Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 240
Filtrar
1.
Int J Biol Sci ; 20(10): 4098-4113, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39113699

RESUMO

Pancreatic cancer is a very aggressive and fatal malignancy with few therapeutic choices and a poor prognosis. Understanding the molecular pathways that drive its growth is critical for developing effective therapeutic strategies. Exosomes, small extracellular vesicles secreted by numerous cell types, have recently emerged as essential intercellular communication mediators, with implications for tumor growth and metastasis. In this article, we present a review of current knowledge about exosomes and their role in pancreatic cancer progression We discuss the biogenesis and characteristics of exosomes, as well as their cargo and functional significance in tumor growth, immune evasion, angiogenesis, invasion, and metastasis. We further emphasize the potential of exosomes as diagnostic biomarkers and therapeutic targets for pancreatic cancer. Finally, we discuss the challenges and future perspectives in using exosomes to improve patient outcomes in pancreatic cancer.


Assuntos
Exossomos , Neoplasias Pancreáticas , Exossomos/metabolismo , Humanos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/genética , Progressão da Doença , Animais , Biomarcadores Tumorais/metabolismo
2.
Sci Rep ; 14(1): 17703, 2024 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-39085289

RESUMO

Renal interstitial fibrosis (RIF) is a prevalent consequence of chronic renal diseases, characterized by excessive extracellular matrix (ECM) deposition. A Disintegrin and Metalloprotease 17 (ADAM17), a transmembrane metalloproteinase, plays a central role in driving renal fibrosis progression by activating Notch 1 protein and the downstream TGF-ß signaling pathway. Our study investigated potential therapeutic interventions for renal fibrosis, focusing on human umbilical cord mesenchymal stem cell-derived extracellular vesicles (hucMSC-EVs). We found that hucMSC-EVs inhibit ADAM17, thereby impeding renal fibrosis progression. Analysis of hucMSC-EVs miRNA profiles revealed significant enrichment of miR-13474, which effectively targeted and inhibited ADAM17 mRNA expression, subsequently suppressing Notch1 activation, TGF-ß signaling, and collagen deposition. Overexpression of miR-13474 enhanced hucMSC-EVs' inhibitory effect on renal fibrosis, while its downregulation abolished this protective effect. Our findings highlight the efficacy of hucMSC-EVs overexpressing miR-13474 in mitigating renal fibrosis via ADAM17 targeting. These insights offer potential therapeutic strategies for managing renal fibrosis.


Assuntos
Proteína ADAM17 , Vesículas Extracelulares , Fibrose , Rim , Células-Tronco Mesenquimais , MicroRNAs , MicroRNAs/genética , MicroRNAs/metabolismo , Proteína ADAM17/metabolismo , Proteína ADAM17/genética , Humanos , Vesículas Extracelulares/metabolismo , Células-Tronco Mesenquimais/metabolismo , Animais , Rim/metabolismo , Rim/patologia , Transdução de Sinais , Nefropatias/metabolismo , Nefropatias/terapia , Nefropatias/patologia , Nefropatias/genética , Fator de Crescimento Transformador beta/metabolismo , Camundongos
3.
J Nanobiotechnology ; 22(1): 339, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890734

RESUMO

Diabetic kidney disease (DKD), a chronic kidney disease, is characterized by progressive fibrosis caused due to persistent hyperglycemia. The development of fibrosis in DKD determines the patient prognosis, but no particularly effective treatment. Here, small extracellular vesicles derived from mesenchymal stem cells (MSC-sEV) have been used to treat DKD fibrosis. Single-cell RNA sequencing was used to analyze 27,424 cells of the kidney, we have found that a novel fibrosis-associated TGF-ß1+Arg1+ macrophage subpopulation, which expanded and polarized in DKD and was noted to be profibrogenic. Additionally, Actin+Col4a5+ mesangial cells in DKD differentiated into myofibroblasts. Multilineage ligand-receptor and cell-communication analysis showed that fibrosis-associated macrophages activated the TGF-ß1/Smad2/3/YAP signal axis, which promotes mesangial fibrosis-like change and accelerates renal fibrosis niche. Subsequently, the transcriptome sequencing and LC-MS/MS analysis indicated that MSC-sEV intervention could restore the levels of the kinase ubiquitin system in DKD and attenuate renal interstitial fibrosis via delivering CK1δ/ß-TRCP to mediate YAP ubiquitination degradation in mesangial cells. Our findings demonstrate the unique cellular and molecular mechanisms of MSC-sEV in treating the DKD fibrosis niche at a single-cell level and provide a novel therapeutic strategy for renal fibrosis.


Assuntos
Nefropatias Diabéticas , Vesículas Extracelulares , Fibrose , Células-Tronco Mesenquimais , Análise de Célula Única , Transcriptoma , Vesículas Extracelulares/metabolismo , Células-Tronco Mesenquimais/metabolismo , Animais , Camundongos , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/terapia , Masculino , Camundongos Endogâmicos C57BL , Humanos , Macrófagos/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta1/metabolismo , Células Mesangiais/metabolismo , Rim/patologia , Rim/metabolismo
4.
Transl Oncol ; 45: 101969, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38692196

RESUMO

BACKGROUND: Exosomes, one of small extracellular vesicles, play a vital role in cell to cell communication and contribute to the advancement of tumors through their cargo molecules. Exosomal circRNAs have emerged as significant players in various types of tumors. Thus, this study aimed to investigate how exosomal circRNAs are involved in the diagnosis and progression of gastric cancer (GC). METHODS: Serum exosomes were characterized using transmission electron microscopy, nanoparticle tracking analysis and Western blot. CCK-8, colony formation and transwell assays were conducted to study the function of hsa_circ_0050547 (named as circ50547). qRT-PCR was used to quantify the expression of circ50547 in GC tissues and serum exosomes. Fluorescence in situ hybridization was applied to detect the cellular distribution of circ50547. Stemness and drug-resistance were detected by sphere formation, WB, flow cytometry and half-maximal inhibitory concentration analyses. Bioinformatic analyses, luciferase experiments, qRT-PCR and WB were used to investigate molecular mechanisms. RESULTS: We discovered for the first time a new type of GC-derived exosomal circRNA, circ50547. We found that circ50547 is highly expressed in both GC tissues and serum exosomes. Interestingly, we observed that the diagnostic value of exosomal circ50547 is superior to that of serum circ50547. Circ50547 overexpression enhanced the proliferation, migration, invasion, stemness and drug resistance of GC cells, while knockdown of circ50547 showed the opposite effect. Mechanistically, circ50547 acted as a sponge for miR-217 to regulate the expression of HNF1B, which promoted gastric cancer progression. CONCLUSION: Exosomal circ50547 may be a promising marker for the diagnosis and prognosis prediction of GC. These findings suggest that it plays an oncogenic role through miR-217/HNF1B signaling pathway in GC.

6.
Cell Rep Med ; 5(5): 101510, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38614093

RESUMO

Key gene mutations are essential for colorectal cancer (CRC) development; however, how the mutated tumor cells impact the surrounding normal cells to promote tumor progression has not been well defined. Here, we report that PIK3CA mutant tumor cells transmit oncogenic signals and result in malignant transformation of intestinal epithelial cells (IECs) via paracrine exosomal arachidonic acid (AA)-induced H3K4 trimethylation. Mechanistically, PIK3CA mutations sustain SGK3-FBW7-mediated stability of the cPLA2 protein, leading to the synthetic increase in AA, which is transported through exosome and accumulated in IECs. Transferred AA directly binds Menin and strengthens the interactions of Menin and MLL1/2 methyltransferase. Finally, the combination of VTP50469, an inhibitor of the Menin-MLL interaction, and alpelisib synergistically represses PDX tumors harboring PIK3CA mutations. Together, these findings unveil the metabolic link between PIK3CA mutant tumor cells and the IECs, highlighting AA as the potential target for the treatment of patients with CRC harboring PIK3CA mutations.


Assuntos
Ácido Araquidônico , Transformação Celular Neoplásica , Montagem e Desmontagem da Cromatina , Classe I de Fosfatidilinositol 3-Quinases , Mutação , Classe I de Fosfatidilinositol 3-Quinases/genética , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Humanos , Ácido Araquidônico/metabolismo , Animais , Mutação/genética , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Montagem e Desmontagem da Cromatina/genética , Camundongos , Linhagem Celular Tumoral , Colo/patologia , Colo/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Exossomos/metabolismo , Exossomos/genética , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Histonas/metabolismo , Histonas/genética
7.
Oncogene ; 43(14): 1033-1049, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38366146

RESUMO

Circular RNAs (circRNAs) play a crucial role in regulating various tumors. However, their biological functions and mechanisms in gastric cancer (GC) have not been well understood. Here, we discovered a stable cytoplasmic circRNA named circUSP1 (hsa_circ_000613) in GC. CircUSP1 upregulation in GC tissues was correlated with tumor size and differentiation. We observed that circUSP1 promoted GC growth and metastasis. Mechanistically, circUSP1 mainly interacted with the RRM1 domain of an RNA-binding protein (RBP) called HuR, stabilizing its protein level by inhibiting ß-TrCP-mediated ubiquitination degradation. The oncogenic properties of HuR mediated promotive effects of circUSP1 in GC progression. Moreover, we identified USP1 and Vimentin as downstream targets of HuR in post-transcriptional regulation, mediating the effects of circUSP1. The parent gene USP1 also enhanced the viability and mobility of GC cells. Additionally, tissue-derived circUSP1 could serve as an independent prognostic factor for GC, while plasma-derived circUSP1 showed promise as a diagnostic biomarker, outperforming conventional markers including serum alpha-fetoprotein (AFP), carcinoembryonic antigen (CEA) and carbohydrate antigen 199 (CA19-9). Our study highlights that circUSP1 promotes GC progression by binding to and stabilizing oncogenic HuR, thereby facilitating the upregulation of USP1 and Vimentin at the post-transcriptional level. These findings suggest that circUSP1 could be a potential therapeutic target and a diagnostic and prognostic biomarker for GC.


Assuntos
MicroRNAs , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/patologia , Vimentina/genética , Vimentina/metabolismo , Regulação Neoplásica da Expressão Gênica , RNA Circular/genética , Biomarcadores Tumorais/metabolismo , Proliferação de Células/genética , Linhagem Celular Tumoral , MicroRNAs/genética , Proteases Específicas de Ubiquitina/genética , Proteases Específicas de Ubiquitina/metabolismo
8.
Clin Chim Acta ; 554: 117773, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38199579

RESUMO

BACKGROUND: Gastric cancer (GC) is the third leading cause of cancer-related death worldwide. Sensitive and accurate biomarkers can greatly aid in early diagnosis and favorable prognosis. Neutrophils are the most abundant immune cells in human circulation and play a critical role in tumor progression. Neutrophil-derived exosomes (Neu-Exo) contain abundant bioactive molecules and are critically involved in disease progression. METHODS: We proposed a Dynabeads-based (CD66b antibody-coupled) separation and detection system for Neu-Exo analysis. Dual antibody-assisted fluorescent Dynabeads was established to detect Neu-Exo abundance. MiRNA signature of Neu-Exo was identified by RNA sequencing. QRT-PCR and droplet digital PCR (ddPCR) were used for candidate miRNA detection and the potential of Neu-Exo miRNAs in the diagnosis of gastric cancer was evaluated. RESULTS: Dual antibody-assisted fluorescent Dynabeads obtained a detection limit of 7.8 × 105 particles/mL of Neu-Exo and a recovery rate of 81 % under optimized conditions. ROC curve indicated that the abundance of CD66b+ Neu-Exo could well distinguish GC patients from healthy controls (HC) (AUC > 0.8). Additionally, miR-223-3p was found among the top differentially expressed miRNAs in Neu-Exo and presented superior diagnostic value in gastric cancer. Droplet digital PCR (ddPCR) significantly improved the diagnostic efficiency to differentiate GC patients from HC and benign gastric diseases (BGD) patients (AUC > 0.9). CONCLUSION: The Dynabeads-based separation and detection system, assisted with ddPCR analysis, provides a promising platform to enrich Neu-Exo and analyze miRNA profile for gastric cancer liquid biopsy.


Assuntos
Exossomos , MicroRNAs , Neoplasias Gástricas , Humanos , MicroRNAs/genética , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Neutrófilos/patologia , Biomarcadores Tumorais/genética , Reação em Cadeia da Polimerase , Exossomos/genética , Exossomos/patologia
9.
ACS Nano ; 18(6): 4871-4885, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38290527

RESUMO

Diabetic wounds exhibit delayed and incomplete healing, usually due to vascular and nerve damage. Dysregulation of cellular Ca2+ homeostasis has recently been shown to be closely related to insulin resistance and type 2 diabetes mellitus. However, the involvement of this dysregulation in diabetic wound complications remains unknown. In this study, we found calcium dysregulation in patients with diabetic ulcers via tissue protein profiling. High glucose and glucometabolic toxicant stimulation considerably impaired the function of TRPC6, a pore subunit of transient receptor potential channels mediating Ca2+ influx, and mitochondria, which regulate calcium cycling and metabolism. Furthermore, we found that mesenchymal stem cell (MSC)-derived small extracellular vesicles (MSC-sEVs) could play a dual role in restoring the function of TRPC6 and mitochondria by delivering transcription factor SP2 and deubiquitinating enzyme USP9, respectively. MSC-sEVs could transfer SP2 that activated TRPC6 expression by binding to its specific promoter regions (-1519 to -1725 bp), thus recovering Ca2+ influx and downstream pathways. MSC-sEVs also promoted mitophagy to restore mitochondrial function by transporting USP9 that stabilized the expression of Parkin, a major player in mitophagy, thereby guaranteeing Ca2+ efflux and avoidance of Ca2+ overload. Targeting the regulation of calcium homeostasis provides a perspective for understanding diabetic wound healing, and the corresponding design of MSC-sEVs could be a potential therapeutic strategy.


Assuntos
Diabetes Mellitus Tipo 2 , Vesículas Extracelulares , Células-Tronco Mesenquimais , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Canal de Cátion TRPC6/metabolismo , Cálcio/metabolismo , Cicatrização/fisiologia , Células-Tronco Mesenquimais/metabolismo , Vesículas Extracelulares/metabolismo , Mitocôndrias/metabolismo
10.
Transpl Immunol ; 82: 101960, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38007171

RESUMO

PURPOSE: Allograft rejection is still the main cause of corneal transplantation failure. Therefore, we investigated the role of indoleamine 2,3-dioxygenase (IDO)-transfected bone marrow-derived mesenchymal stem cells (IDO-BMSCs) in corneal allograft rejection in rats. METHODS: IDO-BMSCs were constructed and co-cultured with CD4+CD24- T cells to detect their effects on the proliferation of CD4+CD25-T cells in vitro. A corneal allograft rat model was used to confirm our in vitro and in vivo observations. Therefore, IDO-BMSCs were injected directly into the recipient's conjunctiva on the day of corneal transplantation and on day 5 after operation. Corneal graft rejection indices, including corneal neovascularization, opacity, and edema, were measured for up to 14 days after transplantation. The recipients' cervical lymph nodes and peripheral blood were collected to test the role of IDO-BMSCs in immune cells using flow cytometry. RESULTS: The lentivirus-mediated IDO gene was successfully transfected into BMSCs, which stably secreted the IDO protein. The proliferation of CD4+CD25-T cells was significantly inhibited after their co-culture with IDO-BMSCs. Subconjunctival injection of IDO-BMSCs into corneal allografts of rats effectively reduced graft neovascularization, promoted allograft survival, and induced immune tolerance. Both CD4+ and CD8+ T cells in the local lymph nodes and peripheral blood, along with CD4+CD25-T cells in the local lymph nodes, were significantly reduced after transplantation. CONCLUSION: Our results suggest that IDO-BMSC treatment enhances the direct immunomodulatory effect of corneal allograft transplants in rats, promoting corneal allograft survival by inhibiting the proliferation of CD4+, CD8+, and CD4+CD25-T cells. Therefore, modification of BMSCs by lentivirus-mediated IDO gene transfection may provide a novel strategy for controlling corneal allograft rejection.


Assuntos
Transplante de Córnea , Células-Tronco Mesenquimais , Ratos , Animais , Linfócitos T CD8-Positivos , Medula Óssea/metabolismo , Rejeição de Enxerto , Sobrevivência de Enxerto , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Proliferação de Células
11.
Cancers (Basel) ; 15(23)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38067260

RESUMO

Background: Gastric cancer (GC) remains a common malignancy worldwide with a limited understanding of the disease mechanisms. A novel circular RNA CDR1as has been recently reported to be a crucial regulator of human cancer. However, its biological role and mechanism in the GC growth are still far from clear. Methods: Small interfering RNAs (siRNAs), lentivirus or plasmid vectors were applied for gene manipulation. The CDR1as effects on the GC growth were evaluated in CCK8 and colony formation assays, a flow cytometry analysis and mouse xenograft tumor models. A bioinformatics analysis combined with RNA immunoprecipitation (RIP), RNA pull-down assays, dual-luciferase reporter gene assays, Western blot, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and functional rescue experiments were used to identify the CDR1as target miRNA, the downstream target gene and its interaction with human antigen R (HuR). Results: The CDR1as overexpression promoted the GC growth in vitro and in vivo and reduced the apoptotic rate of GC cells. Its knockdown inhibited the GC cell proliferation and viability and increased the cell apoptotic rate. Proliferation-related proteins PCNA and Cyclin D1 and apoptosis-related proteins Bax, Bcl-2, Caspase-3 and Caspase-9 were regulated. Mechanically, the cytoplasmic CDR1as acted as a miR-299-3p sponge to relieve its suppressive effects on the GC cell growth. Oncogenic TGIF1 was a miR-299-3p downstream target gene that mediated the promotive effects of CDR1as and regulated the PCNA and Bax levels. HuR interacted with CDR1as via the RRM2 domain and positively regulated the CDR1as level and its oncogenic role as well as downstream target TGIF1. Conclusions: CDR1as promotes the GC growth through the HuR/CDR1as/miR-299-3p/TGIF1 axis and could be used as a new therapeutic target for GC.

12.
J Nanobiotechnology ; 21(1): 457, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38031152

RESUMO

MicroRNA (miRNA) delivery by extracellular vesicles (EVs) has recently inspired tremendous developments in cancer treatments. However, hybridization between miRNA and its target mRNA is still difficult to be imaged in vivo to assess the therapeutic effects in time. Herein we design a nano-scale fluorescent "off-on" complex encapsulated by small extracellular vesicles (sEVs) for real-time visualization and evaluation of gene therapy efficiency in human gastric cancer cells and murine xenograft tumor models. The complex is formed by π-π stacking between graphene quantum dots (GQDs) and tumor suppressor miR-193a-3p conjugated fluorescent tag whose signals remain off when binding to GQDs. Loaded into sEVs using tunable sonication techniques, the GQDs/Cy5-miR particles enter the tumor cells and promote miR-193a-3p escape from endosomes. The miR-193a-3p in GQDs/Cy5-miR is unleashed to pair the specific target oncogene cyclin D1 (CCND1), therefore turning on the fluorescence of miRNA tags. We find out that GQDs/Cy5-miR@sEVs can activate the "turn-on" fluorescent signal and exhibit the longest retention time in vivo, which suggests a minimized degradation of miR-193a-3p in dynamic processes of miRNA-mRNA binding. More importantly, GQDs/Cy5-miR@sEVs significantly promote cancer apoptosis in vitro and in vivo via the enhanced cellular uptake. Our study demonstrates that GQDs/Cy5-miR@sEVs represent an efficient and refined theranostic platform for gene therapy in cancers.


Assuntos
Vesículas Extracelulares , MicroRNAs , Neoplasias , Humanos , Camundongos , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Vesículas Extracelulares/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Neoplasias/terapia , Neoplasias/metabolismo
13.
Curr Drug Deliv ; 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37438904

RESUMO

A significant amount of research effort is currently focused on investigating the role of exosomes in various cancers. These tiny vesicles, apart from acting as biomarkers, also play a crucial role in tumor formation and development. Several studies have demonstrated that exosomes can be a drug delivery vehicle for cancer therapy. In this paper, we highlight the key advantages of exosomes as a drug delivery candidate, with a particular focus on their low immunogenicity, natural targeting ability and suitable mechanical properties. Furthermore, we propose that the selection of appropriate exosomes and drug loading methods based on therapeutic goals and product heterogeneity is essential for preparing engineered exosomes. We comprehensively analyzed the superiorities of current drug-loading methods to improve the creation of designed exosomes. Moreover, we systematically review the applications of engineered exosomes in various therapies such as immunotherapy, gene therapy, protein therapy, chemotherapy, indicating that engineered exosomes have the potential to be reliable and, safe drug carriers that can address the unmet needs in cancer clinical practice.

14.
Cancer Cell Int ; 23(1): 151, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37525152

RESUMO

BACKGROUND: Exosome, a component of liquid biopsy, loaded protein, DNA, RNA and lipid gradually emerges as biomarker in tumors. However, exosomal circRNAs as biomarker and function mechanism in gastric cancer (GC) are not well understood. METHODS: Differentially expressed circRNAs in GC and healthy people were screened by database. The identification of hsa_circ_000200 was verified by RNase R and sequencing, and the expression of hsa_circ_000200 was evaluated using qRT-PCR. The biological function of hsa_circ_000200 in GC was verified in vitro. Western blot, RIP, RNA fluorescence in situ hybridization, and double luciferase assay were utilized to explore the potential mechanism of hsa_circ_000200. RESULTS: Hsa_circ_000200 up-regulated in GC tissue, serum and serum exosomes. Hsa_circ_000200 in serum exosomes showed better diagnostic ability than that of tissues and serum. Combined with clinicopathological parameters, its level was related to invasion depth, TNM staging, and distal metastasis. Functionally, knockdown of hsa_circ_000200 inhibited GC cells proliferation, migration and invasion in vitro, while its overexpression played the opposite role. Importantly, exosomes with up-regulated hsa_circ_000200 promoted the proliferation and migration of co-cultured GC cells. Mechanistically, hsa_circ_000200 acted as a "ceRNA" for miR-4659a/b-3p to increase HBEGF and TGF-ß/Smad expression, then promoted the development of GC. CONCLUSIONS: Our findings suggest that hsa_circ_000200 promotes the progression of GC through hsa_circ_000200/miR-4659a/b-3p/HBEGF axis and affecting the expression of TGF-ß/Smad. Serum exosomal hsa_circ_000200 may serve as a potential biomarker for GC.

15.
Int J Biol Macromol ; 246: 125687, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37406902

RESUMO

To develop a greener and more efficient method for producing cellulose nanofibers (CNFs) from raw plants, an AlCl3-enhanced ternary deep eutectic solvent, DES2 (consisting of choline chloride, citric acid, and AlCl3·6H2O in a molar ratio of 1:0.4:0.08), was synthesized. Raw elephant grass (EG) was pretreated with DES2, followed by sodium chlorite (NaClO2) bleaching and ultrasonic disruption to extract high-performance CNFs. The DES2 and NaClO2 treatments effectively removed hemicellulose and lignin, achieving removal rates of 99.23 % and 99.62 %, respectively, while maintaining a cellulose content of 78.3 %. DES2 demonstrated easy recyclability and maintained excellent biomass pretreatment performance even after multiple cycles. Following a brief 30-min intermittent ultrasound treatment, the resulting CNFs demonstrated superior crystallinity, increased carboxyl content, and a narrower width distribution compared to CNFs obtained from AlCl3-free DES1. Optimized conditions at 110 °C yielded CNFs with 85.3 % crystallinity, 0.64 mmol/g carboxyl content, 5.15 nm width distribution, and excellent dispersion in water for at least six months. Additionally, CNFs enhanced the tensile strength of chia seed mucilage (CM) composite films, showing a significant improvement to 26.6 MPa, representing a 231.3 % increase over the control film. This study offers a promising approach for efficiently producing CNFs from raw plants.


Assuntos
Celulose , Nanofibras , Solventes , Cloreto de Alumínio , Solventes Eutéticos Profundos
16.
Gastric Cancer ; 26(5): 691-707, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37300724

RESUMO

BACKGROUND: Anti-PD-1 immunotherapy has emerged as an important therapeutic modality in advanced gastric cancer (GC). However, drug resistance frequently develops, limiting its effectiveness. METHODS: The role of gastric cancer mesenchymal stem cells (GCMSCs) in anti-PD-1 resistance was evaluated in vivo in NPGCD34+ or NCGPBMC xenograft mouse model. In addition, we investigated CD8+T cell infiltration and effector function by spectral cytometry and IHC. The effects of GCMSCs conditional medium (GCMSC-CM) on GC cell lines were characterized at the level of the proteome, secretome using western blot, and ELISA assays. RESULTS: We reported that GCMSCs mediated tolerance mechanisms contribute to tumor immunotherapy tolerance. GCMSC-CM attenuated the antitumor activity of PD-1 antibody and inhibited immune response in humanized mouse model. In GC cells under serum deprivation and hypoxia, GCMSC-CM promoted GC cells proliferation via upregulating PD-L1 expression. Mechanistically, GCMSC-derived IL-8 and AKT-mediated phosphorylation facilitated HK2 nuclear localization. Phosphorylated-HK2 promoted PD-L1 transcription by binding to HIF-1α. What is more, GCMSC-CM also induced lactate overproduction in GC cells in vitro and xenograft tumors in vivo, leading to impaired function of CD8+ T cells. Furthermore, CXCR1/2 receptor depletion, CXCR2 receptor antagonist AZD5069 and IL-8 neutralizing antibody application also significantly reversed GCMSCs mediated immunosuppression, restoring the antitumor capacity of PD-1 antibody. CONCLUSIONS: Our findings reveal that blocking GCMSCs-derived IL-8/CXCR2 pathway decreasing PD-L1 expression and lactate production, improving antitumor efficacy of anti-PD-1 immunotherapy, may be of value for the treatment of advanced gastric carcinoma.


Assuntos
Células-Tronco Mesenquimais , Neoplasias Gástricas , Humanos , Animais , Camundongos , Neoplasias Gástricas/metabolismo , Linfócitos T CD8-Positivos , Antígeno B7-H1/metabolismo , Interleucina-8/metabolismo , Leucócitos Mononucleares/patologia , Receptores de Interleucina-8B/metabolismo , Terapia de Imunossupressão , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Linhagem Celular Tumoral , Microambiente Tumoral
17.
J Hematol Oncol ; 16(1): 67, 2023 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-37365670

RESUMO

Exosomal circRNA serves a novel genetic information molecule, facilitating communication between tumor cells and microenvironmental cells, such as immune cells, fibroblasts, and other components, thereby regulating critical aspects of cancer progression including immune escape, tumor angiogenesis, metabolism, drug resistance, proliferation and metastasis. Interestingly, microenvironment cells have new findings in influencing tumor progression and immune escape mediated by the release of exosomal circRNA. Given the intrinsic stability, abundance, and broad distribution of exosomal circRNAs, they represent excellent diagnostic and prognostic biomarkers for liquid biopsy. Moreover, artificially synthesized circRNAs may open up new possibilities for cancer therapy, potentially bolstered by nanoparticles or plant exosome delivery strategies. In this review, we summarize the functions and underlying mechanisms of tumor cell and non-tumor cell-derived exosomal circRNAs in cancer progression, with a special focus on their roles in tumor immunity and metabolism. Finally, we examine the potential application of exosomal circRNAs as diagnostic biomarkers and therapeutic targets, highlighting their promise for clinical use.


Assuntos
Exossomos , Neoplasias , Humanos , RNA Circular , Exossomos/genética , Fibroblastos , Neoplasias/genética , Biomarcadores , Microambiente Tumoral
18.
Biomarkers ; 28(5): 448-457, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37128800

RESUMO

BACKGROUND: Circular RNA (circRNA) CDR1as is emerging as a vital tumour regulator. This study aimed to investigate its diagnostic and prognostic value and molecular mechanisms for gastric cancer (GC). METHODS: CDR1as expression in GC and adjacent normal tissues (n = 82), paired plasma (n = 65) and plasma exosome samples (n = 68) from GC patients and healthy controls were determined by reverse transcription quantitative polymerase chain reaction (RT-qPCR). Correlations between CDR1as level and clinicopathological factors of GC patients were analysed. Its diagnostic and prognostic value was evaluated by receiver operating characteristic (ROC) curves and Cox regression analysis combined with Kaplan-Meier plots. CDR1as-regulated proteins and signalling pathways were identified by quantitative proteomics and bioinformatic analysis. RESULTS: CDR1as was downregulated in GC tissues and associated with tumour size and neural invasion. Plasma- and exosome-derived CDR1as was upregulated in GC patients while plasma-derived CDR1as level was related to lymphatic metastasis. Area under ROC curve (AUC) of tissue-, plasma- and exosome-derived CDR1as was 0.782, 0.641, 0.536 while combination of plasma CDR1as, serum CEA and CA19-9 increased AUC to 0.786. Distal metastasis, TNM stage and tissue-derived CDR1as level were independent predictors for overall survival (OS) of patients. MiRNA signalling networks and glycine, serine and threonine metabolism were regulated by CDR1as and HSPE1 might be a key protein. CONCLUSIONS: CDR1as is a crucial regulator and promising biomarker for GC diagnosis and prognosis.


CDR1as level in tumour tissues and plasma of GC patients was associated with tumour progression. The findings indicate that CDR1as is involved in GC progression and is a potential diagnostic and prognostic biomarker.


Assuntos
MicroRNAs , Neoplasias Gástricas , Humanos , RNA Circular/genética , Prognóstico , Biomarcadores Tumorais , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , MicroRNAs/genética , MicroRNAs/metabolismo
19.
J Transl Med ; 21(1): 216, 2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-36959674

RESUMO

BACKGROUND: The impact of metabolically healthy obesity (MHO) on kidney dysfunction remains debatable. Moreover, few studies have focused on the early stages of kidney dysfunction indicated by hyperfiltration and mildly reduced eGFR. Thus, we aimed to investigate the association between the MHO and early kidney dysfunction, which is represented by hyperfiltration and mildly reduced estimated glomerular filtration rate (eGFR), and to further explore whether serum uric acid affects this association. METHODS: This cross-sectional study enrolled 1188 residents aged ≥ 40 years old from Yonghong Communities. Metabolically healthy phenotypes were categorized based on Adult Treatment Panel III criteria. Obesity was defined as body mass index (BMI) ≥ 25 kg/m2. Mildly reduced eGFR was defined as being in the range 60 < eGFR ≤ 90 ml/min/1.73m2. Hyperfiltration was defined as eGFR > 95th percentile after adjusting for sex, age, weight, and height. RESULTS: Overall, MHO accounted for 12.8% of total participants and 24.6% of obese participants. Compared to metabolically healthy non-obesity (MHNO), MHO was significantly associated with an increased risk of mildly reduced eGFR (odds ratio [OR] = 1.85, 95% confidence interval [CI] 1.13-3.01) and hyperfiltration (OR = 2.28, 95% CI 1.03-5.09). However, upon further adjusting for uric acid, the association between the MHO phenotype and mildly reduced eGFR was reduced to null. Compared with MHNO/non-hyperuricemia, MHO/non-hyperuricemia was associated with an increased risk of mildly reduced eGFR (OR = 2.04, 95% CI 1.17-3.58), whereas MHO/hyperuricemia was associated with an observably increased risk (OR = 3.07, 95% CI 1.34-7.01). CONCLUSIONS: MHO was associated with an increased risk of early kidney dysfunction, and the serum uric acid partially mediated this association. Further prospective studies are warranted to clarify the causality.


Assuntos
Obesidade Metabolicamente Benigna , Insuficiência Renal , Humanos , Obesidade Metabolicamente Benigna/complicações , Ácido Úrico , Taxa de Filtração Glomerular , Fatores de Risco , Estudos Transversais , Obesidade/complicações , Obesidade/genética , Índice de Massa Corporal
20.
Biochem Biophys Res Commun ; 648: 11-20, 2023 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-36724555

RESUMO

Non-small cell lung cancer (NSCLC) is a major global health threat with high incidence and mortality. Modulator of apoptosis-1 (MOAP1), also named MAP-1, belongs to the PNMA gene family and plays a key role in regulating apoptosis and tumor growth. However, its influences on NSCLC are largely unclear, and thus were explored in our present study, particularly the underlying mechanisms. Here, we initially find that MOAP1 expression is significantly decreased in NSCLC patients compared with the normal ones, and negatively correlated with the TNM and pathologic stages among patients. Additionally, MOAP1 low expression predicts a poorer prognosis than that of the NSCLC patients expressing higher MOAP1. Our in vitro studies confirm much lower MOAP1 expression in NSCLC cell lines. Of note, promoting MOAP1 expression strongly reduces the proliferation and induces apoptosis in NSCLC cells, accompanied with cell cycle arrest distributed in G0/G1 phase. Moreover, we find that MOAP1 has a negative correlation with Th2 cells' infiltration, but a positive correlation with the infiltration levels of eosinophils. Epithelial mesenchymal transition (EMT) process is also greatly restrained in NSCLC cells with MOAP1 over-expression, as proved by the reduced migration and invasion of cells. We further identify a positive correlation between MOAP1 and tripartite motif-containing 68 (TRIM68) in patients with NSCLC. Further analysis shows that TRIM68 directly interacts with MOAP1 and stabilizes MOAP1. Importantly, TRIM68 can activate MOAP1 by inducing the K63-linked polyubiquitination of MOAP1. Finally, animal studies verify that promoting MOAP1 efficiently suppresses tumor growth and lung metastasis in the nude mice. Collectively, our results reveal a novel mechanism through which MOAP1 stabilized by TRIM68 inhibits NSCLC development and targeting MOAP1 for its up-regulation may be a promising therapeutic strategy for NSCLC treatment.


Assuntos
Proteínas Reguladoras de Apoptose , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Proteínas com Motivo Tripartido , Animais , Camundongos , Apoptose , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/patologia , Camundongos Nus , Humanos , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas com Motivo Tripartido/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA