Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Curr Med Sci ; 43(4): 655-667, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37391677

RESUMO

OBJECTIVE: Tumor-associated macrophages (TAMs) of the M2 phenotype are frequently associated with cancer progression. Invasive cancer cells undergoing epithelial-mesenchymal transition (EMT) have a selective advantage as TAM activators. Cyclin D1b is a highly oncogenic splice variant of cyclin D1. We previously reported that cyclin D1b enhances the invasiveness of breast cancer cells by inducing EMT. However, the role of cyclin D1b in inducing macrophage differentiation toward tumor-associated macrophage-like cells remains unknown. This study aimed to explore the relationship between breast cancer cells overexpressing cyclin D1b and TAMs. METHODS: Mouse breast cancer 4T1 cells were transfected with cyclin D1b variant and co-cultured with macrophage cells in a Transwell coculture system. The expression of characteristic cytokines in differentiated macrophages was detected using qRT-PCR, ELISA and zymography assay. Tumor-associated macrophage distribution in a transplanted tumor was detected by immunofluorescence staining. The proliferation and migration ability of breast cancer cells was detected using the cell counting kit-8 (CCK-8) assay, wound healing assay, Transwell invasion assay, and lung metastasis assay. Expression levels of mRNAs were detected by qRT-PCR. Protein expression levels were detected by Western blotting. The integrated analyses of The Cancer Genome Atlas (TCGA) datasets and bioinformatics methods were adopted to discover gene expression, gene coexpression, and overall survival in patients with breast cancer. RESULTS: After co-culture with breast cancer cells overexpressing cyclin D1b, RAW264.7 macrophages were differentiated into an M2 phenotype. Moreover, differentiated M2-like macrophages promoted the proliferation and migration of breast cancer cells in turn. Notably, these macrophages facilitated the migration of breast cancer cells in vivo. Further investigations indicated that differentiated M2-like macrophages induced EMT of breast cancer cells accompanied with upregulation of TGF-ß1 and integrin ß3 expression. CONCLUSION: Breast cancer cells transfected with cyclin D1b can induce the differentiation of macrophages into a tumor-associated macrophage-like phenotype, which promotes tumor metastasis in vitro and in vivo.


Assuntos
Neoplasias Pulmonares , Macrófagos Associados a Tumor , Animais , Camundongos , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/patologia , Macrófagos/metabolismo , Neoplasias Pulmonares/metabolismo , Diferenciação Celular , Fenótipo
2.
Oral Dis ; 29(2): 515-527, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34174132

RESUMO

Adiponectin (APN) is a kind of endogenous anti-tumor adipocytokine, which exerts its function by binding to its receptors (AdipoR1 and AdipoR2). However, hyperadiponectinemia is found in some pathophysiological processes without significant protective effect, which indicates the existence of APN resistance. Here, we aimed to investigate the locoregional expression of APN in tongue squamous cell carcinoma (TSCC) tissues, and to explore the potential regulatory mechanism of APN resistance under hypoxia. Consequently, we found that the protein expression of APN and AdipoR1, but not AdipoR2, was upregulated in the early stage of TSCC and after hypoxic treatment ex vivo and in vitro. Knockdown of HIF-1α decreased the level of APN and AdipoR1, and simultaneously, HIF-1α was identified as transcriptor of the APN. Intriguingly, a regenerative feedback of HIF-1α was unexpectedly detected after application of recombinant globular APN (gAPN), which most likely contributed to the APN resistance. Furthermore, HIF-1α blockade combined with gAPN has a prominent synergistic antitumor effect, which suggested an effective amelioration in APN resistance. In all, our study revealed the possible mechanism of APN resistance under hypoxia and provides a promising strategy of bi-target treatment with APN and HIF-1α for TSCC therapy.


Assuntos
Carcinoma de Células Escamosas , Neoplasias da Língua , Humanos , Adiponectina/farmacologia , Carcinoma de Células Escamosas/patologia , Neoplasias da Língua/patologia , Hipóxia , Subunidade alfa do Fator 1 Induzível por Hipóxia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA