Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Int J Biol Sci ; 19(12): 3816-3829, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37564211

RESUMO

Cancer cells inevitably develop radioresistance during lung adenocarcinoma radiotherapy. However, the mechanisms are incompletely clarified. In this study, we show that FIBP protein expression in lung adenocarcinoma tissues is upregulated and associated with worse overall survival. Functionally, we find that depletion of FIBP inhibits lung adenocarcinoma progression and radioresistance in vitro and in vivo. Moreover, we uncover that FIBP interacts with STAT3 to enhance its transcriptional activity, thereby inducing the expression of the downstream target gene EME1. Importantly, we demonstrate that the biological effects of FIBP are partially dependent on EME1 in lung adenocarcinoma. Our work reveals that FIBP modulates the STAT3/EME1 axis to drive lung cancer progression and radioresistance, indicating that targeting FIBP may be a novel intervention strategy for lung adenocarcinoma radiotherapy.


Assuntos
Adenocarcinoma de Pulmão , Adenocarcinoma , Neoplasias Pulmonares , Humanos , Fatores de Transcrição/metabolismo , Linhagem Celular Tumoral , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/radioterapia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/patologia , Adenocarcinoma/genética , Adenocarcinoma/radioterapia , Adenocarcinoma/patologia , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Proteínas de Transporte/genética , Proteínas de Membrana/metabolismo
2.
Curr Med Sci ; 43(2): 344-359, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37002471

RESUMO

OBJECTIVE: The combination of stereotactic body radiation therapy (SBRT) and immune checkpoint inhibitors (ICIs) is actively being explored in advanced non-small-cell lung cancer (NSCLC) patients. However, little is known about the optimal fractionation and radiotherapy target lesions in this scenario. This study investigated the effect of SBRT on diverse organ lesions and radiotherapy dose fractionation regimens on the prognosis of advanced NSCLC patients receiving ICIs. METHODS: The medical records of advanced NSCLC patients consecutively treated with ICIs and SBRT were retrospectively reviewed at our institution from Dec. 2015 to Sep. 2021. Patients were grouped according to radiation sites. Progression-free survival (PFS) and overall survival (OS) were recorded using the Kaplan-Meier method and compared between different treatment groups using the log-rank (Mantel-Cox) test. RESULTS: A total of 124 advanced NSCLC patients receiving ICIs combined with SBRT were identified in this study. Radiation sites included lung lesions (lung group, n=43), bone metastases (bone group, n=24), and brain metastases (brain group, n=57). Compared with the brain group, the mean PFS (mPFS) in the lung group was significantly prolonged by 13.3 months (8.5 months vs. 21.8 months, HR=0.51, 95%CI: 0.28-0.92, P=0.0195), and that in the bone group prolonged by 9.5 months with a 43% reduction in the risk of disease progression (8.5 months vs. 18.0 months, HR=0.57, 95%CI: 0.29-1.13, P=0.1095). The mPFS in the lung group was prolonged by 3.8 months as compared with that in the bone group. The mean OS (mOS) in the lung and bone groups was longer than that of the brain group, and the risk of death decreased by up to 60% in the lung and bone groups as compared with that of the brain group. When SBRT was concurrently given with ICIs, the mPFS in the lung and brain groups were significantly longer than that of the bone group (29.6 months vs. 16.5 months vs. 12.1 months). When SBRT with 8-12 Gy per fraction was combined with ICIs, the mPFS in the lung group was significantly prolonged as compared with that of the bone and brain groups (25.4 months vs. 15.2 months vs. 12.0 months). Among patients receiving SBRT on lung lesions and brain metastases, the mPFS in the concurrent group was longer than that of the SBRT→ICIs group (29.6 months vs. 11.4 months, P=0.0003 and 12.1 months vs. 8.9 months, P=0.2559). Among patients receiving SBRT with <8 Gy and 8-12 Gy per fraction, the mPFS in the concurrent group was also longer than that of the SBRT→ICIs group (20.1 months vs. 5.3 months, P=0.0033 and 24.0 months vs. 13.4 months, P=0.1311). The disease control rates of the lung, bone, and brain groups were 90.7%, 83.3%, and 70.1%, respectively. CONCLUSION: The study demonstrated that the addition of SBRT on lung lesions versus bone and brain metastases to ICIs improved the prognosis in advanced NSCLC patients. This improvement was related to the sequence of radiotherapy combined with ICIs and the radiotherapy fractionation regimens. Dose fractionation regimens of 8-12 Gy per fraction and lung lesions as radiotherapy targets might be the appropriate choice for advanced NSCLC patients receiving ICIs combined with SBRT.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Radiocirurgia , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/radioterapia , Inibidores de Checkpoint Imunológico , Estudos Retrospectivos , Radiocirurgia/métodos
3.
Cancer Immunol Immunother ; 72(3): 633-645, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36018370

RESUMO

BACKGROUND: Programmed cell death protein 1 (PD-1) antibody has been approved for a variety of tumors, but its effective rate is unsatisfactory. New evidence suggests that mast cells are an important component of the tumor microenvironment and are associated with resistance to immunotherapy, but the underlying mechanism is not clear. METHODS: Bioinformatics analysis of patients with melanoma in TCGA-SKCM and GSE91061 was used to determine the prognostic value of mast cells and their association with anti-PD-1 immunotherapy. HMC-1 cells (mast cell line) and bone marrow-derived mast cells (BMMCs) were used to verify the effect of PD-1 antibody and cromolyn sodium in vitro. The mouse subcutaneous melanoma model was used to verify the effect of the PD-1 antibody on mast cells in vivo. RESULTS: Bioinformatics analysis showed that mast cells were a poor prognostic factor associated with resistance to anti-PD-1 immunotherapy. PD-1 was expressed on the mast cell membrane. The PD-1 antibody promoted the release of histamine and cytokines from mast cells via the PI3K/AKT pathway and calcium signaling pathway. The activation of mast cells induced by PD-1 antibody could be partially inhibited by cromolyn sodium. In vivo, cromolyn sodium increased the efficacy of PD-1 antibody and decreased the infiltration of mast cells and the density of microvessels. CONCLUSION: PD-1+ mast cell activated by PD-1 antibody plays a negative role in the tumor microenvironment via the enhanced function of releasing histamine and cytokines. Inhibition of mast cell may provide a new solution to solve the low response rate of anti-PD-1 immunotherapy.


Assuntos
Mastócitos , Melanoma , Camundongos , Animais , Cromolina Sódica/metabolismo , Cromolina Sódica/farmacologia , Histamina/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Citocinas/metabolismo , Melanoma/metabolismo , Imunoterapia , Microambiente Tumoral
4.
Cell Death Dis ; 13(8): 717, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35977926

RESUMO

Lysine crotonylation is a recently discovered post-translation modification involved in transcription regulation, cell signal transduction, and other processes. Scientists have identified several crotonylases and decrotonylases of histones, including P300/CBP, HDACs, and SIRTs. However, the regulation of non-histone protein crotonylation remains unclear. In the current study, we verified that crotonylation was upregulated in hypoxia and promoted liver cancer cell growth. We performed TMT-labeled quantitative lysine crotonylome analysis in 12 pairs of hepatocellular carcinoma and adjacent liver tissue and identified 3,793 lysine crotonylation sites in 1,428 proteins. We showed that crotonylation of lamin A at the site of K265/270 maintains its subcellular position, promotes liver cancer cell proliferation, and prevents cellular senescence. Our data indicate that HDAC6 is the decrotonylase of lamin A and downregulated in response to hypoxia, resulting in lamin A K265/270cr. Taken together, our study reveals the lamin A crotonylation in liver cancer progression and fills the research gap in non-histone protein crotonylation function.


Assuntos
Neoplasias Hepáticas , Lisina , Desacetilase 6 de Histona/metabolismo , Histonas/metabolismo , Humanos , Hipóxia , Lamina Tipo A/metabolismo , Neoplasias Hepáticas/genética , Lisina/metabolismo , Processamento de Proteína Pós-Traducional
5.
Clin Transl Med ; 12(1): e718, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35083874

RESUMO

BACKGROUND: Chemoradiotherapy-induced PD-L1 upregulation leads to therapeutic resistance and treatment failure. The PD-1/PD-L1 blocking antibodies sensitize cancers to chemoradiotherapy by blocking extracellular PD-1 and PD-L1 binding without affecting the oncogenic function of intracellular PD-L1. Reversing the chemoradiation-induced PD-L1 expression could provide a new strategy to achieve a greater anti-tumour effect of chemoradiotherapy. Here, we aimed to identify candidate small molecular inhibitors that might boost the anti-tumour immunity of chemoradiotherapy by decreasing treatment-induced PD-L1 expression in non-small cell lung cancer (NSCLC). METHODS: A drug array was used to recognize compounds that can suppress the cisplatin-induced and radiation-induced PD-L1 expression in NSCLC via the flow cytometry-based assay. We examined whether and how targeting bromodomain containing 4 (BRD4) inhibits chemoradiation-induced PD-L1 expression and evaluated the effect of BRD4 inhibition and chemoradiation combination in vivo. RESULTS: BRD4 inhibitors JQ1 and ARV-771 were identified as the most promising drugs both in the cisplatin and radiation screening projects in two NSCLC cell lines. Targeting BRD4 was supposed to block chemoradiotherapy inducible PD-L1 expression by disrupting the recruitment of BRD4-IRF1 complex to PD-L1 promoter. A positive correlation between BRD4 and PD-L1 expression was observed in human NSCLC tissues. Moreover, BRD4 inhibition synergized with chemoradiotherapy and PD-1 blockade to show a robust anti-tumour immunity dependent on CD8+ T cell through limiting chemoradiation-induced tumour cell surface PD-L1 upregulation in vivo. Notably, the BRD4-targeted combinatory treatments did not show increased toxicities. CONCLUSION: The data showed that BRD4-targeted therapy synergized with chemoradiotherapy and anti-PD-1 antibody by boosting anti-tumour immunity in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Quimiorradioterapia/normas , Transdução de Sinais/genética , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/imunologia , Proteínas de Ciclo Celular/efeitos dos fármacos , Proteínas de Ciclo Celular/genética , Quimiorradioterapia/métodos , Quimiorradioterapia/estatística & dados numéricos , Modelos Animais de Doenças , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/genética , Fator Regulador 1 de Interferon/efeitos dos fármacos , Fator Regulador 1 de Interferon/genética , Camundongos , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/efeitos dos fármacos , Fatores de Transcrição/genética
6.
Cell Death Discov ; 8(1): 36, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35075132

RESUMO

Vascular Endothelial Growth Factor Receptor 2 (VEGFR2) tyrosine kinase inhibitors (TKIs) have achieved remarkable clinical progress in the treatment of non-small-cell lung cancer; however, resistance has limited their therapeutic efficacy. Therefore, understanding the mechanisms of VEGF-TKI and ICI resistance will help to develop effective treatment strategies for patients with advanced NSCLC. Our results suggested that treatment with VEGFR2-TKIs upregulated ADRB2 expression in NSCLC cells. Propranolol, a common ADRB2 antagonist, significantly enhanced the therapeutic effect of VEGFR2-TKIs by inhibiting the ADRB2 signaling pathway in NSCLC cells in vitro and in vivo. Mechanically, the treatment-induced ADRB2 upregulation and the enhancement of ADRB2/VEGFR2 interaction caused resistance to VEGFR2-TKIs in NSCLC. And the inhibition of the ADRB2/CREB/PSAT1 signaling pathway sensitized cells to VEGFR2-TKIs. We demonstrated that ADRB2 signaling is crucial in mediating resistance to VEGFR2-TKIs and provided a novel promising combinatory approach to enhance the antitumor effect of VEGFR2-TKIs in NSCLC combining with propranolol.

7.
Front Oncol ; 11: 788671, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34912722

RESUMO

The incidence of head and neck squamous cell carcinoma (HNSC) is increasing year by year. The nerve is an important component of the tumor microenvironment, which has a wide range of cross-talk with tumor cells and immune cells, especially in highly innervated organs, such as head and neck cancer and pancreatic cancer. However, the role of cancer-nerve cross-talk-related genes (NCCGs) in HNSC is unclear. In our study, we constructed a prognostic model based on genes with prognostic value in NCCGs. We used Pearson's correlation to analyze the relationship between NCCGs and immune infiltration, microsatellite instability, tumor mutation burden, drug sensitivity, and clinical stage. We used single-cell sequencing data to analyze the expression of genes associated with stage in different cells and explored the possible pathways affected by these genes via gene set enrichment analysis. In the TCGA-HNSC cohort, a total of 23 genes were up- or downregulated compared with normal tissues. GO and KEGG pathway analysis suggested that NCCGs are mainly concentrated in membrane potential regulation, chemical synapse, axon formation, and neuroreceptor-ligand interaction. Ten genes were identified as prognosis genes by Kaplan-Meier plotter and used as candidate genes for LASSO regression. We constructed a seven-gene prognostic model (NTRK1, L1CAM, GRIN3A, CHRNA5, CHRNA6, CHRNB4, CHRND). The model could effectively predict the 1-, 3-, and 5-year survival rates in the TCGA-HNSC cohort, and the effectiveness of the model was verified by external test data. The genes included in the model were significantly correlated with immune infiltration, microsatellite instability, tumor mutation burden, drug sensitivity, and clinical stage. Single-cell sequencing data of HNSC showed that CHRNB4 was mainly expressed in tumor cells, and multiple metabolic pathways were enriched in high CHRNB4 expression tumor cells. In summary, we used comprehensive bioinformatics analysis to construct a prognostic gene model and revealed the potential of NCCGs as therapeutic targets and prognostic biomarkers in HNSC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA