Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Nat Commun ; 15(1): 6844, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39122711

RESUMO

Lipid nanoparticle-assisted mRNA inhalation therapy necessitates addressing challenges such as resistance to shear force damage, mucus penetration, cellular internalization, rapid lysosomal escape, and target protein expression. Here, we introduce the innovative "LOOP" platform with a four-step workflow to develop inhaled lipid nanoparticles specifically for pulmonary mRNA delivery. iLNP-HP08LOOP featuring a high helper lipid ratio, acidic dialysis buffer, and excipient-assisted nebulization buffer, demonstrates exceptional stability and enhanced mRNA expression in the lungs. By incorporating mRNA encoding IL-11 single chain fragment variable (scFv), scFv@iLNP-HP08LOOP effectively delivers and secretes IL-11 scFv to the lungs of male mice, significantly inhibiting fibrosis. This formulation surpasses both inhaled and intravenously injected IL-11 scFv in inhibiting fibroblast activation and extracellular matrix deposition. The HP08LOOP system is also compatible with commercially available ALC0315 LNPs. Thus, the "LOOP" method presents a powerful platform for developing inhaled mRNA nanotherapeutics with potential for treating various respiratory diseases, including idiopathic pulmonary fibrosis.


Assuntos
Fibrose Pulmonar Idiopática , Nanopartículas , RNA Mensageiro , Anticorpos de Cadeia Única , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/imunologia , Animais , Administração por Inalação , RNA Mensageiro/administração & dosagem , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Nanopartículas/química , Masculino , Camundongos , Anticorpos de Cadeia Única/administração & dosagem , Humanos , Pulmão/metabolismo , Pulmão/patologia , Camundongos Endogâmicos C57BL , Lipídeos/química , Modelos Animais de Doenças , Lipossomos
2.
Plants (Basel) ; 13(12)2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38931089

RESUMO

Cadmium (Cd) pollution has been rapidly increasing due to the global rise in industries. Cd not only harms the ecological environment but also endangers human health through the food chain and drinking water. Therefore, the remediation of Cd-polluted soil is an imminent issue. In this work, ryegrass and a strain of Cd-tolerant bacterium were used to investigate the impact of inoculated bacteria on the physiology and biochemistry of ryegrass and the Cd enrichment of ryegrass in soil contaminated with different concentrations of Cd (4 and 20 mg/kg). The results showed that chlorophyll content increased by 24.7% and 41.0%, while peroxidase activity decreased by 56.7% and 3.9%. In addition, ascorbic acid content increased by 16.7% and 6.3%, whereas glutathione content decreased by 54.2% and 6.9%. The total Cd concentration in ryegrass increased by 21.5% and 10.3%, and the soil's residual Cd decreased by 86.0% and 44.1%. Thus, the inoculation of Cd-tolerant bacteria can improve the antioxidant stress ability of ryegrass in Cd-contaminated soil and change the soil's Cd form. As a result, the Cd enrichment in under-ground and above-ground parts of ryegrass, as well as the biomass of ryegrass, is increased, and the ability of ryegrass to remediate Cd-contaminated soil is significantly improved.

3.
ACS Nano ; 18(24): 15499-15516, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38832815

RESUMO

T cell exhaustion has emerged as a major hurdle that impedes the clinical translation of stimulator of interferon genes (STING) agonists. It is crucial to explore innovative strategies to rejuvenate exhausted T cells and potentiate the antitumor efficacy. Here, we propose an approach utilizing MSA-2 as a STING agonist, along with nanoparticle-mediated delivery of mRNA encoding interleukin-12 (IL-12) to restore the function of T cells. We developed a lipid nanoparticle (DMT7-IL12 LNP) that encapsulated IL12 mRNA. Our findings convincingly demonstrated that the combination of MSA-2 and DMT7-IL12 LNP can effectively reverse the exhausted T cell phenotype, as evidenced by the enhanced secretion of cytokines, such as tumor necrosis factor alpha, interferon gamma, and Granzyme B, coupled with reduced levels of inhibitory molecules such as T cell immunoglobulin and mucin domain-3 and programmed cell death protein-1 on CD8+ T cells. Furthermore, this approach led to improved survival and tumor regression without causing any systemic toxicity in melanoma and lung metastasis models. These findings suggest that mRNA encoding IL-12 in conjunction with STING agonists has the potential to confer superior clinical outcomes, representing a promising advancement in cancer immunotherapy.


Assuntos
Interleucina-12 , Camundongos Endogâmicos C57BL , RNA Mensageiro , Interleucina-12/genética , Animais , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Camundongos , Nanopartículas/química , Proteínas de Membrana/agonistas , Proteínas de Membrana/genética , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Humanos , Feminino , Antineoplásicos/farmacologia , Antineoplásicos/química , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Linhagem Celular Tumoral , Exaustão das Células T
4.
Abdom Radiol (NY) ; 49(7): 2325-2339, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38896245

RESUMO

PURPOSE: To develop and validate a nomogram model that combines radiomics features, clinical factors, and coagulation function indexes (CFI) to predict intraoperative blood loss (IBL) during cesarean sections, and to explore its application in optimizing perioperative management and reducing maternal morbidity. METHODS: In this retrospective consecutive series study, a total of 346 patients who underwent magnetic resonance imaging (156 for training and 68 for internal test, center 1; 122 for external test, center 2) were included. IBL+ was defined as more than 1000 mL estimated blood loss during cesarean sections. The prediction models of IBL were developed based on machine-learning algorithms using CFI, radiomics features, and clinical factors. ROC analysis was performed to evaluate the performance for IBL diagnosis. RESULTS: The support vector machine model incorporating all three modalities achieved an AUC of 0.873 (95% CI 0.769-0.941) and a sensitivity of 1.000 (95% CI 0.846-1.000) in the internal test set, with an AUC of 0.806 (95% CI 0.725-0.872) and a sensitivity of 0.873 (95% CI 0.799-0.922) in the external test set. It was also scored significantly higher than the CFI model (P = 0.035) on the internal test set, and both the CFI (P = 0.002) and radiomics-CFI models (P = 0.007) on the external test set. Additionally, the nomogram constructed based on three modalities achieved an internal testing set AUC of 0.960 (95% CI 0.806-0.999) and an external testing set AUC of 0.869 (95% CI 0.684-0.967) in the pregnant population without a pernicious placenta previa. It is noteworthy that the AUC of the proposed model did not show a statistically significant improvement compared to the Clinical-CFI model in both internal (P = 0.115) and external test sets (P = 0.533). CONCLUSION: The proposed model demonstrated good performance in predicting intraoperative blood loss (IBL), exhibiting high sensitivity and robust generalizability, with potential applicability to other surgeries such as vaginal delivery and postpartum hysterectomy. However, the performance of the proposed model was not statistically significantly better than that of the Clinical-CFI model.


Assuntos
Perda Sanguínea Cirúrgica , Cesárea , Imageamento por Ressonância Magnética , Nomogramas , Humanos , Feminino , Gravidez , Estudos Retrospectivos , Adulto , Imageamento por Ressonância Magnética/métodos , Valor Preditivo dos Testes , Sensibilidade e Especificidade
5.
J Magn Reson Imaging ; 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38390981

RESUMO

BACKGROUND: Different placenta accreta spectrum (PAS) subtypes pose varying surgical risks to the parturient. Machine learning model has the potential to diagnose PAS disorder. PURPOSE: To develop a cascaded deep semantic-radiomic-clinical (DRC) model for diagnosing PAS and its subtypes based on T2-weighted MRI. STUDY TYPE: Retrospective. POPULATION: 361 pregnant women (mean age: 33.10 ± 4.37 years), suspected of PAS, divided into segment training cohort (N = 40), internal training cohort (N = 139), internal testing cohort (N = 60), and external testing cohort (N = 122). FIELD STRENGTH/SEQUENCE: Coronal T2-weighted sequence at 1.5 T and 3.0 T. ASSESSMENT: Clinical characteristics such as history of uterine surgery and the presence of placenta previa, complete placenta previa and dangerous placenta previa were extracted from clinical records. The DRC model (incorporating radiomics, deep semantic features, and clinical characteristics), a cumulative radiological score method performed by radiologists, and other models (including a radiomics and clinical, the clinical, radiomics and deep learning models) were developed for PAS disorder diagnosing (existence of PAS and its subtypes). STATISTICAL TESTS: AUC, ACC, Student's t-test, the Mann-Whitney U test, chi-squared test, dice coefficient, intraclass correlation coefficients, least absolute shrinkage and selection operator regression, receiver operating characteristic curve, calibration curve with the Hosmer-Lemeshow test, decision curve analysis, DeLong test, and McNemar test. P < 0.05 indicated a significant difference. RESULTS: In PAS diagnosis, the DRC-1 outperformed than other models (AUC = 0.850 and 0.841 in internal and external testing cohorts, respectively). In PAS subtype classification (abnormal adherent placenta and abnormal invasive placenta), DRC-2 model performed similarly with radiologists (P = 0.773 and 0.579 in the internal testing cohort and P = 0.429 and 0.874 in the external testing cohort, respectively). DATA CONCLUSION: The DRC model offers efficiency and high diagnostic sensitivity in diagnosis, aiding in surgical planning. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY: Stage 2.

6.
FASEB J ; 38(2): e23406, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38193601

RESUMO

Cancer-associated fibroblast (CAF) has emerged as a key contributor to the remodeling of tumor microenvironment through the expression and secretion of extracellular matrix (ECM) proteins, thereby promoting carcinogenesis. However, the precise contribution of ECM proteins from CAFs to gastric carcinogenesis remains poorly understood. In this study, we find that matrilin-3 (MATN3), an upregulated ECM protein associated with poorer prognosis in gastric cancer patients, originates from CAFs in gastric cancer tissues. Ectopic expression of MATN3 in CAFs significantly promotes the invasion of gastric cancer cells, which can be attenuated by neutralizing MATN3 with its antibody. Notably, a portion of MATN3 protein is found to form puncta in gastric cancer tissues ECM. MATN3 undergoes phase separation, which is mediated by its low complexity (LC) and coiled-coil (CC) domains. Moreover, overexpression of MATN3 deleted with either LC or CC in CAFs is unable to promote the invasion of gastric cancer cells, suggesting that LC or CC domain is required for the effect of CAF-secreted MATN3 in gastric cancer cell invasion. Additionally, orthotopic co-injection of gastric cancer cells and CAFs expressing MATN3, but not its ΔLC and ΔCC mutants, leads to enhanced gastric cancer cell invasion in mouse models. Collectively, our works suggest that MATN3 is secreted by CAFs and undergoes phase separation, which promotes gastric cancer invasion.


Assuntos
Fibroblastos Associados a Câncer , Proteínas Matrilinas , Neoplasias Gástricas , Animais , Humanos , Camundongos , Carcinogênese , Proteínas Matrilinas/genética , Invasividade Neoplásica , Separação de Fases , Neoplasias Gástricas/genética , Microambiente Tumoral
7.
Ecotoxicol Environ Saf ; 271: 115957, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38219617

RESUMO

The perennial ryegrass Lolium perenne can be used in conjunction with cadmium (Cd)-tolerant bacteria such as Cdq4-2 (Enterococcus spp.) for bioremediation of Cd-contaminated soil. In this study, a theoretical basis was provided to increase the efficiency of L. perenne remediation of Cd-contaminated soil using microorganisms to maintain the stability of the soil microbiome. The experimental design involved three treatment groups: CK (soil without Cd addition) as the control, 20 mg·kg-1 Cd-contaminated soil, and 20 mg·kg-1 Cd-contaminated soil + Cdq4-2, all planted with L. perenne. The soil was collected on day 60 to determine the soil microbial activity and bacterial community structure and to analyze the correlation between soil variables, the bacterial community, available Cd content in the soil, Cd accumulation, and L. perenne growth. The soil microbial activity and bacterial community diversity decreased under Cd stress, and the soil microbial community composition was changed; while inoculation with Cdq4-2 significantly increased soil basal respiration and the activities of urease, invertase, and fluorescein diacetate (FDA) hydrolase by 83.65%, 79.72%, 19.88%, and 96.15% respectively; and the stability of the community structure was also enhanced. The Actinobacteriota biomass, the amount of available Cd, and the above- and belowground Cd content of L. perenne were significantly negatively correlated with the total phosphorus, total potassium, and pH. The activity of urease, invertase, and FDA hydrolase were significantly positively correlated with the biomasses of Acidobacteriota and L. perenne and significantly negatively correlated with the Chloroflexi biomass. Further, the available soil Cd content and the above- and belowground Cd levels of L. perenne were significantly positively correlated with the Actinobacteriota biomass and significantly negatively correlated with the Gemmatimonadetes biomass. Overall, inoculating Cd-tolerant bacteria improved the microbial activity, diversity, and abundance, and changed the microbial community composition, facilitating the remediation of Cd-contaminated soil by L. perenne.


Assuntos
Cádmio , Poluentes do Solo , Cádmio/toxicidade , Cádmio/análise , Biodegradação Ambiental , Urease , beta-Frutofuranosidase , Bactérias , Solo/química , Poluentes do Solo/toxicidade , Poluentes do Solo/análise
8.
Tissue Eng Regen Med ; 21(1): 123-135, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37755664

RESUMO

BACKGROUND: Oral submucous fibrosis (OSF) is a chronic disease with carcinogenic tendency that poses a non-negligible threat to human health. Exosomes derived from human adipose mesenchymal stem cells (ADSC-Exo) reduces visceral and cutaneous fibroses, but their role in OSF has received little attention. The aim of this study was to investigate the effects of ADSC-Exo on OSF and elucidate the mechanism. METHODS: In brief, ADSCs were extracted from adipose tissues and subjected to flow cytometry and induction culture. Fibroblasts were isolated from human buccal mucosa and subjected to immunofluorescence. Myofibroblasts were obtained from fibroblasts induced by arecoline and identified. Immunofluorescence assay confirmed that myofibroblasts could take up ADSC-Exo. The effects of ADSC-Exo on the proliferative and migratory capacities of myofibroblasts were examined using the Cell Counting Kit-8 and scratch assay. Real-time quantitative polymerase chain reaction (qPCR) was performed to evaluate mothers against decapentaplegic homolog 2 (Smad2), Smad3, Smad7, collagen type 1 (Col1), Col3, alpha smooth muscle actin (α-SMA), fibronectin, and vimentin. Western blotting was performed to detect phospho (p)-Smad2, Smad2, p-Smad2/3, Smad2/3, Smad7, Col1, Col3, α-SMA, fibronectin, and vimentin. Furthermore, the dual-luciferase reporter assay was performed to prove that miR-181a-5p in ADSC-Exo directly inhibited the expression of Smad2 mRNA to regulate the transforming growth factor beta (TGF-ß) pathway. We also performed qPCR and western blotting to verify the results. RESULTS: ADSC-Exo could promote the proliferation and migration of myofibroblasts, reduce the expressions of p-smad2, Smad2, p-smad2/3, Smad2/3, Col1, αSMA, fibronectin, and vimentin and elevated the levels of Smad7 and Col3. In addition, miR-181a-5p was highly expressed in ADSC-Exo and bound to the 3'-untranslated region of Smad2. ADSC-Exo enriched with miR-181a-5p reduced collagen production in myofibroblasts and modulated the TGF-ß pathway. CONCLUSIONS: ADSC-Exo promoted the proliferative and migratory capacities of myofibroblasts and inhibited collagen deposition and trans-differentiation of myofibroblasts in vitro. miR-181a-5p in exosomes targets Smad2 to regulate the TGF-ß pathway in myofibroblasts. ADSC-Exo perform antifibrotic actions through the miR-181a-5p/Smad2 axis and may be a promising clinical treatment for OSF.


Assuntos
Exossomos , Células-Tronco Mesenquimais , MicroRNAs , Fibrose Oral Submucosa , Humanos , Colágeno Tipo I/metabolismo , Exossomos/metabolismo , Fibronectinas/metabolismo , Fibrose , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Fibrose Oral Submucosa/genética , Fibrose Oral Submucosa/terapia , Fibrose Oral Submucosa/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Vimentina/metabolismo
9.
J Hepatocell Carcinoma ; 10: 2073-2082, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38022730

RESUMO

Background: The CRAFITY (C-reactive protein and alpha-fetoprotein in immunotherapy) score has demonstrated prognostic significance in hepatocellular carcinoma (HCC) patients undergoing immunotherapy. The study aimed to validate accuracy of CRAFITY score on predicting prognosis for patients with HCC treated with transarterial chemoembolization (TACE) combined with PD-(L)1 inhibitors and molecular targeted therapy. Methods: Eighty-five HCC patients who underwent TACE in combination with molecular targeted therapy (MTT) and PD-(L)1 Inhibitors were consecutively enrolled from November 2019 to November 2022. Patients were divided into CRAFITY 0 score (n=32), CRAFITY 1 score (n=31), and CRAFITY 2 score (n=22), respectively. The primary outcomes were overall survival (OS) and progression-free survival (PFS), and the secondary outcomes included tumor response rate and treatment-related adverse events (TRAEs). Factors affecting survival were identified via Cox regression analysis. Results: The median overall survival (OS) for HCC patients with CRAFITY scores of 0, 1, and 2 was 33.4 months (95% confidence interval [CI]: 27.1-39.7), 34.5 months (95% CI: 23.1-45.9), and 24.2 months (95% CI: 13.9-39.3), respectively, there were statistical differences among the three groups (p<0.05). The progression-free survival (PFS) was 14.1 months (95% CI: 10.0-18.2), 14.1 months (95% CI: 9.0-19.2), and 9.3 months (95% CI: 7.2-11.4) for patients with CRAFITY scores of 1, 2, and 3, respectively, with a significant difference between the three groups (p<0.05). In patients with CRAFITY scores of 1, 2, and 3, the disease control rates (DCR) were 94%, 84%, and 73%, respectively (p < 0.05), while the overall response rates (ORR) were 78.1%, 67.7%, and 59.1%, respectively (p = 0.318). A higher CRAFITY score showed a correlation with an increased frequency of fatigue and grade 3 fever (p<0.05). Moreover, CRAFITY 2 score was an independent risk factor for both OS (HR = 2.610(1.281-4.564), p = 0.014) and PFS (HR = 2.419(1.281-4.564), p = 0.006). Conclusion: The CRAFITY score may provide an efficient predictive capacity for prognosis in HCC patients undergoing TACE combined with PD-(L)1 inhibitors and molecular targeted therapy.

10.
Front Public Health ; 11: 1198780, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37397762

RESUMO

Background: Short videos on social media are playing an increasingly important role in cancer health education today. It is important to explore how the actual communication effect of health videos and the knowledge absorption of users are influenced by different factors of the video creation process. Objective: The objective of our study is to access the factors influencing breast cancer health education through short videos on efficiency and quality. Methods: Three pairs of videos about breast health were created and participants completed questionnaires before and after watching the videos. A paired t-test was used to analyze within-group change scores. RM-ANOVA was used to assess the relationship between the pretest, posttest, and three variables. Results: Watching short videos can significantly increase viewers' knowledge of related health topics (p < 0.05). The viewers' concentration level while watching was significantly higher for the video with background music (BGM) than for the video without BGM (p = 0.006). The viewers' willingness to share was significantly higher for the video with a progress bar than for the video without a progress bar (p = 0.02). Using an interpreter wearing a doctor's uniform instead of casual wear and setting a progress bar can significantly improve the efficiency of knowledge absorption (p < 0.05). Conclusion: A uniformed interpreter, BGM and a progress bar are factors influencing the efficiency of short health videos. They can be applied in video making to explore better ways of promoting cancer health education in the new mobile Internet environment.


Assuntos
Neoplasias da Mama , Mídias Sociais , Feminino , Humanos , Atitude , Grupos Controle , Alfabetização
11.
Nat Commun ; 14(1): 4223, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37454146

RESUMO

Synergistically improving T-cell responsiveness is promising for favorable therapeutic outcomes in immunologically cold tumors, yet current treatments often fail to induce a cascade of cancer-immunity cycle for effective antitumor immunity. Gasdermin-mediated pyroptosis is a newly discovered mechanism in cancer immunotherapy; however, cleavage in the N terminus is required to activate pyroptosis. Here, we report a single-agent mRNA nanomedicine-based strategy that utilizes mRNA lipid nanoparticles (LNPs) encoding only the N-terminus of gasdermin to trigger pyroptosis, eliciting robust antitumor immunity. In multiple female mouse models, we show that pyroptosis-triggering mRNA/LNPs turn cold tumors into hot ones and create a positive feedback loop to promote antitumor immunity. Additionally, mRNA/LNP-induced pyroptosis sensitizes tumors to anti-PD-1 immunotherapy, facilitating tumor growth inhibition. Antitumor activity extends beyond the treated lesions and suppresses the growth of distant tumors. We implement a strategy for inducing potent antitumor immunity, enhancing immunotherapy responses in immunologically cold tumors.


Assuntos
Neoplasias , Piroptose , Animais , Camundongos , Feminino , Gasderminas , Imunoterapia , Microambiente Tumoral
12.
ACS Appl Mater Interfaces ; 15(26): 31273-31284, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37354089

RESUMO

Kirsten rat sarcoma (KRAS) is the most commonly mutated oncogene in lung cancers. Gene therapy is emerging as a promising cancer treatment modality; however, the systemic administration of gene therapy has been limited by inefficient delivery to the lungs and systemic toxicity. Herein, we report a noninvasive aerosol inhalation nanoparticle (NP) system, termed "siKRAS@GCLPP NPs," to treat KRAS-mutant non-small-cell lung cancer (NSCLC). The self-assembled siKRAS@GCLPP NPs are capable of maintaining structural integrity during nebulization, with preferential distribution within the tumor-bearing lung. Inhalable siKRAS@GCLPP NPs show not only significant tumor-targeting capability but also enhanced antitumor activity in an orthotopic mouse model of human KRAS-mutant NSCLC. The nebulized delivery of siKRAS@GCLPP NPs demonstrates potent knockdown of mutated KRAS in tumor-bearing lungs without causing any observable adverse effects, exhibiting a better biosafety profile than the systemic delivery approach. The results present a promising inhaled gene therapy approach for the treatment of KRAS-mutant NSCLC and other respiratory diseases.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Nanopartículas , Camundongos , Animais , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , RNA Interferente Pequeno/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Nanopartículas/química , Mutação , Linhagem Celular Tumoral
13.
Sci Total Environ ; 873: 162314, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36805060

RESUMO

Cadmium (Cd) contamination is a serious threat to food security and human health. The cost-effective in situ method of remediating Cd-contaminated soil uses Cd-tolerant microorganisms and Cd-enriching plants. The present study investigated the dynamic effects of inoculating soil with a Cd-tolerant bacteria strain Cdq4-2 (Enterococcus sp.) on the physiological and biochemical properties of perennial ryegrass Lolium perenne. The combined effects of remediating Cd-contaminated soil with this plant and these bacteria were also studied. An experiment was used to compare three treatments of L. perenne crops: 1) CK (control soil without Cd), 2) C (20 mg/kg Cd-contaminated soil), and 3) CB (20 mg/kg Cd-contaminated soil inoculated with bacteria Cdq4-2). The results show that compared with treatment C, the aboveground biomass, underground biomass, and total biomass of CB were 46.83-69.31%, 131.76-462.79%, and 62.65-101.53% greater, respectively. The superoxide dismutase activity of CB was 17.62-54.63% lower, while its peroxidase activity was 67.49-146.51% higher. The malondialdehyde concentration in CB was 30.40-40.24% more significant, the ascorbic acid concentration was 6.20-188.22% higher, and its glutathione concentration was 16.25-63.63% lower. The Cd concentrations of aboveground parts of a plant in treatment CB were 18.55% and 30.53% higher than those of C at days 20 and 40, respectively, while that of underground parts was 24.25% higher on day 40. The bioconcentration factors of aboveground and underground parts were higher in treatment CB on day 40. The inoculation of Cd-contaminated soils with bacteria Cdq4-2 promoted growth in L. perenne, improved its antioxidant ability, and promoted the absorption, translocation, and accumulation of Cd. Hence, it improved the effectiveness of L. perenne in remediating Cd-contaminated soils.


Assuntos
Lolium , Poluentes do Solo , Humanos , Cádmio/análise , Solo/química , Poluentes do Solo/análise , Biodegradação Ambiental , Antioxidantes/farmacologia , Bactérias
14.
Carbohydr Polym ; 300: 120264, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36372515

RESUMO

After bone tumor resection, the severe complications including cancer recurrence, infection and extensive bone loss are still a challenge. To address this problem, a chitosan/hydroxypropyltrimethyl ammonium chloride chitosan/hydroxyapatite/black phosphorus (CS/HC/HA/BP) hybrid photothermal scaffold with a multistage photothermal strategy was developed. HC-stabilized BP endowed the scaffold with simultaneous antitumor/antibacterial properties under photothermal stimulation of <50 °C. Subsequently, excellent osteogenesis could be achieved with mild hyperthermia stimulation (∼42 °C) through up-regulating the expressions of heat shock proteins. Under NIR irradiation, the scaffold could eliminate 95 % of osteosarcoma cells as well as 97 % of E. coli and 92 % of S. aureus. The osteogenic gene expressions of ALP, COL 1A1, and OCN in photothermal group were 1.64, 1.31 and 1.27 folds higher than that of non-photothermal group in vivo, respectively. Therefore, the obtained scaffold synergized with multistage photothermal strategy was effective and a reference for the treatment of other complex diseases.


Assuntos
Neoplasias Ósseas , Quitosana , Humanos , Quitosana/uso terapêutico , Alicerces Teciduais , Staphylococcus aureus , Escherichia coli , Osteogênese , Neoplasias Ósseas/terapia
15.
Colloids Surf B Biointerfaces ; 217: 112696, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35834998

RESUMO

The accumulation of microbes on long-wear artificial dental materials creates a great risk for oral diseases and causes deterioration of material properties. Therefore, smart antibacterial materials capable of resisting the colonization of microorganisms and simultaneously eliminating pathogenic bacteria as needed show outstanding superiority for the recovery of dental health, which are scarcely reported until now. Here, we present a responsive hydrogel coating as invisible assassin on clear overlay appliances target for dental caries. Taking advantage of pH-responsive carboxybetaine methacrylate-dimethylaminoethyl methacrylate copolymer P(CBMA-co-DMAEMA) and antibacterial peptides, the surface potential of hydrogel shifts positively, accompanied with the release of antibacterial peptides when pH gets lower. The hybrid hydrogel layer hence exerts antifouling property and resists bacterial adhesion in normal physiological, while captures and kills cariogenic bacteria in acidic condition. This biocompatible, transparent and stable hydrogel coating has little influence for the aesthetics and mechanical properties of bulk materials. The strategy developed here can provide reference for the design of biomedical devices in other areas.


Assuntos
Cárie Dentária , Antibacterianos/química , Antibacterianos/farmacologia , Bactérias , Materiais Revestidos Biocompatíveis , Humanos , Hidrogéis/farmacologia , Metacrilatos/farmacologia , Peptídeos
16.
Sci Adv ; 8(25): eabn7162, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35731866

RESUMO

Interleukin-11 (IL-11) is a profibrotic cytokine essential for the differentiation of fibroblasts into collagen-secreting, actin alpha 2, smooth muscle-positive (ACTA2+) myofibroblasts, driving processes underlying the pathogenesis of idiopathic pulmonary fibrosis (IPF). Here, we developed an inhalable and mucus-penetrative nanoparticle (NP) system incorporating siRNA against IL11 (siIL11@PPGC NPs) and investigated therapeutic potential for the treatment of IPF. NPs are formulated through self-assembly of a biodegradable PLGA-PEG diblock copolymer and a self-created cationic lipid-like molecule G0-C14 to enable efficient transmucosal delivery of siIL11. Noninvasive aerosol inhalation hindered fibroblast differentiation and reduced ECM deposition via inhibition of ERK and SMAD2. Furthermore, siIL11@PPGC NPs significantly diminished fibrosis development and improved pulmonary function in a mouse model of bleomycin-induced pulmonary fibrosis without inducing systemic toxicity. This work presents a versatile NP platform for the locally inhaled delivery of siRNA therapeutics and exhibits promising clinical potential in the treatment of numerous respiratory diseases, including IPF.


Assuntos
Fibrose Pulmonar Idiopática , Nanopartículas , Animais , Bleomicina , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/genética , Interleucina-11/uso terapêutico , Camundongos , Camundongos Endogâmicos C57BL , RNA Interferente Pequeno/genética
17.
ACS Omega ; 7(22): 18646-18659, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35694486

RESUMO

The interaction between cysteine with Li+ and LiF in the microcosmic water environment was investigated to elucidate how ions interact with amino acids and the cation-anion correlation effect involved. The structures of Cys·Li+(H2O) n and Cys·LiF(H2O) n (n = 0-6) were characterized using ab initio calculations. Our studies show that the water preferentially interacts with Li+/LiF. In Cys·Li+(H2O)0-6, Li+ interacts with amino nitrogen, carbonyl oxygen, and hydrophobic sulfur of Cys to form a tridentate mode, whereas in Cys·LiF(H2O) n , Li+ and F- work in cooperation and interact with carbonyl oxygen and hydroxyl hydrogen of Cys to form a bidentate type. The neutral and zwitterionic forms are essentially isoenergetic when the water number reaches three in the presence of Li+, whereas this occurs at four water molecules in the presence of LiF. Further research revealed that the interaction between Li+/LiF and Cys was mainly electrostatic, followed by dispersion, and the weakest interaction occurs at the transition from the neutral form to zwitterionic form. Natural population analysis charge analyses show that for Cys·Li+(H2O) n , the positive charge is mostly concentrated on Li+ except for the system containing three water molecules. For Cys·LiF(H2O) n , the positive charge is centered on the LiF unit in the range n = 0-6, and at n = 5, electron transfer from Cys to water occurs. Our study shows that the contribution of anions in zwitterionic state stabilization should be addressed more generally along with cations.

18.
Bioact Mater ; 16: 232-248, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35386310

RESUMO

Immunotherapy is emerging as a powerful tool for combating many human diseases. However, the application of this life-saving treatment in serious brain diseases, including glioma, is greatly restricted. The major obstacle is the lack of effective technologies for transporting therapeutic agents across the blood-brain barrier (BBB) and achieving targeted delivery to specific cells once across the BBB. Ferritin, an iron storage protein, traverses the BBB via receptor-mediated transcytosis by binding to transferrin receptor 1 (TfR1) overexpressed on BBB endothelial cells. Here, we developed bioengineered ferritin nanoparticles as drug delivery carriers that enable the targeted delivery of a small-molecule immunomodulator to achieve enhanced immunotherapeutic efficacy in an orthotopic glioma-bearing mouse model. We fused different glioma-targeting moieties on self-assembled ferritin nanoparticles via genetic engineering, and RGE fusion protein nanoparticles (RGE-HFn NPs) were identified as the best candidate. Furthermore, RGE-HFn NPs encapsulating a stimulator of interferon genes (STING) agonist (SR717@RGE-HFn NPs) maintained stable self-assembled structure and targeting properties even after traversing the BBB. In the glioma-bearing mouse model, SR717@RGE-HFn NPs elicited a potent local innate immune response in the tumor microenvironment, resulting in significant tumor growth inhibition and prolonged survival. Overall, this biomimetic brain delivery platform offers new opportunities to overcome the BBB and provides a promising approach for brain drug delivery and immunotherapy in patients with glioma.

19.
Nanoscale ; 14(17): 6449-6464, 2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35416195

RESUMO

Gene therapy holds tremendous potential for the treatment of incurable brain diseases including Alzheimer's disease (AD), stroke, glioma, and Parkinson's disease. The main challenge is the lack of effective gene delivery systems traversing the blood-brain barrier (BBB), due to the complex microvessels present in the brain which restrict substances from the circulating blood passing through. Recently, increasing efforts have been made to develop promising gene carriers for brain-related disease therapies. One such development is the self-assembled heavy chain ferritin (HFn) nanoparticles (NPs). HFn NPs have a unique hollow spherical structure that can encapsulate nucleic acid drugs (NADs) and specifically bind to cancer cells and BBB endothelial cells (BBB ECs) via interactions with the transferrin receptor 1 (TfR1) overexpressed on their surfaces, which increases uptake through the BBB. However, the gene-loading capacity of HFn is restricted by its limited interior volume and negatively charged inner surface; therefore, these drawbacks have prompted the demand for strategies to remould the structure of HFn. In this work, we analyzed the three-dimensional (3D) structure of HFn using Chimera software (v 1.14) and developed a class of internally cationic HFn variants (HFn+ NPs) through arginine mutation on the lumenal surface of HFn. These HFn+ NPs presented powerful electrostatic forces in their cavities, and exhibited higher gene encapsulation efficacy than naive HFn. The top-performing candidate, HFn2, effectively delivered siRNA to glioma cells after traversing the BBB and achieved the highest silencing efficacy among HFn+ NPs. Overall, our findings demonstrate that HFn+ NPs obtained by this genetic engineering method provide critical insights into the future development of nucleic acid delivery carriers with BBB-crossing ability.


Assuntos
Glioma , Nanopartículas , Animais , Apoferritinas/farmacologia , Barreira Hematoencefálica/metabolismo , Sistemas de Liberação de Medicamentos , Células Endoteliais/metabolismo , Glioma/tratamento farmacológico , Camundongos , Nanopartículas/uso terapêutico , RNA Interferente Pequeno/metabolismo
20.
Environ Sci Pollut Res Int ; 29(35): 52483-52492, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35258728

RESUMO

Cadmium (Cd) pollution has led to a serious deterioration in soil quality, plant growth, and human health. Therefore, restoration of soil quality is imperative. Phytoremediation is inexpensive and yields acceptable outcomes. Phytoremediation involves interaction between plant physiology and microbial activity and has been widely used in the remediation of Cd-contaminated soil. In the present study, Lolium perenne L. (perennial ryegrass) was planted in Cd-spiked soil and indole-3-acetic acid (IAA) was used to explore the physiological and biochemical characteristics of ryegrass as well as soil enzyme activity to remove Cd. The present study provides a theoretical basis for the phytoremediation of Cd-contaminated soil. The study investigated the effect of 30-mg/kg Cd-spiked soil on ryegrass (C) and 30-mg/kg Cd-spiked soil on ryegrass treated with 10-mg/kg IAA (CI) compared with uncontaminated soil and ryegrass as the control. At the end of the experiment, the ryegrass biomass, total chlorophyll, superoxide dismutase (SOD) activity, and soil invertase activity in C group were decreased by 33.7%, 23.0%, 29.7%, and 18.3%, respectively, whereas the peroxidase (POD) activity and soil basal respiration increased by 17.1% and 87.9%, respectively, compared with the control. In the CI group, the biomass of ryegrass, chlorophyll content, SOD activity, sucrase activity, fluorescein diacetate (FDA) hydrolase activity, and Cd removal rates increased by 14.5%, 19.9%, 24.3%, 12.1%, 20.4%, and 15.1%, respectively, whereas the POD activity, soil basal respiration, and Cd residues in the soil declined by 8.0%, 15.0%, and 17.0%, respectively, compared with the C group. Therefore, exposure to exogenous IAA alleviated the Cd stress on ryegrass and soil microorganisms and improved Cd absorption by ryegrass from the contaminated soil.


Assuntos
Cádmio , Ácidos Indolacéticos , Lolium , Microbiologia do Solo , Poluentes do Solo , Biodegradação Ambiental , Cádmio/análise , Clorofila/farmacologia , Lolium/fisiologia , Solo/química , Poluentes do Solo/análise , Superóxido Dismutase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA