Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Theor Appl Genet ; 133(3): 829-841, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31863156

RESUMO

KEY MESSAGE: A single dominant gene found in tetraploid and hexaploid wheat controls broad-spectrum race-nonspecific resistance to the foliar disease tan spot caused by Pyrenophora tritici-repentis. Tan spot is an important foliar disease of durum and common wheat caused by the necrotrophic fungal pathogen Pyrenophora tritici-repentis. Genetic studies in common wheat have shown that pathogen-produced necrotrophic effectors interact with host genes in an inverse gene-for-gene manner to cause disease, but quantitative trait loci (QTLs) with broad race-nonspecific resistance also exist. Less work has been done to understand the genetics of tan spot interactions in durum wheat. Here, we evaluated a set of Langdon durum-wild emmer (Triticum turgidum ssp. dicoccoides) disomic chromosome substitution lines for reaction to four P. tritici-repentis isolates representing races 1, 2, 3, and 5 to identify wild emmer chromosomes potentially containing tan spot resistance genes. Chromosome 3B from the wild emmer accession IsraelA rendered the tan spot-susceptible durum cultivar Langdon resistant to all four fungal isolates. Genetic analysis indicated that a single dominant gene, designated Tsr7, governed resistance. Detailed mapping experiments showed that the Tsr7 locus is likely the same as the race-nonspecific QTL previously identified in the hexaploid wheat cultivars BR34 and Penawawa. Four user-friendly SNP-based semi-thermal asymmetric reverse PCR (STARP) markers cosegregated with Tsr7 and should be useful for marker-assisted selection of resistance. In addition to 3B, other wild emmer chromosomes contributed moderate levels of tan spot resistance, and, as has been shown previously for tetraploid wheat, the Tsn1-Ptr ToxA interaction was not associated with susceptibility. This is the first report of a major dominant gene governing resistance to tan spot in tetraploid wheat.


Assuntos
Ascomicetos , Resistência à Doença/genética , Interações Hospedeiro-Patógeno/genética , Doenças das Plantas/genética , Triticum/genética , Alelos , Mapeamento Cromossômico , Eletroforese em Gel de Poliacrilamida , Genes Dominantes , Genes de Plantas , Ligação Genética , Marcadores Genéticos , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único , Poliploidia , Locos de Características Quantitativas
2.
BMC Plant Biol ; 18(1): 224, 2018 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-30305022

RESUMO

BACKGROUND: Meiosis is a specialized cell division critical for gamete production in the sexual reproduction of eukaryotes. It ensures genome integrity and generates genetic variability as well. The Rec8-like cohesin is a cohesion protein essential for orderly chromosome segregation in meiotic cell division. The Rec8-like genes and cohesins have been cloned and characterized in diploid models, but not in polyploids. The present study aimed to clone the homoeologous genes (homoeoalleles) for Rec8-like cohesin in polyploid wheat, an important food crop for humans, and to characterize their structure and function under a polyploid condition. RESULTS: We cloned two Rec8-like homoeoalleles from tetraploid wheat (TtRec8-A1 and TtRec8-B1) and one from hexaploid wheat (TaRec8-D1), and performed expression and functional analyses of the homoeoalleles. Also, we identified other two Rec8 homoeoalleles in hexaploid wheat (TaRec8-A1 and TaRec8-B1) and the one in Aegilops tauschii (AetRec8-D1) by referencing the DNA sequences of the Rec8 homoeoalleles cloned in this study. The coding DNA sequences (CDS) of these six Rec8 homoeoalleles are all 1,827 bp in length, encoding 608 amino acids. They differed from each other primarily in introns although single nucleotide polymorphisms were detected in CDS. Substantial difference was observed between the homoeoalleles from the subgenome B (TtRec8-B1 and TaRec8-B1) and those from the subgenomes A and D (TtRec8-A1, TaRec8-A1, and TaRec8-D1). TtRec8-A1 expressed dominantly over TtRec8-B1, but comparably to TaRec8-D1, in polyploid wheat. In addition, we developed the antibody against wheat Rec8 and used the antibody to detect Rec8 cohesin in the Western blotting and subcellular localization analyses. CONCLUSIONS: The Rec8 homoeoalleles from the subgenomes A and D are transcriptionally more active than the one from the subgenome B in polyploid wheat. The structural variation and differential expression of the Rec8 homoeoalleles indicate a unique cross-genome coordination of the homoeologous genes in polyploid wheat, and imply the distinction of the wheat subgenome B from the subgenomes A and D in the origin and evolution.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , Proteínas de Plantas/genética , Triticum/genética , Alelos , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Mapeamento Cromossômico , Clonagem Molecular , Éxons , Regulação da Expressão Gênica de Plantas , Haploidia , Íntrons , Meiose , Proteínas de Plantas/metabolismo , Poliploidia , Coesinas
3.
Theor Appl Genet ; 131(9): 1939-1951, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29869075

RESUMO

KEY MESSAGE: The major QTL for FHB resistance from hexaploid wheat line PI 277012 was successfully introgressed into durum wheat and minor FHB resistance QTL were detected in local durum wheat cultivars. A combination of these QTL will enhance FHB resistance of durum wheat. Fusarium head blight (FHB), caused by Fusarium graminearum, is a devastating disease of durum wheat. To combat the disease, great efforts have been devoted to introgress FHB resistance from its related tetraploid and hexaploid wheat species into adapted durum cultivars. However, most of the quantitative trait loci (QTL) for FHB resistance existing in the introgression lines are not well characterized or validated. In this study, we aimed to identify and map FHB resistance QTL in a population consisting of 205 recombinant inbred lines from the cross between Joppa (a durum wheat cultivar) and 10Ae564 (a durum wheat introgression line with FHB resistance derived from the hexaploid wheat line PI 277012). One QTL (Qfhb.ndwp-2A) from Joppa and two QTL (Qfhb.ndwp-5A and Qfhb.ndwp-7A) from 10Ae564 were identified through phenotyping of the mapping population for FHB severity and DON content in greenhouse and field and genotyping with 90K wheat Infinium iSelect SNP arrays. Qfhb.ndwp-2A explained 14, 15, and 9% of the phenotypic variation, respectively, for FHB severity in two greenhouse experiments and for mean DON content across the two greenhouse environments. Qfhb.ndwp-5A explained 19, 10, and 7% of phenotypic variation, respectively, for FHB severity in one greenhouse experiment, mean FHB severity across two field experiments, and mean DON content across the two greenhouse experiments. Qfhb.ndwp-7A was only detected for FHB severity in the two greenhouse experiments, explaining 9 and 11% of the phenotypic variation, respectively. This study confirms the existence of minor QTL in North Dakota durum cultivars and the successful transfer of the major QTL from PI 277012 into durum wheat.


Assuntos
Resistência à Doença/genética , Doenças das Plantas/genética , Locos de Características Quantitativas , Triticum/genética , Mapeamento Cromossômico , Cruzamentos Genéticos , Fusarium , Genes de Plantas , Ligação Genética , Marcadores Genéticos , Doenças das Plantas/microbiologia , Poliploidia , Tricotecenos/análise , Triticum/microbiologia
4.
Theor Appl Genet ; 131(2): 365-375, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29094182

RESUMO

KEY MESSAGE: This work pinpointed the goatgrass chromosomal segment in the wheat B genome using modern cytogenetic and genomic technologies, and provided novel insights into the origin of the wheat B genome. Wheat is a typical allopolyploid with three homoeologous subgenomes (A, B, and D). The donors of the subgenomes A and D had been identified, but not for the subgenome B. The goatgrass Aegilops speltoides (genome SS) has been controversially considered a possible candidate for the donor of the wheat B genome. However, the relationship of the Ae. speltoides S genome with the wheat B genome remains largely obscure. The present study assessed the homology of the B and S genomes using an integrative cytogenetic and genomic approach, and revealed the contribution of Ae. speltoides to the origin of the wheat B genome. We discovered noticeable homology between wheat chromosome 1B and Ae. speltoides chromosome 1S, but not between other chromosomes in the B and S genomes. An Ae. speltoides-originated segment spanning a genomic region of approximately 10.46 Mb was detected on the long arm of wheat chromosome 1B (1BL). The Ae. speltoides-originated segment on 1BL was found to co-evolve with the rest of the B genome. Evidently, Ae. speltoides had been involved in the origin of the wheat B genome, but should not be considered an exclusive donor of this genome. The wheat B genome might have a polyphyletic origin with multiple ancestors involved, including Ae. speltoides. These novel findings will facilitate genome studies in wheat and other polyploids.


Assuntos
Genoma de Planta , Triticum/genética , Cromossomos de Plantas/genética , Citogenética , Evolução Molecular , Genômica
5.
Mol Genet Genomics ; 289(4): 641-51, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24652470

RESUMO

The development and morphology of the wheat spike is important because the spike is where reproduction occurs and it holds the grains until harvest. Therefore, genes that influence spike morphology are of interest from both theoretical and practical stand points. When substituted for the native chromosome 2A in the tetraploid Langdon (LDN) durum wheat background, the Triticum turgidum ssp. dicoccoides chromosome 2A from accession IsraelA confers a short, compact spike with fewer spikelets per spike compared to LDN. Molecular mapping and quantitative trait loci (QTL) analysis of these traits in a homozygous recombinant population derived from LDN × the chromosome 2A substitution line (LDNIsA-2A) indicated that the number of spikelets per spike and spike length were controlled by linked, but different, loci on the long arm of 2A. A QTL explaining most of the variation for spike compactness coincided with the QTL for spike length. Comparative mapping indicated that the QTL for number of spikelets per spike overlapped with a previously mapped QTL for Fusarium head blight susceptibility. The genes governing spike length and compactness were not orthologous to either sog or C, genes known to confer compact spikes in diploid and hexaploid wheat, respectively. Mapping and sequence analysis indicated that the gene governing spike length and compactness derived from wild emmer could be an ortholog of the barley Cly1/Zeo gene, which research indicates is an AP2-like gene pleiotropically affecting cleistogamy, flowering time, and rachis internode length. This work provides researchers with knowledge of new genetic loci and associated markers that may be useful for manipulating spike morphology in durum wheat.


Assuntos
Mapeamento Cromossômico , Cromossomos de Plantas/genética , Inflorescência/genética , Locos de Características Quantitativas/genética , Triticum/genética , Sequência de Aminoácidos , Sequência de Bases , Ligação Genética , Loci Gênicos , Marcadores Genéticos , Genótipo , Inflorescência/anatomia & histologia , Dados de Sequência Molecular , Fenótipo , Poliploidia , Alinhamento de Sequência , Análise de Sequência de DNA , Deleção de Sequência , Triticum/anatomia & histologia
6.
BMC Genomics ; 13: 597, 2012 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-23127207

RESUMO

BACKGROUND: Development of a high quality reference sequence is a daunting task in crops like wheat with large (~17Gb), highly repetitive (>80%) and polyploid genome. To achieve complete sequence assembly of such genomes, development of a high quality physical map is a necessary first step. However, due to the lack of recombination in certain regions of the chromosomes, genetic mapping, which uses recombination frequency to map marker loci, alone is not sufficient to develop high quality marker scaffolds for a sequence ready physical map. Radiation hybrid (RH) mapping, which uses radiation induced chromosomal breaks, has proven to be a successful approach for developing marker scaffolds for sequence assembly in animal systems. Here, the development and characterization of a RH panel for the mapping of D-genome of wheat progenitor Aegilops tauschii is reported. RESULTS: Radiation dosages of 350 and 450 Gy were optimized for seed irradiation of a synthetic hexaploid (AABBDD) wheat with the D-genome of Ae. tauschii accession AL8/78. The surviving plants after irradiation were crossed to durum wheat (AABB), to produce pentaploid RH1s (AABBD), which allows the simultaneous mapping of the whole D-genome. A panel of 1,510 RH1 plants was obtained, of which 592 plants were generated from the mature RH1 seeds, and 918 plants were rescued through embryo culture due to poor germination (<3%) of mature RH1 seeds. This panel showed a homogenous marker loss (2.1%) after screening with SSR markers uniformly covering all the D-genome chromosomes. Different marker systems mostly detected different lines with deletions. Using markers covering known distances, the mapping resolution of this RH panel was estimated to be <140kb. Analysis of only 16 RH lines carrying deletions on chromosome 2D resulted in a physical map with cM/cR ratio of 1:5.2 and 15 distinct bins. Additionally, with this small set of lines, almost all the tested ESTs could be mapped. A set of 399 most informative RH lines with an average deletion frequency of ~10% were identified for developing high density marker scaffolds of the D-genome. CONCLUSIONS: The RH panel reported here is the first developed for any wild ancestor of a major cultivated plant species. The results provided insight into various aspects of RH mapping in plants, including the genetically effective cell number for wheat (for the first time) and the potential implementation of this technique in other plant species. This RH panel will be an invaluable resource for mapping gene based markers, developing a complete marker scaffold for the whole genome sequence assembly, fine mapping of markers and functional characterization of genes and gene networks present on the D-genome.


Assuntos
Genoma de Planta/genética , Poaceae/genética , Mapeamento de Híbridos Radioativos/métodos , Cruzamentos Genéticos , Triticum/genética
7.
Proc Natl Acad Sci U S A ; 107(30): 13544-9, 2010 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-20624958

RESUMO

Plant disease resistance is often conferred by genes with nucleotide binding site (NBS) and leucine-rich repeat (LRR) or serine/threonine protein kinase (S/TPK) domains. Much less is known about mechanisms of susceptibility, particularly to necrotrophic fungal pathogens. The pathogens that cause the diseases tan spot and Stagonospora nodorum blotch on wheat produce effectors (host-selective toxins) that induce susceptibility in wheat lines harboring corresponding toxin sensitivity genes. The effector ToxA is produced by both pathogens, and sensitivity to ToxA is governed by the Tsn1 gene on wheat chromosome arm 5BL. Here, we report the cloning of Tsn1, which was found to have disease resistance gene-like features, including S/TPK and NBS-LRR domains. Mutagenesis revealed that all three domains are required for ToxA sensitivity, and hence disease susceptibility. Tsn1 is unique to ToxA-sensitive genotypes, and insensitive genotypes are null. Sequencing and phylogenetic analysis indicated that Tsn1 arose in the B-genome diploid progenitor of polyploid wheat through a gene-fusion event that gave rise to its unique structure. Although Tsn1 is necessary to mediate ToxA recognition, yeast two-hybrid experiments suggested that the Tsn1 protein does not interact directly with ToxA. Tsn1 transcription is tightly regulated by the circadian clock and light, providing further evidence that Tsn1-ToxA interactions are associated with photosynthesis pathways. This work suggests that these necrotrophic pathogens may thrive by subverting the resistance mechanisms acquired by plants to combat other pathogens.


Assuntos
Ascomicetos/fisiologia , Genes de Plantas/genética , Proteínas de Plantas/genética , Triticum/genética , Triticum/microbiologia , Sequência de Aminoácidos , Ascomicetos/metabolismo , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Clonagem Molecular , DNA de Plantas/química , DNA de Plantas/genética , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno , Imunidade Inata/genética , Dados de Sequência Molecular , Mutação , Micotoxinas/genética , Micotoxinas/metabolismo , Filogenia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/classificação , Proteínas de Plantas/metabolismo , Ligação Proteica , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Triticum/classificação , Técnicas do Sistema de Duplo-Híbrido
8.
Chromosoma ; 119(3): 275-85, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20127104

RESUMO

Unreductional meiotic cell division (UMCD) generates unreduced gametes and leads to polyploidy. The tetraploid wheat "Langdon" (LDN) undergoes normal meiosis, but its polyhaploid undergoes UMCD. Here, we found that sister kinetochores oriented syntelically at meiosis I in LDN, but amphitelically in LDN polyhaploid and the interspecific hybrid of LDN with Aegilops tauschii. We also observed that sister centromere cohesion persisted until anaphase II in LDN, LDN polyhaploid, and the interspecific hybrid. Meiocytes with all chromosomes oriented amphitelically underwent UMCD in LDN polyhaploid, and the interspecific hybrid, suggesting the tension created by the amphitelic orientation of sister kinetochores and persistence of centromeric cohesion between sister chromatids at meiosis I contribute to the onset of UMCD. Most likely, some ploidy-regulated genes were responsible for kinetochore orientation at meiosis I in LDN and LDN-derived polyhaploids. In addition, we found sister kinetochores of synapsed chromosomes oriented syntelically, whereas asynapsed chromosomes oriented either amphitelically or syntelically. Thus, synapsis probably is another factor for the coordination of kinetochore orientation in LDN.


Assuntos
Meiose , Poliploidia , Triticum/genética , Divisão Celular , Haploidia , Triticum/citologia
9.
Curr Genomics ; 8(3): 151-61, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-18645601

RESUMO

Meiosis includes two successive divisions of the nucleus with one round of DNA replication and leads to the formation of gametes with half of the chromosomes of the mother cell during sexual reproduction. It provides a cytological basis for gametogenesis and nheritance in eukaryotes. Meiotic cell division is a complex and dynamic process that involves a number of molecular and cellular events, such as DNA and chromosome replication, chromosome pairing, synapsis and recombination, chromosome segregation, and cytokinesis. Meiosis maintains genome stability and integrity over sexual life cycles. On the other hand, meiosis generates genome variations in several ways. Variant meiotic recombination resulting from specific genome structures induces deletions, duplications, and other rearrangements within the genic and non-genic genomic regions and has been considered a major driving force for gene and genome evolution in nature. Meiotic abnormalities in chromosome segregation lead to chromosomally imbalanced gametes and aneuploidy. Meiotic restitution due to failure of the first or second meiotic division gives rise to unreduced gametes, which triggers polyploidization and genome expansion. This paper reviews research regarding meiosis-driven genome variation, including deletion and duplication of genomic regions, aneuploidy, and polyploidization, and discusses the effect of related meiotic events on genome variation and evolution in plants. Knowledge of various meiosis-driven genome variations provides insight into genome evolution and genetic variability in plants and facilitates plant genome research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA