Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Clin Invest ; 134(4)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38194288

RESUMO

Choline deficiency causes disorders including hepatic abnormalities and is associated with an increased risk of multiple types of cancer. Here, by choline-free diet-associated RNA-Seq analyses, we found that the tumor suppressor p53 drives the Kennedy pathway via PCYT1B to control the growth of lipid droplets (LDs) and their fueling role in tumorigenesis. Mechanistically, through upregulation of PCYT1B, p53 channeled depleted choline stores to phosphatidylcholine (PC) biosynthesis during choline starvation, thus preventing LD coalescence. Cells lacking p53 failed to complete this response to choline depletion, leading to hepatic steatosis and tumorigenesis, and these effects could be reversed by enforcement of PCYT1B expression or restoration of PC abundance. Furthermore, loss of p53 or defects in the Kennedy pathway increased surface localization of hormone-sensitive lipase on LDs to release specific fatty acids that fueled tumor cells in vivo and in vitro. Thus, p53 loss leads to dysregulation of choline metabolism and LD growth and couples perturbed LD homeostasis to tumorigenesis.


Assuntos
Gotículas Lipídicas , Fosfatidilcolinas , Humanos , Gotículas Lipídicas/metabolismo , Fosfatidilcolinas/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Carcinogênese/metabolismo , Transformação Celular Neoplásica/metabolismo , Colina/metabolismo , Metabolismo dos Lipídeos , Colina-Fosfato Citidililtransferase/genética , Colina-Fosfato Citidililtransferase/metabolismo
2.
J Biochem Mol Toxicol ; 37(12): e23494, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37563788

RESUMO

Particulate matter (PM) 2.5 has long been regarded as a major risk factor of the respiratory system, which constitutes a threat to human health. Although the positive relationship between PM2.5 exposure and the development of respiratory diseases has been well established, limited studies investigate the intrinsic self-protection mechanisms against PM2.5-induced respiratory injuries. Excessive pulmonary inflammation served as a key pathogenic mechanism in PM2.5-induced airway dysfunction, and we have previously shown that PM2.5 induced the production of vascular endothelial growth factor A (VEGFA) in the bronchial epithelial cells, which subsequently led to pulmonary inflammatory responses. In the current study, we found that PM2.5 also concurrently induced the expression of the stress-responsive protein heme oxygenase-1 (HO-1) along with VEGFA in the bronchial epithelial cells both in vivo and in vitro. Importantly, knocking down of HO-1 expression significantly increased the synthesis and secretion of VEGFA; while overexpression of HO-1 showed the opposite effects, indicating that HO-1 induction can antagonize VEGFA production in the bronchial epithelial cells upon PM2.5 exposure. Mechanistically, HO-1 inhibited PM2.5-evoked VEGFA induction through modulating hypoxia-inducible factor 1 alpha (HIF-1α), which was the upstream transcriptional factor of VEGFA. More specifically, HO-1 could not only inhibit HIF-1α expression, but also suppress its transactivity. Taken together, our results suggested that HO-1 was an intrinsic protective factor against PM2.5-induced pulmonary VEGFA production with a mechanism relating to HIF-1α, thus providing a potential treatment strategy against PM2.5 triggered airway injuries.


Assuntos
Heme Oxigenase-1 , Fator A de Crescimento do Endotélio Vascular , Humanos , Heme Oxigenase-1/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Pulmão/metabolismo , Células Epiteliais/metabolismo , Material Particulado/toxicidade , Subunidade alfa do Fator 1 Induzível por Hipóxia
3.
Ecotoxicol Environ Saf ; 227: 112892, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34649141

RESUMO

Exposure to ultraviolet B (UVB) has been demonstrated to induce DNA damage as well as angiogenesis-related photo-damages, which are implicated in a variety of medical problems, including sunburn, photo-aging and skin cancers. However, the molecular mechanism related to UVB-induced photo-injuries remained fully elucidated. Here we revealed that one of the catalytic subunits of the IKK complex, IKKα, played a critical role in mediating UVB-induced apoptotic responses in two kinds of UVB sensitive cells, human keratinocyte (HaCat) and mouse embryonic fibroblasts (MEFs). This function of IKKα was unrelated to NF-κB activity, but was delivered by inducing phosphorylation and acetylation of p53 and upregulating the expression of the pro-apoptotic p53 target gene, PERP. Although IKKα kinase activity was required for mediating post-translational modifications and transactivation of 53 and PERP induction, IKKα did not show direct binding ability toward p53. Instead, IKKα could interact with CHK1, the protein kinase leading to p53 phosphorylation, and trigger CHK1 activation and CHK1/p53 complex formation. At the same time, IKKα could also interact with p300 and CBP, the acetyltransferases responsible for p53 acetylation, and trigger p300/CBP activation and p300/p53 or CBP/p53 complex formation under UVB exposure. Taken together, we have identified a novel NF-κB-independent role of IKKα in mediating UVB-induced apoptosis by regulating p53 pathway activation. Targeting IKKα/p53/PERP pathway might be helpful to prevent skin photo-damages induced by sunlight.


Assuntos
Proteína Supressora de Tumor p53 , Raios Ultravioleta , Animais , Apoptose , Fibroblastos/metabolismo , Genes Supressores de Tumor , Humanos , Quinase I-kappa B , Queratinócitos , Proteínas de Membrana , Camundongos , NF-kappa B/genética , NF-kappa B/metabolismo , Proteína Supressora de Tumor p53/genética , Raios Ultravioleta/efeitos adversos
4.
J Cell Sci ; 133(22)2020 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-33097607

RESUMO

In our previous report, we demonstrated that one of the catalytic subunits of the IκB kinase (IKK) complex, IKKα (encoded by CHUK), performs an NF-κB-independent cytoprotective role in human hepatoma cells under the treatment of the anti-tumor therapeutic reagent arsenite. IKKα triggers its own degradation, as a feedback loop, by activating p53-dependent autophagy, and therefore contributes substantially to hepatoma cell apoptosis induced by arsenite. Interestingly, IKKα is unable to interact with p53 directly but plays a critical role in mediating p53 phosphorylation (at Ser15) by promoting CHK1 activation and CHK1-p53 complex formation. In the current study, we found that p53 acetylation (at Lys373 and/or Lys382) was also critical for the induction of autophagy and the autophagic degradation of IKKα during the arsenite response. Furthermore, IKKα was involved in p53 acetylation through interaction with the acetyltransferases for p53, p300 (also known as EP300) and CBP (also known as CREBBP) (collectively p300/CBP), inducing CHK1-dependent p300/CBP activation and promoting p300-p53 or CBP-p53 complex formation. Therefore, taken together with the previous report, we conclude that both IKKα- and CHK1-dependent p53 phosphorylation and acetylation contribute to mediating selective autophagy feedback degradation of IKKα during the arsenite-induced proapoptotic responses.


Assuntos
Quinase I-kappa B , Proteína Supressora de Tumor p53 , Acetilação , Autofagia , Retroalimentação , Humanos , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Fatores de Transcrição de p300-CBP/genética , Fatores de Transcrição de p300-CBP/metabolismo
5.
Sci Rep ; 9(1): 16600, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31719630

RESUMO

One of the health hazards of PM2.5 exposure is to induce pulmonary inflammatory responses. In our previous study, we demonstrated that exposing both the immortalized and primary human bronchial epithelial cells to PM2.5 results in a significant upregulation of VEGF production, a typical signaling event to trigger chronic airway inflammation. Further investigations showed that PM2.5 exposure strongly induces ATR/CHK1/p53 cascade activation, leading to the induction of DRAM1-dependent autophagy to mediate VEGF expression by activating Src/STAT3 pathway. In the current study, we further revealed that TIGAR was another transcriptional target of p53 to trigger autophagy and VEGF upregulation in Beas-2B cells after PM2.5 exposure. Furthermore, LKB1, but not ATR and CHK1, played a critical role in mediating p53/TIGAR/autophagy/VEGF pathway activation also by linking to Src/STAT3 signaling cascade. Therefore, on combination of the previous report, we have identified both ATR/CHK1/p53/DRAM1- and LKB1/p53/TIGAR- dependent autophagy in mediating VEGF production in the bronchial epithelial cells under PM2.5 exposure. Moreover, the in vivo study further confirmed VEGF induction in the airway potentially contributed to the inflammatory responses in the pulmonary vascular endothelium of PM2.5-treated rats. Therefore, blocking VEGF expression or autophagy induction might be the valuable strategies to alleviating PM2.5-induced respiratory injuries.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Autofagia , Material Particulado/efeitos adversos , Monoéster Fosfórico Hidrolases/metabolismo , Pneumonia/etiologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Animais , Proteínas Reguladoras de Apoptose/genética , Células Cultivadas , Humanos , Monoéster Fosfórico Hidrolases/genética , Pneumonia/metabolismo , Pneumonia/patologia , Proteínas Serina-Treonina Quinases/genética , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Proteína Supressora de Tumor p53/genética , Fator A de Crescimento do Endotélio Vascular/genética
6.
Clin Epigenetics ; 10: 69, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29796120

RESUMO

Background: Reduced expression of retinoic acid-induced 2 (RAI2) was found in breast cancer. The regulation and function of RAI2 in human colorectal cancer (CRC) remain unclear. Methods: Eight CRC cell lines and 237 cases of primary CRC were analyzed. Methylation-specific PCR (MSP), flow cytometry, xenograft mouse model, and shRNA technique were employed. Results: RAI2 was completely methylated in RKO, LOVO, and HCT116 cells; partially methylated in HT29 cells; and unmethylated in SW480, SW620, DLD1, and DKO cells. RAI2 was methylated in 53.6% (127/237) of primary colorectal cancer. Methylation of RAI2 was significantly associated with gender (P < 0.001), TNM stage (P < 0.001), and lymph node metastasis (P < 0.001). Analyzing by the Kaplan-Meier method, methylation of RAI2 was significantly associated with poor 5-year overall survival (OS) (P = 0.0035) and 5-year relapse-free survival (RFS) (P = 0.0062). According to Cox proportional hazards model analysis, RAI2 methylation was an independent poor prognostic marker for 5-year OS (P = 0.002) and poor 5-year RFS (P = 0.022). RAI2 suppressed cell proliferation, migration, and invasion and induced cell apoptosis in CRC. In addition, RAI2 inhibited AKT signaling in CRC cells and suppressed human CRC cell xenograft growth in mice. Conclusion: RAI2 is frequently methylated in human CRC, and the expression of RAI2 is regulated by promoter region methylation. Methylation of RAI2 is an independent poor prognostic marker of CRC. RAI2 suppresses CRC cell growth both in vitro and in vivo. RAI2 suppresses CRC by inhibiting AKT signaling.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Colorretais/patologia , Metilação de DNA , Regulação para Baixo , Proteínas/genética , Animais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Neoplasias Colorretais/genética , Epigênese Genética , Feminino , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Células HT29 , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Metástase Linfática , Masculino , Camundongos , Estadiamento de Neoplasias , Transplante de Neoplasias , Prognóstico , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Análise de Sobrevida
7.
Autophagy ; 12(10): 1832-1848, 2016 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-27463284

RESUMO

ABSTARCT Epidemiological and clinical studies have increasingly shown that fine particulate matter (PM2.5) is associated with a number of pathological respiratory diseases, such as bronchitis, asthma, and chronic obstructive pulmonary disease, which share the common feature of airway inflammation induced by particle exposure. Thus, understanding how PM2.5 triggers inflammatory responses in the respiratory system is crucial for the study of PM2.5 toxicity. In the current study, we found that exposing human bronchial epithelial cells (immortalized Beas-2B cells and primary cells) to PM2.5 collected in the winter in Wuhan, a city in southern China, induced a significant upregulation of VEGFA (vascular endothelial growth factor A) production, a signaling event that typically functions to control chronic airway inflammation and vascular remodeling. Further investigations showed that macroautophagy/autophagy was induced upon PM2.5 exposure and then mediated VEGFA upregulation by activating the SRC (SRC proto-oncogene, non-receptor tyrosine kinase)-STAT3 (signal transducer and activator of transcription 3) pathway in bronchial epithelial cells. By exploring the upstream signaling events responsible for autophagy induction, we revealed a requirement for TP53 (tumor protein p53) activation and the expression of its downstream target DRAM1 (DNA damage regulated autophagy modulator 1) for the induction of autophagy. These results thus extend the role of TP53-DRAM1-dependent autophagy beyond cell fate determination under genotoxic stress and to the control of proinflammatory cytokine production. Moreover, PM2.5 exposure strongly induced the activation of the ATR (ATR serine/threonine kinase)-CHEK1/CHK1 (checkpoint kinase 1) axis, which subsequently triggered TP53-dependent autophagy and VEGFA production in Beas-2B cells. Therefore, these findings suggest a novel link between processes regulating genomic integrity and airway inflammation via autophagy induction in bronchial epithelial cells under PM2.5 exposure.


Assuntos
Autofagia , Brônquios/patologia , Células Epiteliais/metabolismo , Inflamação/patologia , Material Particulado/efeitos adversos , Transdução de Sinais , Proteína Supressora de Tumor p53/metabolismo , Fator A de Crescimento do Endotélio Vascular/biossíntese , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Quinase 1 do Ponto de Checagem/metabolismo , Células Epiteliais/ultraestrutura , Humanos , Proto-Oncogene Mas , Fator de Transcrição STAT3/metabolismo , Ativação Transcricional/genética , Proteína Supressora de Tumor p53/genética , Regulação para Cima , Quinases da Família src/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA