the efficacy of single-agent treatments has been proven to be suboptimal. Most clinical trials involving SHP2 inhibitors have adopted drug combination strategies. This review briefly discusses the research progress on SHP2 allosteric inhibitors and pathway-dependent drug combination strategies for SHP2 in cancer therapy. In addition, we summarize the current bifunctional molecules of SHP2 and elaborate on the design and structural optimization strategies of these bifunctional molecules in detail, offering further direction for the research on novel SHP2 inhibitors.


Assuntos
Inibidores Enzimáticos , Proteína Tirosina Fosfatase não Receptora Tipo 11 , Proteína Tirosina Fosfatase não Receptora Tipo 11/antagonistas & inibidores , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Humanos , Regulação Alostérica/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/síntese química , Estrutura Molecular , Antineoplásicos/farmacologia , Antineoplásicos/química , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Relação Estrutura-Atividade , Animais
2.
J Med Chem ; 67(9): 7130-7145, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38630077

RESUMO

Multitarget medications represent an appealing therapy against the disease with multifactorial abnormalities─cancer. Therefore, simultaneously targeting son of sevenless 1 (SOS1) and epidermal growth factor receptor (EGFR), two aberrantly expressed proteins crucial for the oncogenesis and progression of prostate cancer, may achieve active antitumor effects. Here, we discovered dual SOS1/EGFR-targeting compounds via pharmacophore-based docking screening. The most prominent compound SE-9 exhibited nanomolar inhibition activity against both SOS1 and EGFR and efficiently suppressed the phosphorylation of ERK and AKT in prostate cancer cells PC-3. Cellular assays also revealed that SE-9 displayed strong antiproliferative activities through diverse mechanisms, such as induction of cell apoptosis and G1 phase cell cycle arrest, as well as reduction of angiogenesis and migration. Further in vivo findings showed that SE-9 potently inhibited tumor growth in PC-3 xenografts without obvious toxicity. Overall, SE-9 is a novel dual-targeting SOS1/EGFR inhibitor that represents a promising treatment strategy for prostate cancer.


Assuntos
Antineoplásicos , Proliferação de Células , Receptores ErbB , Neoplasias da Próstata , Proteína SOS1 , Masculino , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Humanos , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Proteína SOS1/antagonistas & inibidores , Proteína SOS1/metabolismo , Animais , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Camundongos , Apoptose/efeitos dos fármacos , Descoberta de Drogas , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/uso terapêutico , Camundongos Nus , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos Endogâmicos BALB C
3.
Bioorg Chem ; 143: 107039, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38134519

RESUMO

Autophagy is a ubiquitous pathological/physiological antioxidant cellular reaction in eukaryotic cells. Vacuolar protein sorting 34 (Vps34 or PIK3C3), which plays a crucial role in autophagy, has received much attention. As the only Class III phosphatidylinositol-3 kinase in mammals, Vps34 participates in vesicular transport, nutrient signaling and autophagy. Dysfunctionality of Vps34 induces carcinogenesis, and abnormal autophagy mediated by dysfunction of Vps34 is closely related to the pathological progression of various human diseases, which makes Vps34 a novel target for tumor immunotherapy. In this review, we summarize the molecular mechanisms underlying macroautophagy, and further discuss the structure-activity relationship of Vps34 inhibitors that have been reported in the past decade as well as their potential roles in anticancer immunotherapy to better understand the antitumor mechanism underlying the effects of these inhibitors.


Assuntos
Autofagia , Classe III de Fosfatidilinositol 3-Quinases , Animais , Humanos , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Transporte Proteico , Proteínas Relacionadas à Autofagia/metabolismo , Transdução de Sinais , Mamíferos/metabolismo
4.
J Med Chem ; 66(23): 16187-16200, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-38093696

RESUMO

Dual inhibition of tubulin and neuropilin-1 (NRP1) may become an effective method for cancer treatment by simultaneously killing tumor cells and inhibiting tumor angiogenesis. Herein, we identified dual tubulin/NRP1-targeting inhibitor TN-2, which exhibited good inhibitory activity against both tubulin polymerization (IC50 = 0.71 ± 0.03 µM) and NRP1 (IC50 = 0.85 ± 0.04 µM). Importantly, it significantly inhibited the viability of several human prostate tumor cell lines. Further mechanism studies indicated that TN-2 could inhibit tubulin polymerization and cause G2/M arrest, thereby inducing cell apoptosis. It could also suppress cell tube formation, migration, and invasion. Moreover, TN-2 showed obvious antitumor effects on the PC-3 cell-derived xenograft model with negligible side effects and good pharmacokinetic profiles. These data demonstrate that TN-2 could be a promising dual-target chemotherapeutic agent for the treatment of prostate cancer.


Assuntos
Antineoplásicos , Tubulina (Proteína) , Humanos , Linhagem Celular Tumoral , Tubulina (Proteína)/metabolismo , Neuropilina-1 , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Ensaios de Seleção de Medicamentos Antitumorais , Apoptose , Farmacóforo , Proliferação de Células , Pontos de Checagem da Fase G2 do Ciclo Celular , Moduladores de Tubulina/farmacologia , Moduladores de Tubulina/uso terapêutico , Moduladores de Tubulina/química , Polimerização , Relação Estrutura-Atividade
5.
Eur J Med Chem ; 262: 115881, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37883897

RESUMO

A series of novel dihydroquinolin-4(1H)-one derivatives targeting colchicine binding site on tubulin were designed, synthesized and evaluated as anticancer agents. The most potent compound 6t showed remarkable antiproliferative activities against four cancer cell lines with IC50 values among 0.003-0.024 µM and tubulin polymerization inhibitory activity (IC50 = 3.06 µM). Further mechanism studies revealed that compound 6t could induce K562 cells apoptosis and arrest at the G2/M phase. Meanwhile, 6t significantly inhibited migration and invasion of MDA-MB-231 cells, and disrupted the angiogenesis in human umbilical vein endothelial cells (HUVECs) in vitro. In addition, compound 6t inhibited tumor growth in H22 allograft tumor model with a tumor growth inhibition (TGI) rate of 63.3 % (i.v., 20 mg/kg per day) without obvious toxicity. Collectively, these results indicated that compound 6t was a novel tubulin polymerization inhibitor with potent anticancer properties in vitro and in vivo.


Assuntos
Antineoplásicos , Moduladores de Tubulina , Humanos , Moduladores de Tubulina/química , Tubulina (Proteína)/metabolismo , Relação Estrutura-Atividade , Linhagem Celular Tumoral , Células Endoteliais/metabolismo , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Simulação de Acoplamento Molecular , Antineoplásicos/química , Polimerização
6.
J Enzyme Inhib Med Chem ; 38(1): 2247579, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37587873

RESUMO

Angiogenesis plays an important role in tumour generation and progression, which is used to supply nutrients and metastasis. Herein, a series of novel dihydro-1H-indene derivatives were designed and evaluated as tubulin polymerisation inhibitors by binding to colchicine site, exhibiting anti-angiogenic activities against new vessel forming. Through structure-activity relationships study, compound 12d was found to be the most potent derivative possessing the antiproliferative activity against four cancer lines with IC50 values among 0.028-0.087 µM. Compound 12d bound to colchicine site on tubulin and inhibited tubulin polymerisation in vitro. In addition, compound 12d induced cell cycle arrest at G2/M phase, stimulated cell apoptosis, inhibited tumour metastasis and angiogenesis. Finally, the results of in vivo assay suggested that compound 12d could prevent tumour generation, inhibit tumour proliferation and angiogenesis without obvious toxicity. Collectively, all these findings suggested that compound 12d is a novel tubulin polymerisation inhibitor deserving further research.


Assuntos
Indenos , Moduladores de Tubulina , Moduladores de Tubulina/farmacologia , Tubulina (Proteína) , Colchicina
7.
Eur J Med Chem ; 257: 115529, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37269670

RESUMO

A series of novel stilbene-based derivatives were designed and synthesized as tubulin/HDAC dual-target inhibitors. Among forty-three target compounds, compound II-19k not only exhibited considerable antiproliferative activity in the hematological cell line K562 with IC50 value of 0.003 µM, but also effectively inhibited the growth of various solid tumor cell lines with IC50 values ranging from 0.005 to 0.036 µM. The mechanism studies demonstrated that II-19k could inhibit microtubules and HDACs at the cellular level, block cell cycle arrest at G2 phase, induce cell apoptosis, and reduce solid tumor cells metastasis. What's more, the vascular disrupting effects of compound II-19k were more pronounced than the combined administration of parent compound 8 and HDAC inhibitor SAHA. The in vivo antitumor assay of II-19k also showed the superiority of dual-target inhibition of tubulin and HDAC. II-19k significantly suppressed the tumor volume and effectively reduced tumor weight by 73.12% without apparent toxicity. Overall, the promising bioactivities of II-19k make it valuable for further development as an antitumor agent.


Assuntos
Antineoplásicos , Tubulina (Proteína) , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Relação Estrutura-Atividade , Apoptose
8.
J Med Chem ; 66(7): 5118-5153, 2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-36997840

RESUMO

High oxidative phosphorylation (OXPHOS) happens in some tumors, which depends on OXPHOS for energy supply, particularly in slow-cycling tumor cells. Therefore, targeting human mitochondrial RNA polymerase (POLRMT) to inhibit mitochondrial gene expression emerges as a potential therapeutic strategy to eradicate tumor cells. In this work, exploration and optimization of the first-in-class POLRMT inhibitor IMT1B and its SAR led to the identification of a novel compound D26, which exerted a strong antiproliferative effect on several cancer cells and decreased mitochondrial-related genes expression. In addition, mechanism studies demonstrated that D26 arrested cell cycle at the G1 phase and had no effect on apoptosis, depolarized mitochondria, or reactive oxidative stress generation in A2780 cells. Importantly, D26 exhibited more potent anticancer activity than the lead IMT1B in A2780 xenograft nude mice and had no observable toxic effect. All results suggest that D26 deserves to be further investigated as a potent and safe antitumor candidate.


Assuntos
Antineoplásicos , Neoplasias Ovarianas , Animais , Camundongos , Humanos , Feminino , Linhagem Celular Tumoral , RNA Mitocondrial/metabolismo , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto , Neoplasias Ovarianas/tratamento farmacológico , RNA Polimerases Dirigidas por DNA/metabolismo , Mitocôndrias , Apoptose , Proliferação de Células , Antineoplásicos/uso terapêutico
9.
Drug Discov Today ; 28(5): 103560, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36958639

RESUMO

The cytochrome P450 (CYP)4 family of enzymes are monooxygenases responsible for the ω-oxidation of endogenous fatty acids and eicosanoids and play a crucial part in regulating numerous eicosanoid signaling pathways. Recently, CYP4 gained attention as a potential therapeutic target for several human diseases, including cancer, cardiovascular diseases and inflammation. Small-molecule inhibitors of CYP4 could provide promising treatments for these diseases. The aim of the present review is to highlight the advances in the field of CYP4, discussing the physiology and pathology of the CYP4 family and compiling CYP4 inhibitors into groups based on their chemical classes to provide clues for the future discovery of drug candidates targeting CYP4.


Assuntos
Sistema Enzimático do Citocromo P-450 , Ácidos Graxos , Humanos , Família 4 do Citocromo P450/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Ácidos Graxos/metabolismo , Oxirredução , Eicosanoides/metabolismo
10.
Molecules ; 28(3)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36771004

RESUMO

The protein ISG15 encoded by interferon-stimulated gene (ISG) 15 is the first identified member of the ubiquitin-like protein family and exists in the form of monomers and conjugated complexes. Like ubiquitin, ISG15 can mediate an ubiquitin-like modification by covalently modifying other proteins, known as ISGylation. There is growing evidence showing that both the free and conjugated ISG15 are involved in multiple key cellular processes, including autophagy, exosome secretion, DNA repair, immune regulation, and cancer occurrence and progression. In this review, we aim to further clarify the function of ISG15 and ISGylation in cancer, demonstrate the important relationship between ISG15/ISGylation and cancer, and emphasize new insights into the different roles of ISG15/ISGylation in cancer progression. This review may contribute to therapeutic intervention in cancer. However, due to the limitations of current research, the regulation of ISG15/ISGylation on cancer progression is not completely clear, thus further comprehensive and sufficient correlation studies are still needed.


Assuntos
Citocinas , Neoplasias , Humanos , Citocinas/metabolismo , Interferons , Ubiquitina/metabolismo , Ubiquitinas/genética , Ubiquitinas/metabolismo , Neoplasias/metabolismo
11.
Angew Chem Int Ed Engl ; 62(13): e202217246, 2023 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-36670545

RESUMO

Hydrophobic tagging (HyT) is a potential therapeutic strategy for targeted protein degradation (TPD). Norbornene was discovered as an unprecedented hydrophobic tag in this study and was used to degrade the anaplastic lymphoma kinase (ALK) fusion protein by linking it to ALK inhibitors. The most promising degrader, Hyt-9, potently reduced ALK levels through Hsp70 and the ubiquitin-proteasome system (UPS) in vitro without compensatory upregulation of ALK. Furthermore, Hyt-9 exhibited a significant tumor-inhibiting effect in vivo with moderate oral bioavailability. More importantly, norbornene can also be used to degrade the intractable enhancer of zeste homolog 2 (EZH2) when tagged with the EZH2 inhibitor tazemetostat. Thus, the discovery of novel hydrophobic norbornene tags shows promise for the future development of TPD technology.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Proteólise , Inibidores Enzimáticos , Complexo de Endopeptidases do Proteassoma , Inibidores de Proteínas Quinases/farmacologia , Antineoplásicos/química
12.
Bioorg Chem ; 131: 106327, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36549254

RESUMO

Protopanoxadiol is a key active ingredient derived from Panax ginseng that is well-known to exhibit anti-tumor activity. Previous research focused on the natural protopanaxadiol derivative AD-1 has demonstrated that it possesses broad spectrum anti-tumor activities in vitro and in vivo. However, its limited activity, selectivity, and cell permeability have impeded its therapeutic application. Herein, a series of novel AD-1 derivatives were designed and synthesized based on proteolysis-targeting chimera (PROTAC) technology by linking AD-1 at the C-3 and C-12 positions with pomalidomide through linkers of alkyl chain of differing lengths to achieve the goal of improving the efficacy of the parent compound. Among these synthesized PROTACs, the representative compound A05 exhibited the most potent anti-proliferative activity against A549 cells. Furthermore, mechanistic studies revealed that compound A05 was able to suppress MDM2 expression, disrupt interactions between p53 and MDM2 and readily induce apoptotic death via the mitochondrial apoptosis pathway. Moreover, the in vivo assays revealed that compound A05 exhibited both anti-proliferative and anti-metastatic activities in the zebrafish tumor xenograft model with A549 cells. Together, our findings suggest that AD-1 based PROTACs associated with the degradation of MDM2 may have promising effects for the treatment of lung cancer and this work provide a foundation for future efforts to develop novel anti-tumor agents from natural products.


Assuntos
Antineoplásicos , Desenho de Fármacos , Neoplasias Pulmonares , Quimera de Direcionamento de Proteólise , Animais , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Proliferação de Células , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Proteólise , Quimera de Direcionamento de Proteólise/síntese química , Quimera de Direcionamento de Proteólise/química , Quimera de Direcionamento de Proteólise/farmacologia , Peixe-Zebra , Células A549
13.
J Med Chem ; 65(23): 15749-15769, 2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36414390

RESUMO

Pharmacological targeting cancer stem cells are emerging as a novel therapeutic modality for cancer treatment and prevention. Human cytochrome P450 enzyme CYP4Z1 represents a promising target for its potential role in attenuating the stemness of breast cancer cells. In order to develop potent and selective CYP4Z1 inhibitors, a series of novel N-hydroxyphenylformamidines were rationally designed and synthesized from a pan-CYP inhibitor HET0016. CYP4Z1 inhibitory activities of the newly synthesized derivatives were evaluated, and the structure-activity relationships (SARs) were summarized. Among them, compound 7c exhibited the best inhibitory activity with an IC50 value of 41.8 nM. Furthermore, it was found that 7c decreased the expression of stemness markers, spheroid formation, and metastatic ability as well as tumor-initiation capability in a concentration-dependent manner in vitro and in vivo. Altogether, compound 7c might be a potential lead compound to develop CYP4Z1 inhibitor with more favorable druggability for clinical application to treat breast cancer.


Assuntos
Neoplasias , Humanos , Família 4 do Citocromo P450
14.
Bioorg Med Chem ; 72: 116977, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36037626

RESUMO

Natural products (NPs) are always the important sources in the field of drug discovery, among which spirolactone-type and enmein-type compounds exhibit a wide range of biological activities, especially anti-tumor activity. Based on previous studies, the spirolactone-type and enmein-type compounds could be derived from natural oridonin (1) by several chemical reactions. Herein, a series of novel spirolactone-type and enmein-type derivatives with different aryl allyl ester substitutions at their C-14 hydroxyl group were designed and synthesized. The anti-tumor activity results showed that most of the compounds exhibited better anti-proliferative activities than parent compound oridonin, and the most potent compound had an IC50 value of 0.40 µM in K562 cells. Further mechanistic studies revealed that the optimal compound could arrest K562 cells at G2/M phase by inhibiting cdc-2, cdc-25c and cyclin B1 expression. In addition, the optimal compound induced apoptosis in K562 cells through increasing ROS production and depolarizing mitochondrial membrane potential. Collectively, these valuable results suggested that the most potent compound could be an anti-tumor agent candidate and is worthy of further investigation.


Assuntos
Antineoplásicos , Produtos Biológicos , Diterpenos do Tipo Caurano , Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose , Produtos Biológicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Ciclina B1 , Diterpenos , Diterpenos do Tipo Caurano/química , Diterpenos do Tipo Caurano/farmacologia , Ésteres/farmacologia , Humanos , Espécies Reativas de Oxigênio , Espironolactona/química , Espironolactona/farmacologia , Relação Estrutura-Atividade
15.
J Med Chem ; 65(16): 11187-11213, 2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-35926141

RESUMO

Most vascular disrupting agents (VDAs) fail to prevent the regrowth of blood vessels at the edge of tumors, causing tumor rebound and relapse. Herein, a series of novel multifunctional vascular disrupting agents (VDAs) capable of inhibiting microtubule polymerization and histone deacetylases (HDACs) were designed and synthesized using the tubulin polymerization inhibitor TH-0 as the lead compound. Among them, compound TH-6 exhibited the most potent antiproliferative activity (IC50 = 18-30 nM) against a panel of cancer cell lines. As expected, TH-6 inhibited tubulin assembly and increased the acetylation level of HDAC substrate proteins in HepG2 cells. Further in vivo antitumor assay displayed that TH-6 effectively inhibited tumor growth with no apparent toxicity. More importantly, TH-6 disrupted both the internal and peripheral tumor vasculatures, which contributed to the persistent tumor inhibitory effects after drug withdrawal. Altogether, TH-6 deserves to be further investigated for the new approach to clinical cancer therapy.


Assuntos
Antineoplásicos , Tubulina (Proteína) , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Histona Desacetilases/metabolismo , Polimerização , Relação Estrutura-Atividade , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/química , Moduladores de Tubulina/farmacologia , Moduladores de Tubulina/uso terapêutico
16.
Eur J Med Chem ; 240: 114575, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-35803175

RESUMO

A series of NQO1 selectively activated prodrugs were designed and synthesized by introducing indolequinone moiety to the C-3, C-23 or C-28 position of 23-hydroxybetulinic acid (23-HBA) and its analogues. Among them, the representative compound 32j exhibited significant antiproliferative activities against NQO1-overexpressing HT-29 cells and A549 cells, with IC50 values of 1.87 and 2.36 µM, respectively, which were 20-30-fold more potent than those of parent compound 23-HBA. More importantly, it was demonstrated in the in vivo antitumor experiment that 32j effectively suppressed the tumor volume and largely reduced tumor weight by 72.69% with no apparent toxicity, which was more potent than the positive control 5-fluorouracil. This is the first breakthrough in the improvement of in vivo antitumor activities of 23-HBA derivatives. The further molecular mechanism study revealed that 32j blocked cell cycle arrest at G2/M phase, induced cell apoptosis, depolarized mitochondria and elevated the intracellular ROS levels in a dose-dependent manner. Western blot analysis indicated that 32j induced cell apoptosis by interfering with the expression of apoptosis-related proteins. These findings suggest that compound 32j could be considered as a potent antitumor prodrug candidate which deserves to be further investigated for personalized cancer therapy.


Assuntos
Antineoplásicos , Pró-Fármacos , Antineoplásicos/farmacologia , Apoptose , Linhagem Celular Tumoral , Humanos , NAD/farmacologia , NAD(P)H Desidrogenase (Quinona)/metabolismo , Pró-Fármacos/farmacologia , Quinonas/farmacologia , Triterpenos
17.
Fitoterapia ; 160: 105222, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35618147

RESUMO

A series of novel nitrogenous heterocycle substituted 23-Hydroxybetulinic acid (23-HBA) derivatives with amide linkages at the C-3 position were designed, synthesized and evaluated for their antitumor activities. The biological screening results showed that most of the derivatives exhibited more potent antiproliferative activities than 23-HBA. In particular compound II-9 exhibited the most potent activities with IC50 values ranging from 1.96 µM to 6.20 µM against five cancer cell lines (B16, HepG2, A2780, MCF-7 and A549). The preliminary mechanism study showed that compound II-9 caused cell cycle arrest at G1 phase, induced cell apoptosis and depolarized mitochondria of B16 cells in a dose dependent manner. Moreover, western blot analysis indicated that compound II-9 down-regulated the expression of anti-apoptotic protein Bcl-2, up-regulated the expression of pro-apoptotic protein Bad, and activated cytochrome C and caspase 3 to cause cell apoptosis. In summary, II-9 may serve as a promising lead for the development of new natural product-based antitumor agents and deserve further investigation.


Assuntos
Antineoplásicos , Neoplasias Ovarianas , Antineoplásicos/farmacologia , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Estrutura Molecular , Nitrogênio/farmacologia , Relação Estrutura-Atividade , Triterpenos
18.
Eur J Med Chem ; 231: 114155, 2022 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35121201

RESUMO

The natural product oridonin has the potential to be a broad-spectrum antineoplastic agent. To develop oridonin analogues with high potency, a series of novel oridonin analogues were designed and synthesized by removing the multiple hydroxyl groups of parent compound. The representative analogues 14, 19, and 26 exhibited potent anticancer effects against K562, MDA-MB-231, SMMC-7721, and MCF-7 cells. Further structural modification on their 14-OH generated more potent derivatives 16n, 21d, and 28d respectively, in which the IC50 value of compound 16n was 50-fold more potent than parent oridonin in K562 cells. Furthermore, compound 16n significantly induced the cell cycle arrest of K562 cells at the G2 phase and increased the fraction of apoptotic cells. Importantly, compounds 16n, 21d, and 28d exhibited good antitumor activities in H22 allograft mice in vivo. These results suggest that compounds 16n, 21d, and 28d deserve further development as promising candidates for the treatment of cancers.


Assuntos
Antineoplásicos , Diterpenos do Tipo Caurano , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Diterpenos do Tipo Caurano/química , Diterpenos do Tipo Caurano/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Camundongos , Relação Estrutura-Atividade
19.
Beilstein J Org Chem ; 17: 2924-2931, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34956412

RESUMO

Hoshinoamides A, B and C, linear lipopeptides, were isolated from the marine cyanobacterium Caldora penicillata, with potent antiplasmodial activity against chloroquine-sensitive Plasmodium falciparum. Herein, we describe the first total synthesis of hoshinoamide A by the combination of liquid-phase and solid-phase peptide synthesis. Liquid-phase synthesis is to improve the coupling yield of ʟ-Val3 and N-Me-ᴅ-Phe2. Connecting other amino acids efficiency and convergence is achieved by solid-state synthesis. Our synthetic strategy could synthesize the target peptide in high yield with good purity.

20.
J Med Chem ; 64(23): 17346-17365, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34844412

RESUMO

Evodiamine (Evo) is a quinazolinocarboline alkaloid found in Evodia rutaecarpa and exhibits moderate antiproliferative activity. Herein, we report using a scaffold-hopping approach to identify a series of novel polycyclic heterocyclic derivatives based on Evo as the topoisomerase I (Top1) inhibitor for the treatment of triple-negative breast cancer (TNBC), which is an aggressive subtype of breast cancer with limited treatment options. The most potent compound 7f inhibited cell growth in a human breast carcinoma cell line (MDA-MB-231) with an IC50 value of 0.36 µM. Further studies revealed that Top1 was the target of 7f, which directly induced irreversible Top1-DNA covalent complex formation or induced an oxidative DNA lesion through an indirect mechanism mediated by reactive oxygen species. More importantly, in vivo studies showed that 7f exhibited potent antitumor activity in a TNBC-patient-derived tumor xenograft model. These results suggest that compound 7f deserves further investigation as a promising candidate for the treatment of TNBC.


Assuntos
Antineoplásicos/uso terapêutico , Compostos Heterocíclicos/química , Compostos Heterocíclicos/uso terapêutico , Compostos Policíclicos/química , Compostos Policíclicos/uso terapêutico , Quinazolinas/química , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Compostos Heterocíclicos/farmacologia , Humanos , Compostos Policíclicos/farmacologia , Neoplasias de Mama Triplo Negativas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA