Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 855: 158934, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36152865

RESUMO

As a class of persistent organic pollutant, polybrominated diphenyl ethers (PBDEs) and their hydroxylated and methoxylated derivatives (OH-PBDEs and MeO-PBDEs) have been widely detected in soil environments. However, studies on the bioavailability and transformation of PBDEs and their derivatives in soil organisms remain scarce. In this study, a detailed kinetic investigation on the accumulation and biotransformations of BDE-47, 6-MeO-BDE-47 and 6-OH-BDE-47 in earthworms (Eisenia fetida) exposed to artificially contaminated soils was conducted. The uptake and elimination kinetics of BDE-47, 6-MeO-BDE-47 and 6-OH-BDE-47 by earthworms were in accordance with a one-compartment first-order kinetic model. The bioaccumulation factors (BAFs) followed the order 6-MeO-BDE-47 > 6-OH-BDE-47 > BDE-47. All three compounds could undergo step-by-step debromination to produce lower brominated analogs in earthworms. Both BDE-47 and 6-OH-BDE-47 could be transformed to MeO-PBDEs, whereas no transformation from 6-OH-BDE-47 or 6-MeO-BDE-47 to PBDEs or from BDE-47 and 6-MeO-BDE-47 to OH-PBDEs took place in the earthworms. Methoxylation was proposed as a potential metabolic pathway to form MeO-PBDEs in earthworms, with the metabolic rates for the methoxylation of BDE-47 and 6-OH-BDE-47 being 27.7 and 5.1 times greater, respectively, than that of the debromination metabolism. The isomers of 6-MeO-BDE-47 and 6-OH-BDE-47 were formed via the addition of methoxy/hydroxy groups or via bromine shifts on benzene ring in the earthworms. This study provides comprehensive information for a better understanding of the accumulation and biotransformation of PBDEs and their derivatives in earthworms.


Assuntos
Éteres Difenil Halogenados , Oligoquetos , Animais , Éteres Difenil Halogenados/análise , Oligoquetos/metabolismo , Éter , Hidroxilação , Biotransformação , Etil-Éteres , Solo
2.
J Phys Chem Lett ; 12(23): 5580-5586, 2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34107680

RESUMO

The gas pumping method (GP) holds the potential of outperforming the antisolvent method (AS) for fabricating perovskite solar cells (PSCs) in many ways such as free of toxic solvents, improved film uniformity, and device reproducibility. Most of the highest power conversion efficiencies (PCEs) of PSCs are still achieved by AS. Successful demonstrations of inverted PSCs produced by GP as well as the corresponding mechanisms are still lacking. Herein, we fabricate highly efficient inverted PSCs by GP delivering an overall efficiency of 21.54%, on par with that of the devices by AS (21.41%), and a superior reproducibility at the optimal film thickness. Nevertheless, as the perovskite film thickness increases, the PCE of GP devices slightly dropped while the AS devices decreased significantly. We found that the AS method tends to produce horizontal grain boundaries due to the heterogeneous solvent extraction while they can be effectively suppresed by the GP method.

3.
J Am Chem Soc ; 141(48): 19032-19037, 2019 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-31729871

RESUMO

Precisely assembled DNA nanostructures are promising candidates for the delivery of biomolecule-based therapeutics. Herein, we introduce a facile strategy for the construction of a branched DNA-based nanoplatform for codelivery of gene editing (sgRNA/Cas9, targeting DNA in the nucleus) and gene silencing (antisense, targeting mRNA in the cytoplasm) components for synergistic tumor therapy in vitro and in vivo. In our design, the branched DNA structure can efficiently load a sgRNA/Cas9/antisense complex targeting a tumor-associated gene, PLK1, through DNA self-assembly. With the incorporation of an active targeting aptamer and an endosomal escape peptide by host-guest interaction, the biocompatible DNA nanoplatform demonstrates efficient inhibition of tumor growth without apparent systemic toxicity. This multifunctional DNA nanocarrier provides a new strategy for the development of gene therapeutics.


Assuntos
Neoplasias da Mama/terapia , Sistemas CRISPR-Cas , DNA/química , Edição de Genes/métodos , RNA Antissenso/administração & dosagem , RNA Guia de Cinetoplastídeos/administração & dosagem , Animais , Neoplasias da Mama/genética , Proteínas de Ciclo Celular/genética , Feminino , Terapia Genética/métodos , Humanos , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Nanoestruturas/química , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , RNA Antissenso/genética , RNA Antissenso/uso terapêutico , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/uso terapêutico , Quinase 1 Polo-Like
4.
Chem Res Toxicol ; 28(3): 510-7, 2015 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-25654621

RESUMO

Polybrominated diphenyl ethers (PBDEs), methoxylated PBDEs (MeO-PBDEs), and hydroxylated PBDEs (OH-PBDEs) are widely found in various environmental media, which is of concern given their biological toxicity. In this study, the phytotoxicities of BDE-47, 6-MeO-BDE-47, and 6-OH-BDE-47 to maize (Zea mays L.) were investigated by an in vivo exposure experiment. Results showed that BDE-47, 6-MeO-BDE-47, and 6-OH-BDE-47 inhibited seed germination and seedling development, and elevated malondialdehyde (MDA), carbonyl groups, and phosphorylated histone H2AX levels in maize roots, suggesting the inducement of lipid peroxidation, protein carbonylation, and DNA damage to maize. Exposure to BDE-47, 6-MeO-BDE-47, and 6-OH-BDE-47 caused the overproduction of H2O2, O2(•-), and •OH, and elevated the activities of antioxidant enzymes in the roots. In addition, 6-OH-BDE-47 caused more severe damage and reactive oxygen species (ROS) generation in maize than did BDE-47 and 6-MeO-BDE-47. These results demonstrated the phytotoxicities of BDE-47, 6-OH-BDE-47, and 6-MeO-BDE-47 to maize, and clarified that overproduction of ROS was the key mechanism leading to toxicity. This study offers useful information for a more comprehensive understanding of the environmental behaviors and toxicities of PBDEs, MeO-PBDEs, and OH-PBDEs.


Assuntos
Anisóis/toxicidade , Retardadores de Chama/toxicidade , Éteres Difenil Halogenados/toxicidade , Bifenil Polibromatos/toxicidade , Zea mays/efeitos dos fármacos , Catalase/metabolismo , Dano ao DNA , Germinação/efeitos dos fármacos , Histonas/metabolismo , Hidroxilação , Peroxidação de Lipídeos/efeitos dos fármacos , Malondialdeído/metabolismo , Peroxidases/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/crescimento & desenvolvimento , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA