Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Nat Commun ; 15(1): 6048, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39025895

RESUMO

With the flourishing of spatial omics technologies, alignment and stitching of slices becomes indispensable to decipher a holistic view of 3D molecular profile. However, existing alignment and stitching methods are unpractical to process large-scale and image-based spatial omics dataset due to extreme time consumption and unsatisfactory accuracy. Here we propose SANTO, a coarse-to-fine method targeting alignment and stitching tasks for spatial omics. SANTO firstly rapidly supplies reasonable spatial positions of two slices and identifies the overlap region. Then, SANTO refines the positions of two slices by considering spatial and omics patterns. Comprehensive experiments demonstrate the superior performance of SANTO over existing methods. Specifically, SANTO stitches cross-platform slices for breast cancer samples, enabling integration of complementary features to synergistically explore tumor microenvironment. SANTO is then applied to 3D-to-3D spatiotemporal alignment to study development of mouse embryo. Furthermore, SANTO enables cross-modality alignment of spatial transcriptomic and epigenomic data to understand complementary interactions.


Assuntos
Neoplasias da Mama , Animais , Camundongos , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Feminino , Transcriptoma/genética , Microambiente Tumoral/genética , Epigenômica/métodos , Genômica/métodos , Algoritmos , Embrião de Mamíferos/metabolismo , Imageamento Tridimensional/métodos
2.
Nat Commun ; 15(1): 6344, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39068220

RESUMO

Dysfunction of pancreatic δ cells contributes to the etiology of diabetes. Despite their important role, human δ cells are scarce, limiting physiological studies and drug discovery targeting δ cells. To date, no directed δ-cell differentiation method has been established. Here, we demonstrate that fibroblast growth factor (FGF) 7 promotes pancreatic endoderm/progenitor differentiation, whereas FGF2 biases cells towards the pancreatic δ-cell lineage via FGF receptor 1. We develop a differentiation method to generate δ cells from human stem cells by combining FGF2 with FGF7, which synergistically directs pancreatic lineage differentiation and modulates the expression of transcription factors and SST activators during endoderm/endocrine precursor induction. These δ cells display mature RNA profiles and fine secretory granules, secrete somatostatin in response to various stimuli, and suppress insulin secretion from in vitro co-cultured ß cells and mouse ß cells upon transplantation. The generation of human pancreatic δ cells from stem cells in vitro would provide an unprecedented cell source for drug discovery and cell transplantation studies in diabetes.


Assuntos
Diferenciação Celular , Células-Tronco Pluripotentes , Humanos , Animais , Camundongos , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/citologia , Fator 2 de Crescimento de Fibroblastos/metabolismo , Fator 2 de Crescimento de Fibroblastos/farmacologia , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/citologia , Células Secretoras de Somatostatina/metabolismo , Células Secretoras de Somatostatina/citologia , Endoderma/citologia , Endoderma/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Pâncreas/citologia , Pâncreas/metabolismo , Somatostatina/metabolismo , Linhagem da Célula , Insulina/metabolismo , Secreção de Insulina
3.
Bioinformatics ; 40(6)2024 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-38867692

RESUMO

MOTIVATION: Macrocyclic peptides hold great promise as therapeutics targeting intracellular proteins. This stems from their remarkable ability to bind flat protein surfaces with high affinity and specificity while potentially traversing the cell membrane. Research has already explored their use in developing inhibitors for intracellular proteins, such as KRAS, a well-known driver in various cancers. However, computational approaches for de novo macrocyclic peptide design remain largely unexplored. RESULTS: Here, we introduce HELM-GPT, a novel method that combines the strength of the hierarchical editing language for macromolecules (HELM) representation and generative pre-trained transformer (GPT) for de novo macrocyclic peptide design. Through reinforcement learning (RL), our experiments demonstrate that HELM-GPT has the ability to generate valid macrocyclic peptides and optimize their properties. Furthermore, we introduce a contrastive preference loss during the RL process, further enhanced the optimization performance. Finally, to co-optimize peptide permeability and KRAS binding affinity, we propose a step-by-step optimization strategy, demonstrating its effectiveness in generating molecules fulfilling both criteria. In conclusion, the HELM-GPT method can be used to identify novel macrocyclic peptides to target intracellular proteins. AVAILABILITY AND IMPLEMENTATION: The code and data of HELM-GPT are freely available on GitHub (https://github.com/charlesxu90/helm-gpt).


Assuntos
Peptídeos Cíclicos , Peptídeos Cíclicos/química , Biologia Computacional/métodos , Desenho de Fármacos , Peptídeos/química , Humanos , Algoritmos , Software
4.
Mol Pharm ; 21(7): 3434-3446, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38781419

RESUMO

Chemodynamic therapy (CDT) is a novel antitumor strategy that employs Fenton or Fenton-like reactions to generate highly toxic hydroxyl radical (OH•) from hydrogen peroxide (H2O2) for inducing tumor cell death. However, the antitumor efficacy of the CDT strategy is harshly limited by the redox homeostasis of tumor cells; especially the OH • is easily scavenged by glutathione (GSH) and the intracellular H2O2 level is insufficient in the tumor cells. Herein, we propose the Mn2+-menadione (also known as vitamin K3, MK3) cascade biocatalysis strategy to disrupt the redox homeostasis of tumor cells and induce a OH• storm, resulting in enhanced CDT effect. A nanoliposome encapsulating Mn-MK3 (Mn-MK3@LP) was prepared for the treatment of hepatic tumors in this study. After Mn-MK3@LPs were taken up by tumor cells, menadione could facilitate the production of intracellular H2O2 via redox cycling, and further the cytotoxic OH • burst was induced by Mn2+-mediated Fenton-like reaction. Moreover, high-valent manganese ions were reduced by GSH and the depletion of GSH further disrupted the redox homeostasis of tumor cells, thus achieving synergistically enhanced CDT. Overall, both cellular and animal experiments confirmed that the Mn-MK3@LP cascade biocatalysis nanoliposome exhibited excellent biosafety and tumor suppression efficacy. This study may provide deep insights for developing novel CDT-based strategies for tumor therapy.


Assuntos
Glutationa , Peróxido de Hidrogênio , Radical Hidroxila , Vitamina K 3 , Animais , Radical Hidroxila/química , Radical Hidroxila/metabolismo , Humanos , Camundongos , Glutationa/metabolismo , Glutationa/química , Vitamina K 3/química , Vitamina K 3/farmacologia , Biocatálise , Linhagem Celular Tumoral , Manganês/química , Oxirredução/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Lipossomos/química , Ensaios Antitumorais Modelo de Xenoenxerto , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Camundongos Nus , Células Hep G2 , Antineoplásicos/farmacologia , Antineoplásicos/química , Nanopartículas/química , Ferro
5.
Radiat Res ; 201(4): 294-303, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38588381

RESUMO

Radiation-induced intestinal damage (RIID) is a common side effect of radiotherapy in patients with abdominopelvic malignancies. Gap junctions are special structures consisting of connexins (Cxs). This study aimed to investigate the expression and role of connexins in RIID and underlying mechanism. In this study, a calcein-AM fluorescence probe was used to detect changes in gap junctional intercellular communication in intestinal epithelial IEC-6 cells. Our results show that gap junctional intercellular communication of IEC-6 cells was reduced at 6, 12, 24, and 48 h after irradiation, with the most pronounced effect at 24 h. Western blotting and immunofluorescence results showed that the expression of Cx43, but not other connexins, was reduced in irradiated intestinal epithelial cells. Silencing of Cx43 reduced gap junctional intercellular communication between irradiated intestinal epithelial cells with increased ROS and intracellular Ca2+ levels. Furthermore, knockdown of Cx43 reduced the number of clonal clusters, decreased cell proliferation with increased cytotoxicity and apoptosis. Western blotting results showed that silencing of Cx43 resulted in changed γ-H2AX and PI3K/AKT pathway proteins in irradiated intestinal epithelial cells. Administration of the PI3K/AKT pathway inhibitor LY294002 inhibited the radioprotective effects in Cx43-overexpressing intestinal epithelial cells. Our study demonstrated that Cx43 expression is decreased by ionizing radiation, which facilitates the radioprotection of intestinal epithelial cells.


Assuntos
Conexina 43 , Proteínas Proto-Oncogênicas c-akt , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Cálcio/metabolismo , Conexinas/metabolismo , Conexinas/farmacologia , Transdução de Sinais , Junções Comunicantes , Comunicação Celular
6.
Adv Sci (Weinh) ; 11(23): e2401405, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38528662

RESUMO

Volatile solid additives have attracted increasing attention in optimizing the morphology and improving the performance of currently dominated non-fullerene acceptor-based organic solar cells (OSCs). However, the underlying principles governing the rational design of volatile solid additives remain elusive. Herein, a series of efficient volatile solid additives are successfully developed by the crossbreeding effect of chalcogenation and iodination for optimizing the morphology and improving the photovoltaic performances of OSCs. Five benzene derivatives of 1,4-dimethoxybenzene (DOB), 1-iodo-4-methoxybenzene (OIB), 1-iodo-4-methylthiobenzene (SIB), 1,4-dimethylthiobenzene (DSB) and 1,4-diiodobenzene (DIB) are systematically studied, where the widely used DIB is used as the reference. The effect of chalcogenation and iodination on the overall property is comprehensively investigated, which indicates that the versatile functional groups provided various types of noncovalent interactions with the host materials for modulating the morphology. Among them, SIB with the combination of sulphuration and iodination enabled more appropriate interactions with the host blend, giving rise to a highly ordered molecular packing and more favorable morphology. As a result, the binary OSCs based on PM6:L8-BO and PBTz-F:L8-BO as well as the ternary OSCs based on PBTz-F:PM6:L8-BO achieved impressive high PCEs of 18.87%, 18.81% and 19.68%, respectively, which are among the highest values for OSCs.

7.
Materials (Basel) ; 17(6)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38541408

RESUMO

The burning loss of Al and Ti elements in superalloys during electroslag remelting has become a prevalent issue. And the existing slag system is not suitable for smelting the ATI 718PlusTM alloy. Therefore, it is imperative to develop a new slag system for smelting the ATI 718PlusTM alloy. To mitigate this issue, a thermodynamic model of the oxidation reaction of Al and Ti at the slag and alloy interface was established based on the ion and molecule coexistence theory (IMCT). The thermodynamic model was used to investigate the correlation between the equilibrium content of Al and Ti, slag composition, smelting temperature, and initial Al and Ti content of the electrode. The results indicate that while increasing the smelting temperature can effectively inhibit the burning loss of Al, it will exacerbate the burning loss of Ti. Increasing CaO and Al2O3 contents can inhibit the Al burning loss, while an increase in the TiO2 content can inhibit the Ti burning loss. Although an increase in the MgO content results in the burning loss of Al, its impact on the Al is minimal. The burning loss of Al and Ti was not affected by the change in the CaF2 content. The high Al content in ATI 718PlusTM makes it prone to burning loss of Al during the electroslag remelting. The combustion loss of Al can be reduced by increasing the Ti content in the electrode or adding a suitable amount of aluminum powder to the slag system. The accuracy of the model had been validated through experimental verification.

8.
Drug Deliv ; 30(1): 2219426, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37282832

RESUMO

Doxorubicin (DOX) is a commonly studied chemotherapeutic agent for the treatment of solid tumors, but the severe side effects limit its clinical application. It is shown that DOX-metal chelate has lower in vitro cytotoxicity compared with DOX, as the anthracyclines of DOX can form coordinative interaction with transition metal ions. In addition, the transition metal ions could catalyze the production of hydroxyl radicals (·OH) via Fenton/Fenton-like reactions to achieve antitumor chemodynamic therapy (CDT). In this study, copper ions (Cu2+) were applied to obtain DOX/Cu(II) prodrug, and a liposomal formulation was used to avoid the rapid blood clearance and optimize the biodistribution of this prodrug. In vitro and in vivo antitumor results demonstrated that this pH sensitive Cu-chelating prodrug can reduce adverse effects of DOX but improve the antitumor efficiency due to the combination of chemotherapy and chemodynamic therapy. Our study provided a facile and effective approach of metal-chelating prodrug strategy for combination cancer therapy strategy.


Assuntos
Neoplasias , Pró-Fármacos , Humanos , Cobre , Distribuição Tecidual , Doxorrubicina , Neoplasias/tratamento farmacológico , Linhagem Celular Tumoral
9.
Nat Commun ; 14(1): 2026, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37041148

RESUMO

Craniofacial microsomia (CFM; also known as Goldenhar syndrome), is a craniofacial developmental disorder of variable expressivity and severity with a recognizable set of abnormalities. These birth defects are associated with structures derived from the first and second pharyngeal arches, can occur unilaterally and include ear dysplasia, microtia, preauricular tags and pits, facial asymmetry and other malformations. The inheritance pattern is controversial, and the molecular etiology of this syndrome is largely unknown. A total of 670 patients belonging to unrelated pedigrees with European and Chinese ancestry with CFM, are investigated. We identify 18 likely pathogenic variants in 21 probands (3.1%) in FOXI3. Biochemical experiments on transcriptional activity and subcellular localization of the likely pathogenic FOXI3 variants, and knock-in mouse studies strongly support the involvement of FOXI3 in CFM. Our findings indicate autosomal dominant inheritance with reduced penetrance, and/or autosomal recessive inheritance. The phenotypic expression of the FOXI3 variants is variable. The penetrance of the likely pathogenic variants in the seemingly dominant form is reduced, since a considerable number of such variants in affected individuals were inherited from non-affected parents. Here we provide suggestive evidence that common variation in the FOXI3 allele in trans with the pathogenic variant could modify the phenotypic severity and accounts for the incomplete penetrance.


Assuntos
Síndrome de Goldenhar , Animais , Camundongos , Síndrome de Goldenhar/patologia , Assimetria Facial , Linhagem , Fatores de Transcrição Forkhead
10.
Angew Chem Int Ed Engl ; 62(21): e202301958, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36930826

RESUMO

A facile strategy was developed here to improve the film quality of nickel-based hole transporting layer (HTL) for efficient organic solar cell (OSC) applications. To prevent the agglomeration of Ni(NO3 )2 during film deposition, acetylacetonate was added into the precursor solution, which led to the formation of an amorphous and glass-like state. After thermal annealing (TA) treatment, the film-forming ability could be further improved. The additional UV-ozone (UVO) treatment continuously improved the film quality and increased the work function and conductivity of such HTL. The resulting TA & UVO modified Ni(NO3 )2 & Hacac HTL produced highly efficient organic solar cells with exciting power conversion efficiencies of 18.42 % and 19.02 % for PM6 : BTP-eC9 and D18 : BTP-Th devices, respectively, much higher than the control PEDOT : PSS devices.

11.
Front Pharmacol ; 13: 1065438, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36386143

RESUMO

Chemodynamic therapy (CDT), a newly developed approach for cancer treatment, can convert hydrogen peroxide (H2O2) into toxic hydroxyl radicals (•OH) by using Fenton/Fenton-like reaction to kill tumor cells. However, due to the complexity of the intracellular environment of tumor cells, the therapeutic efficacy of CDT was severely restricted. Recently, combination therapy strategies have become popular approaches for tumor treatment, and there are numerous studies have demonstrated that the CDT-based combination strategies can significantly improve the anti-tumor efficiency of CDT. In this review, we outline some of the recent progress in cancer chemodynamic therapy from 2020, and discuss the progress in the design of nanosystems for CDT synergistic combination therapies.

12.
Fish Shellfish Immunol ; 127: 148-154, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35714896

RESUMO

Infectious spleen and kidney necrosis virus (ISKNV) is the type species of the Megalocytivirus genus that infects a number of marine and freshwater fishes, causing huge economic losses in aquaculture. The ISKNV infection leads to increase of reducing power in cells. As the antibiotic neomycin can promote the production of reactive oxygen species (ROS) in animal cells, in the current study, the potential therapeutic effect of neomycin on ISKNV infection was explored. We showed that neomycin could decrease the reducing power in cultured MFF-1 cells and inhibit ISKNV infection by antagonizing the shift of the cellular redox balance toward reduction. In vivo experiments further demonstrated that neomycin treatment significantly suppresses ISKNV infection in mandarin fish. Expression of the major capsid protein (MCP) and the proportion of infected cells in tissues were down-regulated after neomycin treatment. Furthermore, neomycin showed complex effects on expression of a set of antiviral related genes of the host. Taking together, the current study suggested that the viral-induced redox imbalance in the infected cells could be used as a target for suppressing ISKNV infection. Neomycin can be potentially utilized for therapeutic treatment of Megalocytivirus diseases by antagonizing intracellular redox changes.


Assuntos
Infecções por Vírus de DNA , Doenças dos Peixes , Iridoviridae , Animais , Infecções por Vírus de DNA/veterinária , Peixes , Glutationa , Iridoviridae/genética , Neomicina/farmacologia
13.
Chemosphere ; 292: 133414, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34953870

RESUMO

In this study, we investigated the distribution of brominated and organophosphate flame retardants (BFRs and OPFRs) in the paired gaseous and nine size-segregated particulate samples collected from 8 typical indoor compartments and monthly outdoor in Xinxiang, China, respectively. For the indoor environments, total concentrations of FRs (Σ19FRs) in bulk air ranged from 3.9 ng/m3 to 37.5 ng/m3, with that in children recreation center (37.5 ng/m3) and furniture store (28.7 ng/m3) showing highest levels. In the outdoor air, Σ19FRs ranged from 3.1 ng/m3 to 13.6 ng/m3 among the 12 months, with that from late spring and summer being the highest. OPFRs had higher concentration than BFRs, with the total concentration of OPFRs accounting for 77%-99% of ∑19FRs. TCIPP (tris(chloroiso-propyl) phosphate), TCEP (tris(2-chloroethyl) phosphate), TEP (triethyl phosphate) and DBDPE (decabromodiphenyl ethane), BDE-209 (decabromodiphenyl ether) were the predominant analogs. Specifically, BFRs tended to enrich in gas phase indoors and coarse particles (aerodynamic diameters >3.3 µm) outdoors, but OPFRs mainly distributed in coarse particles both indoors and outdoors. The size distribution patterns varied among FRs, with the higher volatile FRs (e.g., TCEP, TCIPP) distributed more uniformly across particulate size. Although the distribution patterns of FRs in air were driven by multiple factors, organic carbon and element carbon in particulate matter had an influence to a certain extent. Health risks from exposure to FRs were characterized via the hazard quotient approaches. The total noncarcinogenic risks of ∑16FRs from inhalation were higher than that from air to skin transport, and the risks resulted from coarse particle-bound ∑16FRs (>3.3 µm) and gas phase were both significantly higher than that from fine fraction (<3.3 µm) in all scenarios, implying that FRs in coarse particles should not be underestimated.


Assuntos
Poluição do Ar em Ambientes Fechados , Retardadores de Chama , Poluição do Ar em Ambientes Fechados/análise , Criança , Poeira/análise , Exposição Ambiental/análise , Monitoramento Ambiental , Retardadores de Chama/análise , Gases , Éteres Difenil Halogenados/análise , Humanos , Organofosfatos/análise , Material Particulado/análise
14.
Front Cell Dev Biol ; 9: 688070, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34386493

RESUMO

OBJECTIVE: The emergence of multi-drug resistance (MDR) in esophageal carcinoma has severely affected the effect of chemotherapy and shortened the survival of patients. To this end, we intend to develop a biomimetic nano-targeting drug modified by cancer cell membrane, and investigate its therapeutic effect. METHODS: The degradable poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) co-loaded with doxorubicin (DOX) and curcumin (Cur) were prepared by solvent evaporation method. TE10 cell membrane and Distearoyl phosphatidylethanolamine-polyethylene glycol (DSPE-PEG) were then coated on the PLGA NPs by membrane extrusion to prepare the PEG-TE10@PLGA@DOX-Cur NPs (PMPNs). Size and zeta potential of the PMPNs were analyzed by lazer particle analyzer, and the morphology of PMPNs was observed by transmission electron microscope. The TE10 cell membrane protein on PMPNs was analyzed by gel electrophoresis. The DOX-resistant esophageal cancer cell model TE10/DOX was established through high-dose induction. The In vitro homologous targeting ability of PMPNs was evaluated by cell uptake assay, and the in vitro anti-tumor effect of PMPNs was assessed through CCK-8, clone formation and flow cytometry. A Balb/c mouse model of TE10/DOX xenograft was constructed to evaluate the anti-tumor effect in vivo and the bio-safety of PMPNs. RESULTS: The prepared cell membrane coated PMPNs had a regular spherical structure with an average diameter of 177 nm. PMPNs could directly target TE10 and TE10/DOX cells or TE10/DOX xenografted tumor and effectively inhibit the growth of DOX-resistant esophageal carcinoma. Besides, the PMPNs was confirmed to have high biosafety. CONCLUSION: In this study, a targeted biomimetic nano-drug delivery system PMPNs was successfully prepared, which overcome the MDR of esophageal carcinoma by co-delivering DOX and sensitizer curcumin.

15.
Hum Mol Genet ; 30(11): 1045-1056, 2021 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-33615373

RESUMO

Craniofacial microsomia (CFM, OMIM%164 210) is one of the most common congenital facial abnormalities worldwide, but it's genetic risk factors and environmental threats are poorly investigated, as well as their interaction, making the diagnosis and prenatal screening of CFM impossible. We perform a comprehensive association study on the largest CFM cohort of 6074 samples. We identify 15 significant (P < 5 × 10-8) associated genomic loci (including eight previously reported) and decipher 107 candidates based on multi-omics data. Gene Ontology term enrichment found that these candidates are mainly enriched in neural crest cell (NCC) development and hypoxic environment. Single-cell RNA-seq data of mouse embryo demonstrate that nine of them show dramatic expression change during early cranial NCC development whose dysplasia is involved in pathogeny of CFM. Furthermore, we construct a well-performed CFM risk-predicting model based on polygenic risk score (PRS) method and estimate seven environmental risk factors that interacting with PRS. Single-nucleotide polymorphism-based PRS is significantly associated with CFM [P = 7.22 × 10-58, odds ratio = 3.15, 95% confidence interval (CI) 2.74-3.63], and the top fifth percentile has a 6.8-fold CFM risk comparing with the 10th percentile. Father's smoking increases CFM risk as evidenced by interaction parameter of -0.324 (95% CI -0.578 to -0.070, P = 0.011) with PRS. In conclusion, the newly identified risk loci will significantly improve our understandings of genetics contribution to CFM. The risk prediction model is promising for CFM prediction, and father's smoking is a key environmental risk factor for CFM through interacting with genetic factors.


Assuntos
Loci Gênicos/genética , Predisposição Genética para Doença , Síndrome de Goldenhar/diagnóstico , Patologia Molecular , Adulto , Animais , Desenvolvimento Embrionário/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Estudo de Associação Genômica Ampla , Síndrome de Goldenhar/genética , Síndrome de Goldenhar/patologia , Humanos , Masculino , Camundongos , Herança Multifatorial/genética , Polimorfismo de Nucleotídeo Único/genética , Gravidez , Diagnóstico Pré-Natal , RNA-Seq , Fatores de Risco , Análise de Célula Única
16.
Panminerva Med ; 63(4): 482-490, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32720790

RESUMO

BACKGROUND: Hypoxia could induce cardiomyocytes injury and lead to heart disease. Studies have shown that 6-Gingerol has a protective effect on cardiomyocytes injury, but its molecular mechanism is still unclear. METHODS: Cell counting kit 8 (CCK8) and flow cytometry assays were used to measure the viability and apoptosis of cardiomyocytes. Western blot (WB) analysis was performed to assess the levels of proliferation, apoptosis, and phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) signaling pathway-related proteins. The reactive oxygen species (ROS) level, superoxide dismutase (SOD) activity and malondialdehyde (MDA) level were detected by their corresponding Assay Kits. Besides, the expression levels of potassium voltage-gated channel subfamily Q member 1 opposite strand 1 (KCNQ1OT1) and microRNA-340-5p (miR-340-5p) were determined by quantitative real-time polymerase chain reaction (qRT-PCR). Furthermore, dual-luciferase reporter and RNA immunoprecipitation (RIP) assays were used to verify the interaction between KCNQ1OT1 and miR-340-5p. RESULTS: Hypoxia could inhibit the viability and enhance the apoptosis and oxidative stress of cardiomyocytes to induce cardiomyocytes injury, while 6-Gingerol could alleviate this effect. Overexpression of KCNQ1OT1 aggravated hypoxia-induced cardiomyocytes injury and reversed the protective effect of 6-Gingerol on cardiomyocytes injury. Besides, miR-340-5p could be sponged by KCNQ1OT1, and its overexpression could invert the promotion effect of KCNQ1OT1 overexpression on hypoxia-induced cardiomyocytes injury. Moreover, miR-340-5p expression was regulated by 6-Gingerol and KCNQ1OT1. In addition, hypoxia inactivated the PI3K/AKT signaling pathway, whereas 6-Gingerol and miR-340-5p could reverse this effect. CONCLUSIONS: 6-Gingerol could hinder the expression of KCNQ1OT1 to protect cardiomyocytes from hypoxia-induced injury through regulation of the miR-340-5p/ PI3K/AKT pathway, providing a new mechanism of 6-Gingerol protecting cardiomyocytes from injury.


Assuntos
MicroRNAs , Miócitos Cardíacos , Catecóis , Álcoois Graxos , Humanos , Hipóxia , Fosfatidilinositol 3-Quinases , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Proteínas Proto-Oncogênicas c-akt
17.
Virus Genes ; 56(6): 724-733, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33033882

RESUMO

MicroRNAs (miRNAs) are small noncoding RNAs that post-transcriptionally regulate gene expression by complementary binding to target mRNAs. Virus-encoded miRNAs play important roles in virus life cycle and virus-host interactions. Viruses from the Megalocytivirus genus, family Iridoviridae, infect a wide range of fishes, bringing great challenges to aquaculture. Infectious spleen and kidney necrosis virus (ISKNV) is the type species of the Megalocytivirus genus. In this study, using Illumina sequencing coupled with miRNA precursor prediction and stem-loop real-time PCR, 14 putative ISKNV-encoded miRNAs were preliminarily identified from ISKNV-infected mandarin fish MFF-1 cells. To initially study their functions, inhibitors of the 14 viral miRNAs were synthesized and transfected into MFF-1 cells, which were further infected with ISKNV. The results showed that these viral miRNAs could affect the virus titers in the supernatant of ISKNV-infected cells and the expression of major capsid protein (MCP). Moreover, we observed that inhibition of several ISKNV miRNAs had different effects on MCP expression and on titer of released virus, suggesting complex roles of viral miRNAs in ISKNV infection. The current study may provide a fundamental information for further identification and functional studies on miRNAs encoded by Megalocytivirus.


Assuntos
Infecções por Vírus de DNA/virologia , Doenças dos Peixes/virologia , Peixes/virologia , Iridoviridae/genética , MicroRNAs , Animais , Linhagem Celular , Células Epiteliais/virologia , Interações Hospedeiro-Patógeno
18.
Technol Cancer Res Treat ; 19: 1533033820948054, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32815451

RESUMO

The aim of this study was to investigate the role of high mobility group protein-1 (HMGB1) in the proliferation and migration of lung cancer cells. CCK-8 assays and colony formation assays were used to evaluate the effect of HMGB1 regulation on cancer cell viability and colony formation. Trans-well assays and wound healing assays were also performed. Our data showed that HMGB1 is upregulated in clinical lung cancer tissues compared with non-cancer tissues, and it is differentially expressed in lung cancer cell lines. The knockdown of HMGB1 in A549 lung cancer cells significantly reduced cell proliferation, viability and motility. In contrast, overexpression of HMGB1 in lung cancer H1299 cells significantly increased cell viability and motility. Western blotting showed that HMGB1 could promote epithelial-mesenchymal transition. The Wnt/ß-catenin pathway was activated after overexpression of HMGB1 in H1299 cells, while it was inactivated by knocking down HMGB1 in A549 cells. These data suggest that HMGB1 promotes the proliferation and migration of lung cancer cells in vitro. The carcinogenic behavior of HMGB1 can be achieved by activating the Wnt/ß-catenin pathway.


Assuntos
Proteína HMGB1/genética , Neoplasias Pulmonares/etiologia , Neoplasias Pulmonares/metabolismo , Via de Sinalização Wnt , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Sobrevivência Celular , Regulação Neoplásica da Expressão Gênica , Proteína HMGB1/metabolismo , Humanos , Neoplasias Pulmonares/patologia
19.
Dev Comp Immunol ; 113: 103808, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32738335

RESUMO

Chitinases are a group of chitin-degrading enzymes widely distributed in organisms. Chitinases containing two chitin catalytic domains have been widely found in arthropods but their functions remain unclear. In this study, a member of these chitinases from Litopenaeus vannamei (dChi) was identified and functionally studied in the context of immunity. The promoter of dChi contained activator protein 1 (AP-1) binding sites and could be regulated by c-Jun. The recombinant dChi protein showed no bacteriostatic activity in vitro but knockdown of dChi in vivo increased the mortality of shrimp and the bacterial load in tissues after Vibrio parahaemolyticus infection, suggesting that dChi could play a positive role in antibacterial responses. However, silencing of dChi expression significantly decreased the mortality of WSSV-infected shrimp and down-regulated the viral load in tissues, indicating that dChi could facilitate WSSV infection. We further demonstrated that dChi was involved in regulation of the bacterial phagocytosis of hemocytes and expression of a series of immune related transcription factors and antimicrobial peptides. These indicated that the roles of dChi in antibacterial responses and anti-WSSV responses in vivo could result from its regulatory effects on the immune system. Taken together, the current study suggests that double chitin catalytic domain-containing chitinases could be important players in immune regulation in crustaceans.


Assuntos
Proteínas de Artrópodes/metabolismo , Quitinases/metabolismo , Infecções por Vírus de DNA/imunologia , Penaeidae/imunologia , Vibrioses/imunologia , Vibrio parahaemolyticus/fisiologia , Vírus da Síndrome da Mancha Branca 1/fisiologia , Animais , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/imunologia , Carga Bacteriana , Domínio Catalítico/genética , Quitina/metabolismo , Quitinases/genética , Quitinases/imunologia , Inativação Gênica , Imunidade , Fagocitose , Regiões Promotoras Genéticas/genética , Ligação Proteica , Proteínas Proto-Oncogênicas c-jun/genética , Proteínas Proto-Oncogênicas c-jun/metabolismo , Fator de Transcrição AP-1/metabolismo
20.
Oncogene ; 39(24): 4650-4665, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32404984

RESUMO

Sirtuin 7 (SIRT7), an NAD+-dependent deacetylase, plays vital roles in energy sensing, but the underlying mechanisms of action remain less clear. Here, we report that SIRT7 is required for p53-dependent cell-cycle arrest during glucose deprivation. We show that SIRT7 directly interacts with p300/CBP-associated factor (PCAF) and the affinity for this interaction increases during glucose deprivation. Upon binding, SIRT7 deacetylates PCAF at lysine 720 (K720), which augments PCAF binding to murine double minute (MDM2), the p53 E3 ubiquitin ligase, leading to accelerated MDM2 degradation. This effect results in upregulated expression of the cell-cycle inhibitor, p21Waf1/Cip1, which further leads to cell-cycle arrest and decreased cell viability. These data highlight the importance of the SIRT7-PCAF interaction in regulating p53 activity and cell-cycle progression during conditions of glucose deprivation. This axis may represent a new avenue to design effective therapeutics based on tumor starvation.


Assuntos
Pontos de Checagem do Ciclo Celular , Neoplasias/metabolismo , Proteólise , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Sirtuínas/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Fatores de Transcrição de p300-CBP/metabolismo , Glucose/genética , Glucose/metabolismo , Células HCT116 , Humanos , Neoplasias/genética , Neoplasias/patologia , Proteínas Proto-Oncogênicas c-mdm2/genética , Sirtuínas/genética , Proteína Supressora de Tumor p53/genética , Fatores de Transcrição de p300-CBP/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA