Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 52(44): 16085-16102, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37814810

RESUMO

Metal-organic frameworks (MOFs) have received extensive attention in tumor therapy because of their advantages, including large specific surface area, regular pore size, adjustable shape, and facile functionalization. MOFs are porous materials formed by the coordination bonding of metal clusters and organic ligands. This review summarized the most recent advancements in tumor treatment based on nMOFs. First, we discuss the classification of MOFs, which primarily include the series of isoreticular MOF (IRMOF), zeolitic imidazolate framework (ZIF), coordination pillared-layer (CPL), Materials of Institute Lavoisier (MIL), porous coordination network (PCN), University of Oslo (UiO) and Biological metal-organic frameworks (BioMOFs). Then, we discuss the use of nMOFs in antitumor therapy, including drug delivery strategies, photodynamic therapy (PDT), photothermal therapy (PTT), and combination therapy. Finally, the obstacles and opportunities in nMOFs are discussed.


Assuntos
Estruturas Metalorgânicas , Neoplasias , Fotoquimioterapia , Humanos , Fototerapia , Sistemas de Liberação de Medicamentos , Neoplasias/tratamento farmacológico
2.
Int J Mol Sci ; 23(24)2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36555703

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is recognized as a metabolic disease characterized by hepatic steatosis. Despite the growing burden of NAFLD, approved pharmacological treatment is lacking. As an inhibitor of androgen receptor (AR), EPI-001 is being explored for the treatment of prostate cancer. This study aimed to investigate the potential of EPI-001 for treating NAFLD in free fatty acids (FFAs)-induced human hepatic cells and high-fat-high-sugar (HFHS)-feeding mice. Our results showed that EPI-001 reduced lipid accumulation in hepatic cells and ameliorated hepatic steatosis in mouse livers. Further exploration suggested that the effect of EPI-001 was associated with CYP2E1-mediated reduction of reactive oxygen species (ROS). This provides encouraging evidence for further studies on EPI-001 therapy for NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Masculino , Humanos , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Citocromo P-450 CYP2E1/metabolismo , Receptores Androgênicos/metabolismo , Fígado/metabolismo , Hepatócitos/metabolismo , Metabolismo dos Lipídeos , Camundongos Endogâmicos C57BL , Dieta Hiperlipídica/efeitos adversos
3.
Mar Drugs ; 20(11)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36354990

RESUMO

Aphrocallistes vastus lectin (AVL) is a C-type marine lectin derived from sponges. Our previous study demonstrated that oncolytic vaccinia virus carrying AVL (oncoVV-AVL) significantly enhanced the cytotoxicity of oncoVV in cervical cancer, colorectal cancer and hepatocellular carcinoma through the activation of Ras/ERK, MAPK/ERK and PI3K/Akt signaling pathways. In this study, the inflammatory response induced by oncoVV-AVL in a hepatocellular carcinoma cell (HCC) model was investigated. The results showed that oncoVV-AVL increased the levels of inflammatory cytokines including IL-6, IL-8 and TNF-α through activating the AP-1 signaling pathway in HCC. This study provides novel insights into the utilization of lectin AVL in the field of cancer therapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Terapia Viral Oncolítica , Vírus Oncolíticos , Poríferos , Animais , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Vaccinia virus , Lectinas/farmacologia , Terapia Viral Oncolítica/métodos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Fosfatidilinositol 3-Quinases , Linhagem Celular Tumoral
4.
Front Chem ; 10: 1031811, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36277335

RESUMO

Tumor immunotherapy mainly relies on activating the immune system to achieve antitumor treatment. However, the present tumor immunotherapy used in the clinic showed low treatment efficacy with high systematic toxicity. To overcome the shortcomings of traditional drugs for immunotherapy, a series of antitumor immunotherapies based on nanomaterials have been developed to enhance the body's antitumor immune response and reduce systematic toxicity. Due to the noninvasiveness, remote controllability, and high temporal and spatial resolution of light, photocontrolled nanomaterials irradiated by excitation light have been widely used in drug delivery and photocontrolled switching. This review aims to highlight recent advances in antitumor immunotherapy based on photocontrolled nanomaterials. We emphasized the advantages of nanocomposites for antitumor immunotherapy and highlighted the latest progress of antitumor immunotherapy based on photoactivated nanomaterials. Finally, the challenges and future prospects of light-activated nanomaterials in antitumor immunity are discussed.

5.
Cytokine ; 158: 155983, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35930964

RESUMO

The key to prevent pulp necrosis in the early stage of pulpitis is to promote tissue repair, which begins with cell migration. Stromal cell-derived factor 1α (SDF-1α) has been proven to promote cell migration. Related research has so far concentrated on the biological effects of SDF-1α while its expression in pulpitis is still unclear. We investigated the effect of inflammation on SDF-1α in dental pulp and the underlying regulatory mechanisms. First, rat pulpitis models were established by exposing pulp. SDF-1α was decreased on the 3rd day but increased on the 7th day. Next, lipopolysaccharide from Porphyromonas gingivalis (Pg.LPS) was applied to dental pulp cells (DPCs). Within 24 h, SDF-1α decreased, but after 48 h, it steadily increased. Similarly, SDF-1α expression in human chronic pulpitis tissues was also increased. To investigate the effect of altered SDF-1α on DPC migration, cell supernatants collected following Pg.LPS treatment were utilized to stimulate DPCs, and the number of migrated cells was correlated with changes in SDF-1α secretion. Finally, we explored the regulatory mechanisms of SDF-1α down-regulation in the early phase of pulpitis. Within 24 h, JNK/c-Jun pathway was activated in DPC inflammation. When JNK pathway was suppressed, SDF-1α rose. Furthermore, tumor necrosis factor receptor 2 (TNFR2) and apoptosis signal-regulated kinase-interacting protein 1 (AIP1) were up-regulated. Knockdown of them abolished Pg.LPS-induced activation of JNK and c-Jun(Ser63) and significantly enhanced SDF-1α. Our findings indicated that in the early phase of pulpitis, inflammation suppressed SDF-1α by up-regulating TNFR2 and AIP1, which activated JNK/c-Jun(Ser63) pathway.


Assuntos
Quimiocina CXCL12/metabolismo , Pulpite , Animais , Humanos , Inflamação , Lipopolissacarídeos , Ratos , Receptores Tipo II do Fator de Necrose Tumoral , Células Estromais/metabolismo
6.
J Periodontal Res ; 57(3): 461-469, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35137408

RESUMO

BACKGROUND AND OBJECTIVE: Occlusal trauma is one of the most important local contributing factors of periodontitis. It has been reported that Wnt4, a noncanonical Wnt ligand, can inhibit osteoclast formation and inflammation and promote bone formation in vivo. However, the prospects of Wnt4 application in occlusal trauma and periodontitis have not yet been described. This study aimed to investigate the function and the corresponding mechanism of Wnt4 to regulate bone metabolism in occlusal trauma and periodontitis. MATERIAL AND METHODS: Osteogenic-induced MC3T3-E1 cells were treated with or without Porphyromonas gingivalis lipopolysaccharide (Pg. LPS) under cyclic uniaxial compressive stress. After treatment with mouse recombinant protein Wnt4 (rWnt4), the expression of osteogenic markers and activation of the IKK-NF-κB signaling pathway were evaluated in vitro. To investigate whether Wnt4 can promote osteogenesis via the ROCK signaling pathway, the expression of RhoA was evaluated in vitro. Finally, we evaluated the change in bone quantity and the activation of the IKK-NF-κB and ROCK signaling in mice with occlusal trauma and periodontitis to demonstrate the therapeutic efficacy of rWnt4 injection. RESULTS: Stimulation of traumatic force and Pg. LPS stimulation suppressed the expression of osteoblast markers, but their expression was rescued after rWnt4 treatment in vitro. In addition, the inhibition of the ROCK signaling pathway induced by force loading was reversed when rWnt4 was applied in vitro. Micro-CT, H&E, and TRAP staining of the mandibles showed increased bone loss in the occlusal trauma-aggravated periodontitis group, whereas it was rescued after rWnt4 injection. The expression levels of IκBα and p65 were upregulated in occlusal trauma and periodontitis-bearing mice, whereas the expression levels of Runx2 and RhoA were downregulated. After rWnt4 injection, remarkably upregulation of Runx2 and RhoA expression was observed in occlusal trauma and periodontitis- bearing mice. CONCLUSION: Wnt4 not only inhibits IKK-NF-κB signaling but also activates ROCK signaling to inhibit osteoclast formation and promote bone regeneration in occlusal trauma and periodontitis-bearing mice.


Assuntos
Oclusão Dentária Traumática , Periodontite , Animais , Subunidade alfa 1 de Fator de Ligação ao Core , Quinase I-kappa B/metabolismo , Lipopolissacarídeos , Camundongos , NF-kappa B/metabolismo , Periodontite/tratamento farmacológico , Transdução de Sinais , Proteína Wnt4 , Quinases Associadas a rho/metabolismo
7.
Artigo em Inglês | MEDLINE | ID: mdl-32673834

RESUMO

A common phenomenon shows that ingestion of opium poppy shell-containing drugs can result in a "false-positive" urinalysis test result for mandatory or workplace heroin abuse screening. Owing to the short detection window (8 h in urine) of the characteristic heroin metabolite 6-monoacetylmorphine (6-MAM) confirmation or exclusion of heroin abusers still presents major challenges for toxicologists. In this work, we developed an ultra-performance liquid chromatography-time-of-flight mass spectrometry method (UPLC-TOF-MS) with online data acquisition and multiple post-data-mining technologies combined with a multivariate statistical and batch validation analysis workflow to assess the characteristic urine metabolites of heroin abusers. Based on the proposed methods, 28 characteristic metabolites were structurally identified, and their fragmentation patterns and metabolite pathways were also summarized. Correlation analysis was used to investigate the internal relationship and similarities among the identified metabolites, and seven representative metabolites were selected as "Target-metabolites". Multi-batch urine of samples of heroin abusers were certified based on the UPLC-MS/MS method for further validation of the practicability of using this method for routine analysis. Overall, the target-metabolites can be utilized as assistant "biomarkers" in workplace or mandatory drug screenings. This approach encourages further studies on the development of the "false-positive" identification system.


Assuntos
Dependência de Heroína/metabolismo , Dependência de Heroína/urina , Heroína/metabolismo , Heroína/urina , Detecção do Abuso de Substâncias/métodos , Cromatografia Líquida de Alta Pressão/métodos , Mineração de Dados/métodos , Feminino , Humanos , Masculino , Espectrometria de Massas/métodos , Derivados da Morfina/metabolismo , Derivados da Morfina/urina , Reprodutibilidade dos Testes
8.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 37(5): 563-567, 2019 Oct 01.
Artigo em Chinês | MEDLINE | ID: mdl-31721509

RESUMO

This case presents vertical root fracture with vital pulp in mandibular right first molar. Examinations of the history, clinical tests, laser Doppler flowmetry, and radiographs revealed that the tooth showed positive response to electric pulp testing and was normal compared with the healthy control tooth. This study aimed to use a novel vital preserving surgical technique (microapical surgery and nanometer bioactive materials) to make an effective therapeutic decision for the vital tooth with vertical root fracture.


Assuntos
Fraturas dos Dentes , Polpa Dentária , Humanos , Dente Molar , Raiz Dentária
9.
J Periodontal Res ; 54(6): 681-689, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31250434

RESUMO

BACKGROUND AND OBJECTIVE: Diabetes influences the frequency and development of periodontitis. Inflammation of human periodontal ligament cells (HPDLCs) participates in this pathologic process. Hence, this study aims to explore whether advanced glycation end products (AGEs), by-products of diabetes, could exaggerate inflammation induced by muramyl dipeptide (MDP) in HPDLCs, and whether nucleotide-binding oligomerization domain-like receptors (NLRs) signaling pathway was involved. MATERIAL AND METHODS: Human periodontal ligament cells were pre-treated with 100 µg/mL AGEs for 24 hours and stimulated with 10 µg/mL MDP for 24 hours. IL-6, IL-1ß, and RAGE were detected, and the activation of NF-κB signaling pathway was observed. The expression of NLRs was evaluated with or without silencing RAGE or blocking NF-κB pathway under AGEs stimulation. Statistical analyses were performed by using independent sample t test. RESULTS: Advanced glycation end products induced significant increase of inflammatory cytokines in HPDLCs (P < 0.05). Results of western blot (WB) showed that after 45 minutes stimulation of AGEs, p-p65/p65 ratio peaked; AGEs promoted the expression of NLRP1, NLRP3, and apoptosis-associated speck-like protein containing a CARD (ASC). After silencing RAGE or blocking NF-κB pathway, the up-regulation of NLRs protein caused by AGEs was attenuated. Additionally, AGEs pre-treatment could enhance the inflammatory response of MDP and the expression of NLRs, which were demonstrated by more expression of IL-6, IL-1ß, NOD2, NLRP1, NLRP3, and ASC. CONCLUSION: Advanced glycation end products induced inflammatory response in HPDLCs via NLRP1-inflammasome and NLRP3-inflammasome activation in which NF-κB signal pathway was involved. Besides, AGEs promoted the inflammatory response of MDP via NOD2, NLRP1-inflammasome, and NLRP3-inflammasome.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Produtos Finais de Glicação Avançada/farmacologia , Inflamassomos/metabolismo , Inflamação/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ligamento Periodontal/citologia , Antígenos de Neoplasias/metabolismo , Células Cultivadas , Humanos , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Proteínas NLR , Transdução de Sinais
10.
Biomaterials ; 185: 310-321, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30265900

RESUMO

Hepatocellular carcinoma (HCC), as the fifth most common malignant cancer, develops and progresses mostly in a cirrhotic liver where stiff nodules are separated by fibrous bands. Scaffolds that can provide a 3D cirrhotic mechanical environment with complex native composition and biomimetic architecture are necessary for the development of better predictive tissue models. Here, we developed photocrosslinkable liver decellularized extracellular matrix (dECM) and a rapid light-based 3D bioprinting process to pattern liver dECM with tailorable mechanical properties to serve as a platform for HCC progression study. 3D bioprinted liver dECM scaffolds were able to stably recapitulate the clinically relevant mechanical properties of cirrhotic liver tissue. When encapsulated in dECM scaffolds with cirrhotic stiffness, HepG2 cells demonstrated reduced growth along with an upregulation of invasion markers compared to healthy controls. Moreover, an engineered cancer tissue platform possessing tissue-scale organization and distinct regional stiffness enabled the visualization of HepG2 stromal invasion from the nodule with cirrhotic stiffness. This work demonstrates a significant advancement in rapid 3D patterning of complex ECM biomaterials with biomimetic architecture and tunable mechanical properties for in vitro disease modeling.


Assuntos
Bioimpressão/métodos , Matriz Extracelular/química , Fígado/química , Alicerces Teciduais/química , Materiais Biocompatíveis/química , Fenômenos Biomecânicos , Bioimpressão/economia , Proliferação de Células , Sobrevivência Celular , Progressão da Doença , Células Hep G2 , Humanos , Fígado/citologia , Fígado/patologia , Fígado/ultraestrutura , Neoplasias Hepáticas/patologia , Impressão Tridimensional/economia , Fatores de Tempo
11.
Arch Oral Biol ; 93: 87-94, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29859500

RESUMO

OBJECTIVE: To investigate the role of the histone 3 lysine 27 trimethylation (H3K27me3) demethylase Jumonji domain-containing protein 3 (Jmjd3) in the epigenetic regulation of the inflammatory response in human periodontal ligament cells (HPDLs). DESIGN: HPDLs were stimulated with lipopolysaccharide from E. coli. The expression of Jmjd3 in HPDLs was examined by quantitative real-time polymerase chain reaction (Q-PCR), Western Blot and immunofluorescent staining. Potential target genes were selected by silencing Jmjd3 and were confirmed by Chromatin Immunoprecipitation (ChIP). RESULTS: Q-PCR, Western Blot and immunofluorescent staining revealed that the expression of Jmjd3 was increased in inflamed HPDLs. Knockdown of Jmjd3 led to the suppression of inflammation-induced up-regulation of interleukin-6 and interleukin-12. Moreover, ChIP assays demonstrated that Jmjd3 was recruited to the promoters of interleukin-6 and interleukin-12b and this recruitment was associated with decreased levels of trimethylated histone 3 lysine 27 (H3K27). CONCLUSIONS: It was concluded that Jmjd3 regulated the activation of interleukin-6 and interleukin-12b in the early inflammatory response of HPDLs via demethylation of H3K27me3 at promoters. This molecular event may play an important role in the regulation of the inflammatory response in HPDLs.


Assuntos
Inflamação/metabolismo , Histona Desmetilases com o Domínio Jumonji/fisiologia , Ligamento Periodontal/citologia , Animais , Western Blotting , Células Cultivadas , Imunoprecipitação da Cromatina , Ensaio de Imunoadsorção Enzimática , Epigênese Genética , Imunofluorescência , Humanos , Imuno-Histoquímica , Interleucina-12/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Lipopolissacarídeos , Masculino , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real , Regulação para Cima
12.
J Endod ; 43(8): 1323-1328, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28578884

RESUMO

INTRODUCTION: MicroRNA-335-5p has been reported to regulate osteogenic and chondrogenic differentiations of mesenchymal stem cells. The aim of this study was to explore the function and regulation mechanism of miR-335-5p in apical periodontitis (AP). METHODS: Total RNAs were extracted from human periodontal ligament fibroblasts (HPDLFs), 10 AP tissues, and 6 healthy periodontal ligament tissues using lysis buffer. Gene expression was detected using real-time polymerase chain reaction. The Dual Luciferase Assay (Promega, Madison, WI) was used to test miR-335-5p directly targeted urokinase-type plasminogen activator receptor (uPAR) and the receptor activator of nuclear factor kappa-B ligand (RANKL). Western Blot was used to detect protein expressions of RANKL, uPAR, and the fragile X-related 1 gene (FXR1). The enzyme-linked immunosorbent assay was used to detect the secretions of interleukin 6, tumor necrosis factor alpha, and RANKL. Data were analyzed using the Student t test. RESULTS: miR-335-5p acted as a positive mediator in HPDLF inflammation (P < .05). Two targets of miR-335-5p, uPAR and RANKL, were identified. Interestingly, uPAR was repressed by miR-335-5p at the basal level, but it can be relieved from miR-335-5p-mediated repression, which is called derepression, when HPDLFs were subjected to lipopolysaccharide stimulation. miR-335-5p promoted RANKL in HPDLFs regardless of whether or not it was under inflammatory conditions (P < .05). We proved FXR1 was responsible for the derepression of uPAR from miR-335-5p (P < .01). Both FXR1 and uPAR were positive mediators in HPDLF inflammation (P < .05). miR-335-5p, uPAR, RANKL, and FXR1 had the same expression profiles in HPDLF inflammation and AP tissues (P < .05). CONCLUSIONS: Our data showed that miR-335-5p may play dual roles in AP, and it might be considered as a target for therapeutic potency in clinical applications.


Assuntos
Fibroblastos/metabolismo , MicroRNAs/metabolismo , Periodontite Periapical/metabolismo , Ligamento Periodontal/metabolismo , Ligante RANK/metabolismo , Reabsorção Óssea/metabolismo , Ensaio de Imunoadsorção Enzimática , Humanos , Inflamação/metabolismo , Interleucina-6/metabolismo , Proteínas de Ligação a RNA/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA