Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 5991, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39013900

RESUMO

Trace NO2 detection is essential for the production and life, where the sensing strategy is appropriate for rapid detection but lacks molecular specificity. This investigation proposes a sensing mechanism dominated by surface-scattering to achieve the molecularly-specific detection. Two-dimensional Bi2O2Se is firstly fabricated into a Schottky-junction-based gas-sensor. Applied with an alternating excitation, the sensor simultaneously outputs multiple response signals (i.e., resistance, reactance, and the impedance angle). Their response times are shorter than 200 s at room temperature. In NO2 sensing, these responses present the detection limit in ppt range and the sensitivity is up to 16.8 %·ppb-1. This NO2 sensitivity presents orders of magnitude higher than those of the common gases within the exhaled breath. The impedance angle is involved in the principle component analysis together with the other two sensing signals. Twelve kinds of typical gases containing NO2 are acquired with molecular characteristics. The change in dipole moment of the target molecule adsorbed is demonstrated to correlate with the impedance angle via surface scattering. The proposed mechanism is confirmed to output ultra-sensitive sensing responses with the molecular characteristic.

2.
Adv Sci (Weinh) ; 11(25): e2400661, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38659278

RESUMO

The importance of halogen bonds (XBs) in the regulation of material properties through a variation in the electrostatic potential of the halogen atom is not attracted much attention. Herein, this study utilizes in situ single crystal X-ray diffraction and synchrotron-based X-ray techniques to investigate the cooling-triggered irreversible single-crystal-to-single-crystal transformation of the DMF solvated iodo-substituted squaraine dye (SQD-I). Transformation is observed to be mediated by solvent-involved XB formation and strengthening of electrostatic interaction between adjacent SQD-I molecules. By immersing a DMF solvate in acetonitrile a solvent exchange without loss of long-range ordering is observed. This is attributed to conservation of the molecular charge distribution of SQD-I molecules during the process. The different solvates can be used in combination for temperature-dependent image encryption. This work emphasizes the changes caused by XB formation to the electrostatic potentials of halogen containing molecules and their influence on material properties and presents the potential utility of XBs in the design of soft-porous crystals and luminescent materials.

3.
ACS Nano ; 17(4): 3324-3333, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36773320

RESUMO

Nonalcoholic steatohepatitis (NASH) is the critical stage in the development of nonalcoholic fatty liver disease (NAFLD) from simple and reversible steatosis to irreversible cirrhosis and even hepatocellular carcinoma (HCC). Thus, the diagnosis of NASH is important for preventing the progress of NAFLD into a fatal condition. The oxidative enzyme myeloperoxidase (MPO), which is mostly produced by polymorphonuclear neutrophil granulocytes (NEU), has been identified as a key player in lipid peroxidation in inflamed tissues. Considering that the expression of MPO was much higher in NASH than in the nonalcoholic fatty liver (NAFL) with steatosis, we designed a nanoparticle platform based on ultrasmall iron oxide (USIO) nanoparticles to realize MPO-sensitive NASH diagnosis. After modification of USIO nanoparticles with amphiphilic poly(ethylene glycol) (PEG) and conjugation with 5-hydroxytryptamine (5HT), a physiological substrate for MPO, the final nanocomposite (USIO-DA-PEG-5HT) revealed MPO-mediated aggregation at the inflammatory site of NASH. Meanwhile, the intrinsic T1-weighted magnetic resonance (MR) signal of dispersed USIO-DA-PEG-5HT nanoparticles diminishes, while the T2-weighted MR signal is amplified owing to the aggregation effect. These USIO-DA-PEG-5HT nanoprobes offer great potential for improving NASH MR imaging diagnostic accuracy and sensitivity compared to existing molecular MR contrast agents with a single imaging modality.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/diagnóstico por imagem , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fígado/metabolismo , Carcinoma Hepatocelular/patologia , Peroxidase/metabolismo , Neoplasias Hepáticas/patologia , Imageamento por Ressonância Magnética/métodos
4.
Biomaterials ; 280: 121255, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34810034

RESUMO

The pursuing of photosensitizers (PSs) with efficient reactive oxygen species (ROS) especially type I ROS generation in aggregate is always in high demand for photodynamic therapy (PDT) and photoimmunotherapy but remains to be a big challenge. Herein, we report a cationization molecular engineering strategy to boost both singlet oxygen and radical generation for PDT. Cationization could convert the neutral donor-acceptor (D-A) typed molecules with the dicyanoisophorone-triphenylamine core (DTPAN, DTPAPy) to their A-D-A' typed cationic counterparts (DTPANPF6 and DTPAPyPF6). Our experiment and simulation results reveal that such cationization could enhance the aggregation-induced emission (AIE) feature, promote the intersystem crossing (ISC) processes, and increase the charge transfer and separation ability, all of which work collaboratively to promote the efficient generation of ROS especially hydroxyl and superoxide radicals in aggregates. Moreover, these cationic AIE PSs also possess specific cancer cell mitochondrial targeting capability, which could further promote the PDT efficacy both in vitro and in vivo. Therefore, we expect this delicate molecular design represents an attractive paradigm to guide the design of type I AIE PSs for the further development of PDT.


Assuntos
Neoplasias , Fotoquimioterapia , Humanos , Neoplasias/tratamento farmacológico , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Oxigênio Singlete/metabolismo
5.
Biomaterials ; 274: 120870, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34020268

RESUMO

Photodynamic therapy (PDT) is a promising noninvasive treatment option for patients suffering from superficial tumors, such as oral cancer. However, for photosensitizers (PSs), it remains a grand challenge to simultaneously excel in all the key performance indicators including effective singlet oxygen (1O2) generation under clinical laser, specific targeting function and stable far-red (FR)/near-infrared (NIR) emission with low dark toxicity. In addition, traditional PS nanoparticles (NPs) for clinical use suffer from quenched fluorescence and reduced 1O2 production caused by molecular aggregation. To address these issues, AIEPS5 with aggregation-induced FR/NIR emission and effective 1O2 generation under 532 nm laser irradiation is designed by precise optimization of the chemical structure. By attaching a polyethylene glycol (PEG) chain onto AIEPS5, the yielded amphiphilic AIEPS5-PEG2000 can spontaneously self-assemble into water dispersible NPs, which are further endowed with targeted delivery function via the decoration of anti-Her-2 nanobody (NB). The bespoke AIEPS5-NPs-NB exhibit effective 1O2 generation capability, bright FR/NIR emission centered at 680 nm, and negligible dark toxicity, which outperform Heimbofen, a clinically approved PS in PDT using a patient-derived tumor xenograft model.


Assuntos
Neoplasias Bucais , Nanopartículas , Fotoquimioterapia , Xenoenxertos , Humanos , Neoplasias Bucais/tratamento farmacológico , Fármacos Fotossensibilizantes
6.
Angew Chem Int Ed Engl ; 60(27): 14945-14953, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-33887096

RESUMO

Maximization of phototoxic damage on tumor with minimized side effect on normal tissue is essential for effective anticancer photodynamic therapy (PDT). This requires highly cancer-cell-specific or even cancer-cell-organelle-specific synthesis or delivery of efficient photosensitizers (PSs) in vitro and in vivo, which is difficult to achieve. Herein, we report a strategy of cancer-cell-activated PS synthesis, by which an efficient mitochondria-targeting photosensitizer with aggregation-induced-emission (AIE) feature can be selectively synthesized as an efficient image-guided PDT agent inside cancer cells. MOF-199, a CuII -based metal-organic framework, was selected as an inert carrier to load the PS precursors for efficient delivery and served as a CuI catalyst source for in situ click reaction to form PSs exclusively in cancer cells. The in situ synthesized PS showed mitochondria-targeting capability, allowing potent cancer-cell-specific ablation under light irradiation. The high specificity of PSs produced in cancer cells also makes it safer post-treatment.


Assuntos
Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , Cobre/farmacologia , Mitocôndrias/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Células 3T3 , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Cobre/química , Ensaios de Seleção de Medicamentos Antitumorais , Células HeLa , Humanos , Camundongos , Neoplasias/metabolismo , Neoplasias/patologia , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/química
7.
ACS Nano ; 14(10): 13056-13068, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33016697

RESUMO

Tumor accumulation and intratumoral singlet oxygen (1O2) generation efficiency of photosensitizers (PSs) are two essential factors that determine their photodynamic therapy (PDT) efficacies. How to maximize the PS performance at the tumor site is of great research interest. Herein, we report a metal-organic framework (ZIF-8, ZIF = zeolitic imidazolate framework) assisted in vivo self-assembly nanoplatform, ZIF-8-PMMA-S-S-mPEG, as an effective tool for organic PS payloads to achieve efficient PDT. Using an organic PS with aggregation-induced emission as an example, under intratumoral bioreduction, PS-loaded ZIF-8-PMMA-S-S-mPEG (PS@ZIF-8-PMMA-S-S-mPEG) was self-assembled into large ordered hydrophobic clusters, which greatly enhance tumor retention and accumulation of the PS. Moreover, hydrophobic ZIF-8 assemblies greatly isolate the loaded PSs from water and improve O2 transport for the PSs to effectively produce 1O2 inside tumors under light irradiation. The organic PS is therefore endowed with optimal tumor accumulation and intratumoral 1O2 production, demonstrating the effectiveness of the developed self-assembly strategy in PDT application.


Assuntos
Estruturas Metalorgânicas , Neoplasias , Fotoquimioterapia , Humanos , Neoplasias/tratamento farmacológico , Fármacos Fotossensibilizantes , Oxigênio Singlete
8.
Sci Adv ; 6(26): eabb2712, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32637621

RESUMO

Reactive oxygen species (ROS) are essential for the regulation of antitumor immune responses, where they could induce immunogenic cell death, promote antigen presentation, and activate immune cells. Here, we report the development of near-infrared (NIR)-driven immunostimulants, based on coupling upconversion nanoparticles with aggregation-induced emission luminogens (AIEgens), to integrate the immunological effects of ROS for enhanced adaptive antitumor immune responses. Intratumorally injected AIEgen-upconversion nanoparticles produce high-dose ROS under high-power NIR irradiation, which induces immunogenic cell death and antigen release. These nanoparticles can also capture the released antigens and deliver them to lymph nodes. Upon subsequent low-power NIR treatment of lymph nodes, low-dose ROS are generated to further trigger efficient T cell immune responses through activation of dendritic cells, preventing both local tumor recurrence and distant tumor growth. The utility of dual-mode pumping power on AIEgen-coupled upconversion nanoparticles offers a powerful and controllable platform to activate adaptive immune systems for tumor immunotherapy.


Assuntos
Nanopartículas , Neoplasias , Linhagem Celular Tumoral , Humanos , Imunoterapia , Nanopartículas/uso terapêutico , Neoplasias/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo
9.
Angew Chem Int Ed Engl ; 59(29): 11779-11783, 2020 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-32324962

RESUMO

In order to promote the development of photodynamic therapy (PDT), undesired side effects like low tumor specificity and the "always-on" phenomenon should be avoided. An effective solution is to construct an adaptive photosensitizer that can be activated to generate reactive oxygen species (ROS) in the tumor microenvironment. Herein, we design and synthesize a supramolecular switch based on a host-guest complex containing a water-soluble pillar[5]arene (WP5) and an AIEgen photosensitizer (G). The formation of the host-guest complex WP5⊃G quenches the fluorescence and inhibits ROS generation of G. Benefitting from the pH-responsiveness of WP5, the binding site between G and WP5 changes in an acidic environment through a shuttle movement. Consequently, fluorescence and ROS generation of the host-guest complex can be switched on at pH 5.0. This work offers a new paradigm for the construction of adaptive photosensitizers by using a supramolecular method.


Assuntos
Calixarenos/química , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/farmacologia , Células 3T3 , Ácidos , Animais , Desenho de Fármacos , Fluorescência , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Modelos Moleculares , Fotoquimioterapia , Espécies Reativas de Oxigênio/química
10.
Adv Mater ; 31(30): e1902504, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31169334

RESUMO

Diagnostics of cerebrovascular structures and microscopic tumors with intact blood-brain barrier (BBB) significantly contributes to timely treatment of patients bearing neurological diseases. Dual NIR-II fluorescence and photoacoustic imaging (PAI) is expected to offer powerful strength, including good spatiotemporal resolution, deep penetration, and large signal-to-background ratio (SBR) for precise brain diagnostics. Herein, biocompatible and photostable conjugated polymer nanoparticles (CP NPs) are reported for dual-modality brain imaging in the NIR-II window. Uniform CP NPs with a size of 50 nm are fabricated from microfluidics devices, which show an emission peak at 1156 nm with a large absorptivity of 35.2 L g-1 cm-1 at 1000 nm. The NIR-II fluorescence imaging resolves hemodynamics and cerebral vasculatures with a spatial resolution of 23 µm at a depth of 600 µm. The NIR-II PAI enables successful noninvasive mapping of deep microscopic brain tumors (<2 mm at a depth of 2.4 mm beneath dense skull and scalp) with an SBR of 7.2 after focused ultrasound-induced BBB opening. This study demonstrates that CP NPs are promising contrast agents for brain diagnostics.


Assuntos
Vasos Sanguíneos/diagnóstico por imagem , Neoplasias Encefálicas/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Corantes Fluorescentes/química , Animais , Materiais Biocompatíveis/química , Barreira Hematoencefálica/metabolismo , Encéfalo/irrigação sanguínea , Neoplasias Encefálicas/irrigação sanguínea , Linhagem Celular Tumoral , Corantes Fluorescentes/administração & dosagem , Humanos , Raios Infravermelhos , Camundongos , Camundongos Nus , Nanopartículas/química , Imagem Óptica/métodos , Permeabilidade , Técnicas Fotoacústicas/métodos , Polímeros/química
11.
Adv Mater ; 31(25): e1808355, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31063244

RESUMO

Exogenous contrast-agent-assisted NIR-II optical-resolution photoacoustic microscopy imaging (ORPAMI) holds promise to decipher wide-field 3D biological structures with deep penetration, large signal-to-background ratio (SBR), and high maximum imaging depth to depth resolution ratio. Herein, NIR-II conjugated polymer nanoparticle (CP NP) assisted ORPAMI is reported for pinpointing cerebral and tumor vasculatures. The CP NPs exhibit a large extinction coefficient of 48.1 L g-1 at the absorption maximum of 1161 nm, with an ultrahigh PA sensitivity up to 2 µg mL-1 . 3D ORPAMI of wide-field mice ear allows clear visualization of regular vasculatures with a resolution of 19.2 µm and an SBR of 29.3 dB at the maximal imaging depth of 539 µm. The margin of ear tumor composed of torsional dense vessels among surrounding normal regular vessels can be clearly delineated via 3D angiography. In addition, 3D whole-cortex cerebral vasculatures with large imaging area (48 mm2 ), good resolution (25.4 µm), and high SBR (22.3 dB) at a depth up to 1001 µm are clearly resolved through the intact skull. These results are superior to the recently reported 3D NIR-II fluorescence confocal vascular imaging, which opens up new opportunities for NIR-II CP-NP-assisted ORPAMI in various biomedical applications.


Assuntos
Encéfalo/irrigação sanguínea , Imageamento Tridimensional/métodos , Nanopartículas/química , Neoplasias/irrigação sanguínea , Neovascularização Patológica/diagnóstico por imagem , Técnicas Fotoacústicas/métodos , Polímeros/química , Animais , Meios de Contraste/química , Raios Infravermelhos , Camundongos , Neoplasias/sangue , Imagem Óptica
12.
Theranostics ; 9(5): 1264-1279, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30867829

RESUMO

Photosensitizer (PS) serves as the central element of photodynamic therapy (PDT). The use of common nanoparticles (NPs) for PDT has typically been rendered less effective by the undesirable aggregation-caused quenching (ACQ) effect, resulting in quenched fluorescence and reduced reactive oxygen species (ROS) generation that diminish the imaging quality and PDT efficacy. To overcome the ACQ effect and to enhance the overall efficacy of PDT, herein, integrin ανß3-targeted organic nanodots for image-guided PDT were designed and synthesized based on a red emissive aggregation-induced emission (AIE) PS. Methods: The TPETS nanodots were prepared by nano-precipitation method and further conjugated with thiolated cRGD (cRGD-SH) through a click reaction to yield the targeted TPETS nanodots (T-TPETS nanodots). Nanodots were characterized for encapsulation efficiency, conjugation rate, particle size, absorption and emission spectra and ROS production. The targeted fluorescence imaging and antitumor efficacy of T-TPETS nanodot were evaluated both in vitro and in vivo. The mechanism of cell apoptosis induced by T-TPETS nanodot mediated-PDT was explored. The biocompatibility and toxicity of the nanodots was examined using cytotoxicity test, hemolysis assay, blood biochemistry test and histological staining. Results: The obtained nanodots show bright red fluorescence and highly effective 1O2 generation in aggregate state. Both in vitro and in vivo experiments demonstrate that the nanodots exhibit excellent tumor-targeted imaging performance, which facilitates image-guided PDT for tumor ablation in a hepatocellular carcinoma model. Detailed analysis reveals that the nanodot-mediated PDT is able to induce time- and concentration-dependent cell death. The use of PDT at a high PDT intensity leads to direct cell necrosis, while cell apoptosis via the mitochondria-mediated pathway is achieved under low PDT intensity. Conclusion: Our results suggest that well-designed AIE nanodots are promising for image-guided PDT applications.


Assuntos
Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/terapia , Nanoestruturas/administração & dosagem , Fotoquimioterapia/métodos , Radioterapia Guiada por Imagem/métodos , Animais , Apoptose , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Hepatócitos/efeitos dos fármacos , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Modelos Teóricos , Análise de Sobrevida , Nanomedicina Teranóstica/métodos , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
13.
ACS Nano ; 13(3): 3095-3105, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30763072

RESUMO

Two-photon excited photodynamic therapy (2PE-PDT) has attracted great attention in recent years due to its great potential for deep-tissue and highly spatiotemporally precise cancer therapy. Photosensitizers (PSs) with high singlet oxygen (1O2) generation efficiency and large two-photon absorption (2PA) cross-sections are highly desirable, but the availability of such PSs is limited by challenges in molecular design. In this work, we report that the polymerization of small-molecule PSs with aggregation-induced emission (AIE) could yield conjugated polymer PSs with good brightness, high 1O2 generation efficiency, and large 2PA cross-sections. A pair of conjugated polymer PSs were designed and synthesized, and the corresponding AIE PS dots were prepared by nanoprecipitation, which exhibited outstanding 2PE-PDT performance in in vitro cancer cell ablation and in vivo zebrafish liver tumor treatment. Our work highlights a strategy to design highly efficient PSs for 2PE-PDT.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Fotoquimioterapia , Fótons , Fármacos Fotossensibilizantes/farmacologia , Medicina de Precisão , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Embrião não Mamífero/efeitos dos fármacos , Neoplasias Hepáticas/metabolismo , Transtornos de Fotossensibilidade , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/química , Polimerização , Oxigênio Singlete/metabolismo , Peixe-Zebra
14.
Nanomicro Lett ; 10(4): 61, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30393709

RESUMO

Photodynamic therapy (PDT) employs accumulation of photosensitizers (PSs) in malignant tumor tissue followed by the light-induced generation of cytotoxic reactive oxygen species to kill the tumor cells. The success of PDT depends on optimal PS dosage that is matched with the ideal power of light. This in turn depends on PS accumulation in target tissue and light administration time and period. As theranostic nanomedicine is driven by multifunctional therapeutics that aim to achieve targeted tissue delivery and image-guided therapy, fluorescent PS nanoparticle (NP) accumulation in target tissues can be ascertained through fluorescence imaging to optimize the light dose and administration parameters. In this regard, zebrafish larvae provide a unique transparent in vivo platform to monitor fluorescent PS bio-distribution and their therapeutic efficiency. Using fluorescent PS NPs with unique aggregation-induced emission characteristics, we demonstrate for the first time the real-time visualization of polymeric NP accumulation in tumor tissue and, more importantly, the best time to conduct PDT using transgenic zebrafish larvae with inducible liver hyperplasia as an example.

15.
Small ; 14(52): e1803325, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30480358

RESUMO

Efficient organic photosensitizers are attractive for cancer cell ablation in photodynamic therapy. Bright fluorescent photosensitizers are highly desirable for simultaneous imaging and therapy. However, due to fundamental competition between emission and singlet oxygen generation, design attempts to increase singlet oxygen generation almost always leads to the loss of fluorescence. Herein, it is shown for the first time that nanocrystallization enables a simultaneous and significant increase in the brightness and singlet oxygen generation of an organic photosensitizer. Spectroscopic studies show simultaneous enhancement in the visible light absorption and fluorescence after nanocrystallization. The enhanced absorption of visible light in nanocrystals is found to translate directly to the enhanced singlet oxygen production, which shows a higher ability to kill HeLa cells as compared to their amorphous counterpart.

16.
Adv Mater ; 30(45): e1801350, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30066341

RESUMO

Photodynamic therapy is arising as a noninvasive treatment modality for cancer and other diseases. One of the key factors to determine the therapeutic function is the efficiency of photosensitizers (PSs). Opposed to traditional PSs, which show quenched fluorescence and reduced singlet oxygen production in the aggregate state, PSs with aggregation-induced emission (AIE) exhibit enhanced fluorescence and strong photosensitization ability in nanoparticles. Here, the design principles of AIE PSs and their biomedical applications are discussed in detail, starting with a summary of traditional PSs, followed by a comparison between traditional and AIE PSs to highlight the various design strategies and unique features of the latter. Subsequently, the applications of AIE PSs in photodynamic cancer cell ablation, bacteria killing, and image-guided therapy are discussed using charged AIE PSs, AIE PS molecular probes, and AIE PS nanoparticles as examples. These studies have demonstrated the great potential of AIE PSs as effective theranostic agents to treat tumor or bacterial infection. This review hopefully will spur more research interest in AIE PSs for future translational research.


Assuntos
Fármacos Fotossensibilizantes/farmacologia , Animais , Desenho de Fármacos , Humanos , Fotoquimioterapia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/uso terapêutico
17.
Adv Mater ; : e1800766, 2018 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-29806179

RESUMO

Precise diagnostics are of significant importance to the optimal treatment outcomes of patients bearing brain tumors. NIR-II fluorescence imaging holds great promise for brain-tumor diagnostics with deep penetration and high sensitivity. This requires the development of organic NIR-II fluorescent agents with high quantum yield (QY), which is difficult to achieve. Herein, the design and synthesis of a new NIR-II fluorescent molecule with aggregation-induced-emission (AIE) characteristics is reported for orthotopic brain-tumor imaging. Encapsulation of the molecule in a polymer matrix yields AIE dots showing a very high QY of 6.2% with a large absorptivity of 10.2 L g-1 cm-1 at 740 nm and an emission maximum near 1000 nm. Further decoration of the AIE dots with c-RGD yields targeted AIE dots, which afford specific and selective tumor uptake, with a high signal/background ratio of 4.4 and resolution up to 38 µm. The large NIR absorptivity of the AIE dots facilitates NIR-I photoacoustic imaging with intrinsically deeper penetration than NIR-II fluorescence imaging and, more importantly, precise tumor-depth detection through intact scalp and skull. This research demonstrates the promise of NIR-II AIE molecules and their dots in dual NIR-II fluorescence and NIR-I photoacoustic imaging for precise brain cancer diagnostics.

18.
ACS Nano ; 11(10): 10124-10134, 2017 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-28892609

RESUMO

Conjugated polymer nanoparticles (CP NPs) are emerging candidates of "all-in-one" theranostic nanoplatforms with dual photoacoustic imaging (PA) and photothermal therapy (PTT) functions. So far, very limited molecular design guidelines have been developed for achieving CPs with highly efficient PA and PTT performance. Herein, by designing CP1, CP2, and CP3 using different electron acceptors (A) and a planar electron donor (D), we demonstrate how the D-A strength affects their absorption, emission, extinction coefficient, and ultimately PA and PTT performance. The resultant CP NPs have strong PA signals with high photothermal conversion efficiencies and excellent biocompatibility in vitro and in vivo. The CP3 NPs show a high PA signal to background ratio of 47 in U87 tumor-bearing mice, which is superior to other reported PA/PTT theranostic agents. A very small IC50 value of 0.88 µg/mL (CP3 NPs) was obtained for U87 glioma cell ablation under laser irradiation (808 nm, 0.8 W/cm2, 5 min). This study shows that CP NP based theranostic platforms are promising for future personalized nanomedicine.


Assuntos
Antineoplásicos/farmacologia , Materiais Biocompatíveis/farmacologia , Nanopartículas/química , Técnicas Fotoacústicas , Fototerapia , Polímeros/farmacologia , Nanomedicina Teranóstica , Animais , Antineoplásicos/química , Materiais Biocompatíveis/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Experimentais/tratamento farmacológico , Polímeros/química
19.
Chem Commun (Camb) ; 53(78): 10792-10795, 2017 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-28920994

RESUMO

Fine-tuning electron acceptors through changing one cyano group to an amide generates a more stable and emissive fluorophore with the character of aggregation-induced emission. Conjugation between the new fluorophore and CFFKDEL generated an excellent ER targeting light-up probe with high specificity and good photostability.


Assuntos
Retículo Endoplasmático/química , Corantes Fluorescentes/química , Cisteína/química , Retículo Endoplasmático/metabolismo , Glutationa/química , Células HeLa , Humanos , Luz , Microscopia Confocal , Espectrofotometria Ultravioleta
20.
Angew Chem Int Ed Engl ; 56(40): 12160-12164, 2017 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-28771963

RESUMO

Persistent room-temperature phosphorescence (RTP) in pure organic materials has attracted great attention because of their unique optical properties. The design of organic materials with bright red persistent RTP remains challenging. Herein, we report a new design strategy for realizing high brightness and long lifetime of red-emissive RTP molecules, which is based on introducing an alkoxy spacer between the hybrid units in the molecule. The spacer offers easy Br-H bond formation during crystallization, which also facilitates intermolecular electron coupling to favor persistent RTP. As the majority of RTP compounds have to be confined in a rigid environment to quench nonradiative relaxation pathways for bright phosphorescence emission, nanocrystallization is used to not only rigidify the molecules but also offer the desirable size and water-dispersity for biomedical applications.


Assuntos
Medições Luminescentes/métodos , Nanopartículas/química , Compostos Orgânicos/química , Temperatura , Bromo/química , Linhagem Celular Tumoral , Cor , Humanos , Ligação de Hidrogênio , Microscopia Eletrônica de Varredura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA