Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Res Sq ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38558990

RESUMO

Interactions of light-sensitive drugs and materials with Cerenkov radiation-emitting radiopharmaceuticals generate cytotoxic reactive oxygen species (ROS) to inhibit localized and disseminated cancer progression, but the cell death mechanisms underlying this radionuclide stimulated dynamic therapy (RaST) remain elusive. Using ROS-regenerative nanophotosensitizers coated with a tumor-targeting transferrin-titanocene complex (TiO2-TC-Tf) and radiolabeled 2-fluorodeoxyglucose (18FDG), we found that adherent dying cells maintained metabolic activity with increased membrane permeabilization. Mechanistic assessment of these cells revealed that RaST activated the expression of RIPK-1 and RIPK-3, which mediate necroptosis cell death. Subsequent recruitment of the nuclear factors kappa B and the executioner mixed lineage kinase domain-like pseudo kinase (MLKL) triggered plasma membrane permeabilization and pore formation, respectively, followed by the release of cytokines and immunogenic damage-associated molecular patterns (DAMPs). In immune-deficient breast cancer models with adequate stroma and growth factors that recapitulate the human tumor microenvironment, RaST failed to inhibit tumor progression and the ensuing lung metastasis. A similar aggressive tumor model in immunocompetent mice responded to RaST, achieving a remarkable partial response (PR) and complete response (CR) with no evidence of lung metastasis, suggesting active immune system engagement. RaST recruited antitumor CD11b+, CD11c+, and CD8b+ effector immune cells after initiating dual immunogenic apoptosis and necroptosis cell death pathways in responding tumors in vivo. Over time, cancer cells upregulated the expression of negative immune regulating cytokine (TGF-ß) and soluble immune checkpoints (sICP) to challenge RaST effect in the CR mice. Using a signal-amplifying cancer-imaging agent, LS301, we identified latent minimal residual disseminated tumors in the lymph nodes (LNs) of the CR group. Despite increased protumor immunogens in the CR mice, RaST prevented cancer relapse and metastasis through dynamic redistribution of ROS-regenerative TiO2 from bones at the early treatment stage to the spleen and LNs, maintaining active immunity against cancer progression and migration. This study reveals the immune-mechanistic underpinnings of RaST-mediated antitumor immune response and highlights immunogenic reprogramming of tumors in response to RaST. Overcoming apoptosis resistance through complementary necroptosis activation paves the way for strategic drug combinations to improve cancer treatment.

2.
PLoS One ; 18(12): e0293700, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38117806

RESUMO

BACKGROUND: Conjugation of transferrin (Tf) to imaging or nanotherapeutic agents is a promising strategy to target breast cancer. Since the efficacy of these biomaterials often depends on the overexpression of the targeted receptor, we set out to survey expression of transferrin receptor (TfR) in primary and metastatic breast cancer samples, including metastases and relapse, and investigate its modulation in experimental models. METHODS: Gene expression was investigated by datamining in twelve publicly-available datasets. Dedicated Tissue microarrays (TMAs) were generated to evaluate matched primary and bone metastases as well as and pre and post chemotherapy tumors from the same patient. TMA were stained with the FDA-approved MRQ-48 antibody against TfR and graded by staining intensity (H-score). Patient-derived xenografts (PDX) and isogenic metastatic mouse models were used to study in vivo TfR expression and uptake of transferrin. RESULTS: TFRC gene and protein expression were high in breast cancer of all subtypes and stages, and in 60-85% of bone metastases. TfR was detectable after neoadjuvant chemotherapy, albeit with some variability. Fluorophore-conjugated transferrin iron chelator deferoxamine (DFO) enhanced TfR uptake in human breast cancer cells in vitro and proved transferrin localization at metastatic sites and correlation of tumor burden relative to untreated tumor mice. CONCLUSIONS: TfR is expressed in breast cancer, primary, metastatic, and after neoadjuvant chemotherapy. Variability in expression of TfR suggests that evaluation of the expression of TfR in individual patients could identify the best candidates for targeting. Further, systemic iron chelation with DFO may upregulate receptor expression and improve uptake of therapeutics or tracers that use transferrin as a homing ligand.


Assuntos
Neoplasias da Mama , Animais , Feminino , Humanos , Camundongos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Quelantes , Expressão Gênica , Terapia de Alvo Molecular , Receptores da Transferrina/metabolismo , Transferrina/metabolismo
3.
J Virol ; 96(7): e0005722, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35319225

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused over 5 million deaths worldwide. Pneumonia and systemic inflammation contribute to its high mortality. Many viruses use heparan sulfate proteoglycans as coreceptors for viral entry, and heparanase (HPSE) is a known regulator of both viral entry and inflammatory cytokines. We evaluated the heparanase inhibitor Roneparstat, a modified heparin with minimum anticoagulant activity, in pathophysiology and therapy for COVID-19. We found that Roneparstat significantly decreased the infectivity of SARS-CoV-2, SARS-CoV-1, and retroviruses (human T-lymphotropic virus 1 [HTLV-1] and HIV-1) in vitro. Single-cell RNA sequencing (scRNA-seq) analysis of cells from the bronchoalveolar lavage fluid of COVID-19 patients revealed a marked increase in HPSE gene expression in CD68+ macrophages compared to healthy controls. Elevated levels of HPSE expression in macrophages correlated with the severity of COVID-19 and the expression of inflammatory cytokine genes, including IL6, TNF, IL1B, and CCL2. In line with this finding, we found a marked induction of HPSE and numerous inflammatory cytokines in human macrophages challenged with SARS-CoV-2 S1 protein. Treatment with Roneparstat significantly attenuated SARS-CoV-2 S1 protein-mediated inflammatory cytokine release from human macrophages, through disruption of NF-κB signaling. HPSE knockdown in a macrophage cell line also showed diminished inflammatory cytokine production during S1 protein challenge. Taken together, this study provides a proof of concept that heparanase is a target for SARS-CoV-2-mediated pathogenesis and that Roneparstat may serve as a dual-targeted therapy to reduce viral infection and inflammation in COVID-19. IMPORTANCE The complex pathogenesis of COVID-19 consists of two major pathological phases: an initial infection phase elicited by SARS-CoV-2 entry and replication and an inflammation phase that could lead to tissue damage, which can evolve into acute respiratory failure or even death. While the development and deployment of vaccines are ongoing, effective therapy for COVID-19 is still urgently needed. In this study, we explored HPSE blockade with Roneparstat, a phase I clinically tested HPSE inhibitor, in the context of COVID-19 pathogenesis. Treatment with Roneparstat showed wide-spectrum anti-infection activities against SARS-CoV-2, HTLV-1, and HIV-1 in vitro. In addition, HPSE blockade with Roneparstat significantly attenuated SARS-CoV-2 S1 protein-induced inflammatory cytokine release from human macrophages through disruption of NF-κB signaling. Together, this study provides a proof of principle for the use of Roneparstat as a dual-targeting therapy for COVID-19 to decrease viral infection and dampen the proinflammatory immune response mediated by macrophages.


Assuntos
Tratamento Farmacológico da COVID-19 , Heparina/análogos & derivados , Linhagem Celular , Citocinas/metabolismo , Fenofibrato , Técnicas de Silenciamento de Genes , Glucuronidase/genética , Glucuronidase/metabolismo , Heparina/uso terapêutico , Humanos , Imunidade/efeitos dos fármacos , Inflamação , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , NF-kappa B , SARS-CoV-2
4.
J Clin Invest ; 131(20)2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34520398

RESUMO

Tumor-infiltrating myeloid cells contribute to the development of the immunosuppressive tumor microenvironment. Myeloid cell expression of arginase 1 (ARG1) promotes a protumor phenotype by inhibiting T cell function and depleting extracellular l-arginine, but the mechanism underlying this expression, especially in breast cancer, is poorly understood. In breast cancer clinical samples and in our mouse models, we identified tumor-derived GM-CSF as the primary regulator of myeloid cell ARG1 expression and local immune suppression through a gene-KO screen of breast tumor cell-produced factors. The induction of myeloid cell ARG1 required GM-CSF and a low pH environment. GM-CSF signaling through STAT3 and p38 MAPK and acid signaling through cAMP were required to activate myeloid cell ARG1 expression in a STAT6-independent manner. Importantly, breast tumor cell-derived GM-CSF promoted tumor progression by inhibiting host antitumor immunity, driving a significant accumulation of ARG1-expressing myeloid cells compared with lung and melanoma tumors with minimal GM-CSF expression. Blockade of tumoral GM-CSF enhanced the efficacy of tumor-specific adoptive T cell therapy and immune checkpoint blockade. Taken together, we show that breast tumor cell-derived GM-CSF contributes to the development of the immunosuppressive breast cancer microenvironment by regulating myeloid cell ARG1 expression and can be targeted to enhance breast cancer immunotherapy.


Assuntos
Arginase/fisiologia , Neoplasias da Mama/imunologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/fisiologia , Tolerância Imunológica , Células Mieloides/enzimologia , Microambiente Tumoral , Animais , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , AMP Cíclico/fisiologia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL
5.
Mol Cancer Ther ; 20(6): 1183-1198, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33785647

RESUMO

Breast cancer bone metastases are common and incurable. Tumoral integrin ß3 (ß3) expression is induced through interaction with the bone microenvironment. Although ß3 is known to promote bone colonization, its functional role during therapy of established bone metastases is not known. We found increased numbers of ß3+ tumor cells in murine bone metastases after docetaxel chemotherapy. ß3+ tumor cells were present in 97% of post-neoadjuvant chemotherapy triple-negative breast cancer patient samples (n = 38). High tumoral ß3 expression was associated with worse outcomes in both pre- and postchemotherapy triple-negative breast cancer groups. Genetic deletion of tumoral ß3 had minimal effect in vitro, but significantly enhanced in vivo docetaxel activity, particularly in the bone. Rescue experiments confirmed that this effect required intact ß3 signaling. Ultrastructural, transcriptomic, and functional analyses revealed an alternative metabolic response to chemotherapy in ß3-expressing cells characterized by enhanced oxygen consumption, reactive oxygen species generation, and protein production. We identified mTORC1 as a candidate for therapeutic targeting of this ß3-mediated, chemotherapy-induced metabolic response. mTORC1 inhibition in combination with docetaxel synergistically attenuated murine bone metastases. Furthermore, micelle nanoparticle delivery of mTORC1 inhibitor to cells expressing activated αvß3 integrins enhanced docetaxel efficacy in bone metastases. Taken together, we show that ß3 integrin induction by the bone microenvironment promotes resistance to chemotherapy through an altered metabolic response that can be defused by combination with αvß3-targeted mTORC1 inhibitor nanotherapy. Our work demonstrates the importance of the metastatic microenvironment when designing treatments and presents new, bone-specific strategies for enhancing chemotherapeutic efficacy.


Assuntos
Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/secundário , Neoplasias da Mama/tratamento farmacológico , Integrina beta3/metabolismo , Animais , Antineoplásicos/farmacologia , Neoplasias Ósseas/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Docetaxel/farmacologia , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Terapia de Alvo Molecular , Análise de Sobrevida
6.
JCI Insight ; 5(17)2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32879136

RESUMO

Obesity predisposes to cancer and a virtual universality of nonalcoholic fatty liver disease (NAFLD). However, the impact of hepatic steatosis on liver metastasis is enigmatic. We find that while control mice were relatively resistant to hepatic metastasis, those which were lipodystrophic or obese, with NAFLD, had a dramatic increase in breast cancer and melanoma liver metastases. NAFLD promotes liver metastasis by reciprocal activation initiated by tumor-induced triglyceride lipolysis in juxtaposed hepatocytes. The lipolytic products are transferred to cancer cells via fatty acid transporter protein 1, where they are metabolized by mitochondrial oxidation to promote tumor growth. The histology of human liver metastasis indicated the same occurs in humans. Furthermore, comparison of isolates of normal and fatty liver established that steatotic lipids had enhanced tumor-stimulating capacity. Normalization of glucose metabolism by metformin did not reduce steatosis-induced metastasis, establishing the process is not mediated by the metabolic syndrome. Alternatively, eradication of NAFLD in lipodystrophic mice by adipose tissue transplantation reduced breast cancer metastasis to that of control mice, indicating the steatosis-induced predisposition is reversible.


Assuntos
Lipólise , Neoplasias Hepáticas/metabolismo , Hepatopatia Gordurosa não Alcoólica/complicações , Animais , Feminino , Glucose/metabolismo , Células Hep G2 , Hepatócitos/metabolismo , Humanos , Neoplasias Hepáticas/complicações , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias Hepáticas/metabolismo , Metástase Neoplásica
7.
Theranostics ; 10(17): 7510-7526, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32685002

RESUMO

Tumor-associated macrophages (TAMs) enhance tumor growth in mice and are correlated with a worse prognosis for breast cancer patients. While early therapies sought to deplete all macrophages, current therapeutics aim to reprogram pro-tumor macrophages (M2) and preserve those necessary for anti-tumor immune responses (M1). Recent studies have shown that c-MYC (MYC) is induced in M2 macrophages in vitro and in vivo where it regulates the expression of tumor-promoting genes. In a myeloid lineage MYC KO mouse model, MYC had important roles in macrophage maturation and function leading to reduced tumor growth. We therefore hypothesized that targeted delivery of a MYC inhibitor to established M2 TAMs could reduce polarization toward an M2 phenotype in breast cancer models. Methods: In this study, we developed a MYC inhibitor prodrug (MI3-PD) for encapsulation within perfluorocarbon nanoparticles, which can deliver drugs directly to the cytosol of the target cell through a phagocytosis independent mechanism. We have previously shown that M2-like TAMs express significant levels of the vitronectin receptor, integrin ß3, and in vivo targeting and therapeutic potential was evaluated using αvß3 integrin targeted rhodamine-labeled nanoparticles (NP) or integrin αvß3-MI3-PD nanoparticles. Results: We observed that rhodamine, delivered by αvß3-rhodamine NP, was incorporated into M2 tumor promoting macrophages through both phagocytosis-independent and dependent mechanisms, while NP uptake in tumor suppressing M1 macrophages was almost exclusively through phagocytosis. In a mouse model of breast cancer (4T1-GFP-FL), M2-like TAMs were significantly reduced with αvß3-MI3-PD NP treatment. To validate this effect was independent of drug delivery to tumor cells and was specific to the MYC inhibitor, mice with integrin ß3 knock out tumors (PyMT-Bo1 ß3KO) were treated with αvß3-NP or αvß3-MI3-PD NP. M2 macrophages were significantly reduced with αvß3-MI3-PD nanoparticle therapy but not αvß3-NP treatment. Conclusion: These data suggest αvß3-NP-mediated drug delivery of a c-MYC inhibitor can reduce protumor M2-like macrophages while preserving antitumor M1-like macrophages in breast cancer.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Macrófagos/efeitos dos fármacos , Nanopartículas/administração & dosagem , Proteínas Proto-Oncogênicas c-myc/antagonistas & inibidores , Animais , Antineoplásicos/química , Neoplasias da Mama/patologia , Carcinogênese/efeitos dos fármacos , Carcinogênese/imunologia , Linhagem Celular Tumoral/transplante , Avaliação Pré-Clínica de Medicamentos , Feminino , Fluorocarbonos/administração & dosagem , Fluorocarbonos/química , Técnicas de Inativação de Genes , Humanos , Integrina alfaVbeta3 , Integrina beta3 , Macrófagos/imunologia , Macrófagos/metabolismo , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/patologia , Camundongos , Nanopartículas/química , Fagocitose , Cultura Primária de Células , Pró-Fármacos/administração & dosagem , Proteínas Proto-Oncogênicas c-myc/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia
8.
JCI Insight ; 4(19)2019 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-31578308

RESUMO

Osteolytic bone lesions and hypercalcemia are common, serious complications in adult T cell leukemia/lymphoma (ATL), an aggressive T cell malignancy associated with human T cell leukemia virus type 1 (HTLV-1) infection. The HTLV-1 viral oncogene HBZ has been implicated in ATL tumorigenesis and bone loss. In this study, we evaluated the role of HBZ on ATL-associated bone destruction using HTLV-1 infection and disease progression mouse models. Humanized mice infected with HTLV-1 developed lymphoproliferative disease and continuous, progressive osteolytic bone lesions. HTLV-1 lacking HBZ displayed only modest delays to lymphoproliferative disease but significantly decreased disease-associated bone loss compared with HTLV-1-infected mice. Gene expression array of acute ATL patient samples demonstrated increased expression of RANKL, a critical regulator of osteoclasts. We found that HBZ regulated RANKL in a c-Fos-dependent manner. Treatment of HTLV-1-infected humanized mice with denosumab, a monoclonal antibody against human RANKL, alleviated bone loss. Using patient-derived xenografts from primary human ATL cells to induce lymphoproliferative disease, we also observed profound tumor-induced bone destruction and increased c-Fos and RANKL gene expression. Together, these data show the critical role of HBZ in driving ATL-associated bone loss through RANKL and identify denosumab as a potential treatment to prevent bone complications in ATL patients.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Leucemia-Linfoma de Células T do Adulto/genética , Leucemia-Linfoma de Células T do Adulto/metabolismo , Proteínas dos Retroviridae/metabolismo , Adulto , Animais , Reabsorção Óssea/genética , Reabsorção Óssea/metabolismo , Reabsorção Óssea/patologia , Osso e Ossos/patologia , Modelos Animais de Doenças , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Xenoenxertos , Vírus Linfotrópico T Tipo 1 Humano , Humanos , Estimativa de Kaplan-Meier , Leucemia-Linfoma de Células T do Adulto/patologia , Leucemia-Linfoma de Células T do Adulto/virologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteoclastos/metabolismo , Ligante RANK/genética , Ligante RANK/metabolismo , Proteínas dos Retroviridae/genética , Transcriptoma
9.
Oncol Lett ; 17(1): 706-712, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30655820

RESUMO

Downregulation of microRNA-34a (miR-34a) has frequently been observed in esophageal squamous cell carcinoma (ESCC). However, the underlying role and molecular mechanism of miR-34a in ESCC remains largely unknown. In the current study, it was demonstrated that miR-34a was downregulated and forkhead box M1 (FOXM1), a target gene of miR-34a, was upregulated in ESCC tumor tissues. Overexpression of miR-34a decreased FOXM1 mRNA and protein expression in the ESCC cell lines tested (TE-1 and TE-8). Inhibition of miR-34a increased FOXM1 mRNA and protein levels in human esophageal epithelial cells (HEEC). In addition, miR-34a mimics reduced the relative luciferase activity of ESCC cells transfected with FOXM1 3'UTR-WT, but not FOXM1 3'UTR-Mut. The CCK8 assay and scratch wound healing assay showed that overexpression of miR-34a induced inhibition of cell proliferation and cell migration. Additionally, transfection with miR-34a mimics reduced the expression of key genes involved in cell migration (MMP2 and MMP9) in ESCC cells. Thus, the present data demonstrated that miR-34a suppressed ESCC progression by directly targeting FOXM1.

10.
Clin Neurol Neurosurg ; 166: 136-140, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29414152

RESUMO

OBJECTIVES: Prediabetes involves people with glucose-metabolism impairment, and is related to different diabetic complications, like peripheral neuropathy. We aimed to explore the relationship among inflammatory (tumor necrosis factor alpha [TNFα]) and antiinflammatory (interleukin 10 [IL10]) cytokines as well as neuropathy of very distal-sensory-nerves in Chinese patients with prediabetes/diabetes. PATIENTS AND METHODS: In the present study, 55 patients having prediabetes, 55 patients having type 2 diabetes mellitus (DM), and 48 controls were included. TNFα, HbA1c, and IL10 plasma levels were measured. Electrodiagnosis was conducted on dorsal-sural/medial-plantar sensory nerve, that is most distal feet sensory-nerves. RESULTS: Nerve conduction test (NCT) irregularities of dorsal-sural/medial-plantar sensory nerve were considerably greater in patients with prediabetes or diabetes. The means of TNFα levels demonstrated a significant increase in patients with diabetes when compared to prediabetes patients as well as controls showed a significant decrease in patients with prediabetes and diabetes contrasted with controls. No significant contrast with respect to serum biomarkers among patients having regular as well as irregular medial-plantar/dorsal-sural NCT was noted. Critical correlationship among TNFα as well as HbA1c with symptoms severity as well as disability while negative correlations of IL10 with neuropathy severity was noted. Biomarker levels of TNFα, IL10, and HbA1c were noted to differ significantly among patients without/with neuropathy. CONCLUSION: All in all, the proinflammatory phase appears to start from initial pre-clinical phases, sometime prior to advancement of diabetes. The higher neuropathy frequency in patients with prediabetes indicates conceivable causative impact; although, the prospective part of inflammation in pathogenetics of peripheral neuropathy requires more elucidation.


Assuntos
Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/epidemiologia , Neuropatias Diabéticas/diagnóstico , Neuropatias Diabéticas/epidemiologia , Estado Pré-Diabético/diagnóstico , Estado Pré-Diabético/epidemiologia , Adulto , China/epidemiologia , Estudos Transversais , Diabetes Mellitus Tipo 2/metabolismo , Neuropatias Diabéticas/metabolismo , Feminino , Humanos , Inflamação/diagnóstico , Inflamação/epidemiologia , Inflamação/metabolismo , Masculino , Pessoa de Meia-Idade , Estado Pré-Diabético/metabolismo
11.
Oncotarget ; 8(41): 69250-69263, 2017 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-29050201

RESUMO

Adult T-cell leukemia/lymphoma (ATL) is an aggressive T cell malignancy that occurs in HTLV-1 infected patients. Most ATL patients develop osteolytic lesions and hypercalcemia of malignancy, causing severe skeletal related complications and reduced overall survival. The HTLV-1 virus encodes 2 viral oncogenes, Tax and HBZ. Tax, a transcriptional activator, is critical to ATL development, and has been implicated in pathologic osteolysis. HBZ, HTLV-1 basic leucine zipper transcription factor, promotes tumor cell proliferation and disrupts Wnt pathway modulators; however, its role in ATL induced osteolytic bone loss is unknown. To determine if HBZ is sufficient for the development of bone loss, we established a transgenic Granzyme B HBZ (Gzmb-HBZ) mouse model. Lymphoproliferative disease including tumors, enlarged spleens and/or abnormal white cell counts developed in two-thirds of Gzmb-HBZ mice at 18 months. HBZ positive cells were detected in tumors, spleen and bone marrow. Importantly, pathologic bone loss and hypercalcemia were present at 18 months. Bone-acting factors were present in serum and RANKL, PTHrP and DKK1, key mediators of hypercalcemia and bone loss, were upregulated in Gzmb-HBZ T cells. These data demonstrate that Gzmb-HBZ mice model ATL bone disease and express factors that are current therapeutic targets for metastatic and bone resident tumors.

12.
Cancer Res ; 77(22): 6299-6312, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-28855208

RESUMO

Bone metastases occur in approximately 70% of metastatic breast cancer patients, often leading to skeletal injuries. Current treatments are mainly palliative and underscore the unmet clinical need for improved therapies. In this study, we provide preclinical evidence for an antimetastatic therapy based on targeting integrin ß3 (ß3), which is selectively induced on breast cancer cells in bone by the local bone microenvironment. In a preclinical model of breast cancer, ß3 was strongly expressed on bone metastatic cancer cells, but not primary mammary tumors or visceral metastases. In tumor tissue from breast cancer patients, ß3 was significantly elevated on bone metastases relative to primary tumors from the same patient (n = 42). Mechanistic investigations revealed that TGFß signaling through SMAD2/SMAD3 was necessary for breast cancer induction of ß3 within the bone. Using a micelle-based nanoparticle therapy that recognizes integrin αvß3 (αvß3-MPs of ∼12.5 nm), we demonstrated specific localization to breast cancer bone metastases in mice. Using this system for targeted delivery of the chemotherapeutic docetaxel, we showed that bone tumor burden could be reduced significantly with less bone destruction and less hepatotoxicity compared with equimolar doses of free docetaxel. Furthermore, mice treated with αvß3-MP-docetaxel exhibited a significant decrease in bone-residing tumor cell proliferation compared with free docetaxel. Taken together, our results offer preclinical proof of concept for a method to enhance delivery of chemotherapeutics to breast cancer cells within the bone by exploiting their selective expression of integrin αvß3 at that metastatic site. Cancer Res; 77(22); 6299-312. ©2017 AACR.


Assuntos
Neoplasias Ósseas/genética , Neoplasias da Mama/genética , Regulação Neoplásica da Expressão Gênica/genética , Integrina alfaVbeta3/genética , Integrina beta3/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/secundário , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Docetaxel , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Integrina alfaVbeta3/antagonistas & inibidores , Integrina alfaVbeta3/metabolismo , Integrina beta3/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Nus , Terapia de Alvo Molecular/métodos , Nanopartículas/administração & dosagem , Nanopartículas/química , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Taxoides/administração & dosagem , Taxoides/química , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
13.
Cancer Res ; 76(12): 3484-95, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27216180

RESUMO

Integrin ß3 is critical for tumor invasion, neoangiogenesis, and inflammation, making it a promising cancer target. However, preclinical and clinical data of integrin ß3 antagonists have demonstrated no benefit or worse outcomes. We hypothesized that integrin ß3 could affect tumor immunity and evaluated tumors in mice with deletion of integrin ß3 in macrophage lineage cells (ß3KOM). ß3KOM mice had increased melanoma and breast cancer growth with increased tumor-promoting M2 macrophages and decreased CD8(+) T cells. Integrin ß3 antagonist, cilengitide, also enhanced tumor growth and increased M2 function. We uncovered a negative feedback loop in M2 myeloid cells, wherein integrin ß3 signaling favored STAT1 activation, an M1-polarizing signal, and suppressed M2-polarizing STAT6 activation. Finally, disruption of CD8(+) T cells, macrophages, or macrophage integrin ß3 signaling blocked the tumor-promoting effects of integrin ß3 antagonism. These results suggest that effects of integrin ß3 therapies on immune cells should be considered to improve outcomes. Cancer Res; 76(12); 3484-95. ©2016 AACR.


Assuntos
Tolerância Imunológica , Integrina beta3/fisiologia , Neoplasias/imunologia , Animais , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Fator de Transcrição STAT1/fisiologia , Fator de Transcrição STAT6/fisiologia , Quinase Syk/metabolismo , Microambiente Tumoral
14.
PLoS One ; 10(5): e0127828, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26020268

RESUMO

Monoclonal gammopathy of undetermined significance (MGUS) is the requisite precursor to multiple myeloma (MM), a malignancy of antibody-producing plasma B-cells. The genetic basis of MGUS and its progression to MM remains poorly understood. C57BL/KaLwRij (KaLwRij) is a spontaneously-derived inbred mouse strain with a high frequency of benign idiopathic paraproteinemia (BIP), a phenotype with similarities to MGUS including progression to MM. Using mouse haplotype analysis, human MM SNP array data, and whole exome and whole genome sequencing of KaLwRij mice, we identified novel KaLwRij gene variants, including deletion of Samsn1 and deleterious point mutations in Tnfrsf22 and Tnfrsf23. These variants significantly affected multiple cell types implicated in MM pathogenesis including B-cells, macrophages, and bone marrow stromal cells. These data demonstrate that multiple cell types contribute to MM development prior to the acquisition of somatic driver mutations in KaLwRij mice, and suggest that MM may an inherently non-cell autonomous malignancy.


Assuntos
Linfócitos B , Células da Medula Óssea , Macrófagos , Mieloma Múltiplo , Polimorfismo de Nucleotídeo Único , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Linfócitos B/metabolismo , Linfócitos B/patologia , Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia , Estudo de Associação Genômica Ampla , Humanos , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Mutação Puntual , Receptores do Fator de Necrose Tumoral/genética , Receptores do Fator de Necrose Tumoral/metabolismo , Células Estromais/metabolismo , Células Estromais/patologia
15.
Environ Technol ; 35(21-24): 2870-7, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25176492

RESUMO

Co modified fly ash (FA) prepared by the wet impregnation method was investigated for gas-phase elemental mercury capture under air at 80°C in this paper. X-ray fluorescence spectrometry, Brunauer-Emmett-Teller, scanning electron micrographs, X-ray diffraction, thermogravimetric (TG) analysis and X-ray photoelectron spectroscopy (XPS) were employed to characterize the samples. Experimental results showed that the optimal Co loading was 9 wt%, which gave a Hg(0) removal efficiency of 76% in a laboratory packed-bed reactor at low temperatures in the presence of O2. The high removal efficiency was mainly attributed to oxidation of Hg(0) by the enrichment of well-dispersed Co3O4on the surface of FA. However, higher Co loading resulted in the decrease of removal efficiency due to the decline of surface area and Co3O4agglomeration. TG and XPS characterization indicated that Hg(0) was oxidized by Co3O4and some of the oxidized mercury formed recombination mercury oxide with Co3O4, which could either exist stably at low temperature or be desorbed from the adsorbents at higher temperature. Finally, the possible adsorption mechanisms were proposed according to the observed phenomena.


Assuntos
Poluentes Atmosféricos/química , Cinza de Carvão/química , Cobalto/química , Mercúrio/química , Óxidos/química , Adsorção , Poluição do Ar/prevenção & controle , Gases , Oxirredução , Temperatura
17.
Clin Exp Pharmacol Physiol ; 35(5-6): 546-51, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-17973931

RESUMO

1. High-density lipoprotein (HDL) is widely accepted as a lipoprotein that protects against coronary artery and other atherosclerotic diseases. Recently, a new apolipoprotein encoded by the APOM gene, which plays an important role in affecting the intrinsic properties of HDL, has been reported. Genetic variations exist in the APOM gene, but their significance is presently unclear. The aim of the present study was to elucidate whether the APOM T-855C mutant allele is implicated in coronary artery disease (CAD). 2. In the present study, 418 patients with CAD and 372 controls were studied, all of whom were Han Chinese from Jiangsu Province, China. Plasma levels of triglycerides (TG), total cholesterol (TC), HDL-cholesterol (HDL-C) and low-density lipoprotein-cholesterol (LDL-C) were evaluated. Genomic DNA from the whole blood from these subjects was subjected to polymerase chain reaction amplification and restriction enzyme digestion to determine genotype with respect to the APOM T-855C polymorphism. 3. The allelic frequencies were in Hardy-Weinberg equilibrium. Plasma HDL levels were significantly lower in subjects with CAD than in control subjects (1.08 +/- 0.31 vs 1.25 +/- 0.32, respectively; P < 0.001) and the distribution of genotypes and allelic frequencies was significantly different in the two groups (P = 0.013 and 0.005, respectively). Multiple logistic regression analysis after adjustment for age, gender, smoking, body mass index, hypertension and serum glucose showed that, compared with the wild-type TT genotype, carriers of the C allele had an increased risk of CAD (odds ratio = 1.819, 95% confidence interval 1.142-2.898; P = 0.012). 4. In conclusion, the results of the present study suggest that the APOM T-855C polymorphism carries an increased risk for CAD in this Chinese population.


Assuntos
Apolipoproteínas/genética , Povo Asiático/genética , Doença das Coronárias/genética , Predisposição Genética para Doença/genética , Variação Genética , Idoso , Alelos , Apolipoproteínas M , Estudos de Casos e Controles , Feminino , Genótipo , Humanos , Lipocalinas , Masculino , Pessoa de Meia-Idade , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA