Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167208, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38701956

RESUMO

OBJECTIVE: This study aims to investigate the cardiac protective effects and molecular mechanisms of electroacupuncture (EA) pre-treatment in lipopolysaccharide (LPS)-Induced Cardiomyopathy. METHODS AND RESULTS: Pre-treatment with EA was performed 30 min before intraperitoneal injection of LPS. Cardiac function changes in mice of the EA + LPS group were observed using electrocardiography, echocardiography, and enzyme linked immunosorbent assay (ELISA) and compared with the LPS group. The results demonstrated that EA pre-treatment significantly improved the survival rate of septic mice, alleviated the severity of endotoxemia, and exhibited notable cardiac protective effects. These effects were characterized by a reduction in ST-segment elevation on electrocardiography, an increase in ejection fraction (EF) and fraction shortening (FS) on echocardiography and a decrease in the expression of serum cardiac troponin I (cTn-I) levels. Serum exosomes obtained after EA pre-treatment were extracted and administered to septic mice, revealing significant cardiac protective effects of EA-derived exosomes. Furthermore, the antagonism of circulating exosomes in mice markedly suppressed the cardiac protective effects conferred by EA pre-treatment. Analysis of serum exosomes using quantitative reverse transcription-polymerase chain reaction (qRT-PCR) revealed a significant upregulation of miR-381 expression after EA pre-treatment. Inhibition or overexpression of miR-381 through serotype 9 adeno-associated virus (AAV9)-mediated gene delivery demonstrated that overexpression of miR-381 exerted a cardiac protective effect, while inhibition of miR-381 significantly attenuated the cardiac protective effects conferred by EA pre-treatment. CONCLUSIONS: Our research findings have revealed a novel endogenous cardiac protection mechanism, wherein circulating exosomes derived from EA pre-treatment mitigate LPS-induced cardiac dysfunction via miR-381.


Assuntos
Cardiomiopatias , Eletroacupuntura , Exossomos , Lipopolissacarídeos , MicroRNAs , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Exossomos/metabolismo , Exossomos/genética , Eletroacupuntura/métodos , Camundongos , Cardiomiopatias/induzido quimicamente , Cardiomiopatias/metabolismo , Cardiomiopatias/terapia , Cardiomiopatias/patologia , Cardiomiopatias/genética , Cardiomiopatias/prevenção & controle , Lipopolissacarídeos/toxicidade , Masculino , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
2.
Ann Hematol ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38684510

RESUMO

Hematopoietic stem cells (HSCs) are an ideal source for the treatment of many hematological diseases and malignancies, as well as diseases of other systems, because of their two important features, self-renewal and multipotential differentiation, which have the ability to rebuild the blood system and immune system of the body. However, so far, the insufficient number of available HSCs, whether from bone marrow (BM), mobilized peripheral blood or umbilical cord blood, is still the main restricting factor for the clinical application. Therefore, strategies to expand HSCs numbers and maintain HSCs functions through ex vivo culture are urgently required. In this review, we outline the basic biology characteristics of HSCs, and focus on the regulatory factors in BM niche affecting the functions of HSCs. Then, we introduce several representative strategies used for HSCs from these three sources ex vivo expansion associated with BM niche. These findings have deepened our understanding of the mechanisms by which HSCs balance self-renewal and differentiation and provided a theoretical basis for the efficient clinical HSCs expansion.

3.
Zhen Ci Yan Jiu ; 49(4): 331-340, 2024 Apr 25.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38649200

RESUMO

OBJECTIVES: To observe whether acupuncture up-regulates chemokine CXC ligand 1 (CXCL1) in the brain to play an analgesic role through CXCL1/chemokine CXC receptor 2 (CXCR2) signaling in adjuvant induced arthritis (AIA) rats, so as to reveal its neuro-immunological mechanism underlying improvement of AIA. METHODS: BALB/c mice with relatively stable thermal pain reaction were subjected to planta injection of complete Freund adjuvant (CFA) for establishing AIA model, followed by dividing the AIA mice into simple AF750 (fluorochrome) and AF750+CXCL1 groups (n=2 in each group). AF750 labeled CXCL1 recombinant protein was then injected into the mouse's tail vein to induce elevation of CXCL1 level in blood for simulating the effect of acupuncture stimulation which has been demonstrated by our past study. In vivo small animal imaging technology was used to observe the AF750 and AF750+CXCL1-labelled target regions. After thermal pain screening, the Wistar rats with stable pain reaction were subjected to AIA modeling by injecting CFA into the rat's right planta, then were randomized into model and manual acupuncture groups (n=12 in each group). Other 12 rats that received planta injection of saline were used as the control group. Manual acupuncture (uniform reinforcing and reducing manipulations) was applied to bilateral "Zusanli" (ST36) for 4×2 min, with an interval of 5 min between every 2 min, once daily for 7 days. The thermal pain threshold was assessed by detecting the paw withdrawal latency (PWL) using a thermal pain detector. The contents of CXCL1 in the primary somatosensory cortex (S1), medial prefrontal cortex, nucleus accumbens, amygdala, periaqueductal gray and rostroventromedial medulla regions were assayed by using ELISA, and the expression levels of CXCL1, CXCR2 and mu-opioid receptor (MOR) mRNA in the S1 region were detected using real time-quantitative polymerase chain reaction. The immune-fluorescence positive cellular rate of CXCL1 and CXCR2 in S1 region was observed after immunofluorescence stain. The immunofluorescence double-stain of CXCR2 and astrocyte marker glial fibrillary acidic protein (GFAP) or neuron marker NeuN or MOR was used to determine whether there is a co-expression between them. RESULTS: In AIA mice, results of in vivo experiments showed no obvious enrichment signal of AF750 or AF750+CXCL1 in any organ of the body, while in vitro experiments showed that there was a stronger fluorescence signal of CXCL1 recombinant protein in the brain. In rats, compared with the control group, the PWL from day 0 to day 7 was significantly decreased (P<0.01) and the expression of CXCR2 mRNA in the S1 region significantly increased in the model group (P<0.05), while in comparison with the model group, the PWL from day 2 to day 7, CXCL1 content, CXCR2 mRNA expression and CXCR2 content, and MOR mRNA expression in the S1 region were significantly increased in the manual acupuncture group (P<0.05, P<0.01). Immunofluorescence stain showed that CXCR2 co-stained with NeuN and MOR in the S1 region, indicating that CXCR2 exists in neurons and MOR-positive neurons but not in GFAP positive astrocytes. CONCLUSIONS: Acupuncture can increase the content of CXCL1 in S1 region, up-regulate CXCR2 on neurons in the S1 region and improve MOR expression in S1 region of AIA rats, which may contribute to its effect in alleviating inflammatory pain.


Assuntos
Terapia por Acupuntura , Artrite Experimental , Quimiocina CXCL1 , Receptores de Interleucina-8B , Córtex Somatossensorial , Animais , Humanos , Masculino , Camundongos , Ratos , Pontos de Acupuntura , Artrite Experimental/terapia , Artrite Experimental/metabolismo , Artrite Experimental/genética , Quimiocina CXCL1/metabolismo , Quimiocina CXCL1/genética , Inflamação/terapia , Inflamação/metabolismo , Inflamação/genética , Camundongos Endogâmicos BALB C , Dor/metabolismo , Dor/genética , Manejo da Dor , Ratos Wistar , Receptores de Interleucina-8B/metabolismo , Receptores de Interleucina-8B/genética , Transdução de Sinais , Córtex Somatossensorial/metabolismo
4.
Nat Prod Res ; : 1-10, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38635344

RESUMO

Bioassay-guided purification of the xanthine oxidase (XOD) inhibitory extract of the roots of Ampelopsis japonica resulted in the isolation of two new triterpenoids (1-2), designated Ampejaponoside A and B, along with sixteen known compounds (3-18). The structures of Ampejaposide A and B were elucidated by comprehensive analysis of spectroscopic data with the structures of the known compounds 3-18 confirmed by comparison the spectral data with corresponding values reported in literatures. All the isolates were evaluated for their XOD inhibitory activity in vitro. As a result, compounds 2, 8, and 14-16 displayed significant XOD inhibitory effect, particularly 16 being the most potent with an IC50 value of 0.21 µM, superior to positive substance allopurinol (IC50 1.95 µM). Molecular docking uncovered a unique interaction mode of 16 with the active site of XOD. The current study showed that the triterpenoids and polyphenols from A. japonica could serve as new lead compounds with the potential to speed up the development of novel XOD inhibitors with clinical potential to treat hyperuricaemia and gout.

5.
Vox Sang ; 118(11): 913-920, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37831598

RESUMO

Haematopoietic stem cell transplantation (HSCT) is considered an effective treatment for some haematopoietic malignancies, haematopoietic failure and immunodeficiency. Compared with bone marrow and mobilized peripheral blood, cord blood has the advantages of easy access, being harmless to donors and low requirement for HLA matching. In addition, umbilical cord blood transplantation (UCBT) has achieved remarkable clinical success in the past 30 years due to the low recurrence rate of malignancies treated by UCBT, mild degree of chronic graft-versus-host disease (GVHD) and good quality of life for patients after transplantation. However, the number of cells in a single cord blood is too small for rapid bone marrow implantation. We summarize the various factors involved that need to be considered in the expansion of haematopoietic stem cells (HSCs) in vitro, which all avoid complex operations, such as vector construction and virus transfection. We also found it necessary to identify a new molecule as the carrier of HSCs cultured in vitro, which not only would provide a three-dimensional structure conducive to the self-renewal of HSCs but also prevent their differentiation.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Humanos , Sangue Fetal , Qualidade de Vida , Doença Enxerto-Hospedeiro/prevenção & controle , Transplante de Células-Tronco Hematopoéticas/métodos , Células-Tronco Hematopoéticas
6.
Integr Cancer Ther ; 22: 15347354231198089, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37746720

RESUMO

Cancer treatment remains a significant challenge for the medical community, and improved therapies are necessary to treat cancer and its associated complications. Current anticancer therapies often have significant side effects, underscoring the need for new treatment options. Moxibustion is a representative external therapy used in traditional Chinese medicine. This review examines clinical studies demonstrating moxibustion's ability to improve the efficacy of radiotherapy and chemotherapy and control tumor progression. Moxibustion can prevent and treat various complications of cancer, including cancer-related or therapy-induced gastrointestinal symptoms, myelosuppression, fatigue, pain, and postoperative lymphedema. has also been shown to enhance the quality of life for cancer patients. However, very few studies have investigated the underlying mechanisms for these effects, a topic that requires systematic elucidation. Evidence has shown that moxibustion alone or combined with chemotherapy can improve survival and inhibit tumor growth in cancer-bearing animal models. The anticancer effect of moxibustion is associated with alleviating the tumor immunosuppressive and vascular microenvironments. Additionally, the therapeutic effects of moxibustion may originate from the heat and radiation produced during the combustion process on acupoints or lesions. This evidence provides a scientific basis for the clinical application of moxibustion in anticancer treatment and reducing the side effects of cancer therapies and helps promote the precise application of moxibustion in cancer treatment.


Assuntos
Moxibustão , Neoplasias , Humanos , Moxibustão/efeitos adversos , Qualidade de Vida , Neoplasias/tratamento farmacológico , Fadiga/terapia , Medicina Tradicional Chinesa , Microambiente Tumoral
7.
Neoplasma ; 70(3): 350-360, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37498064

RESUMO

We have identified that NUDT21 plays a vital role in MDS transformations, while the transcription factor RUNX1 is essential for normal hematopoiesis, which is a high expression in acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS), and we aim to explore the linkage between the two genes and new pathways for MDS transformation to AML. Prediction of RUNX1 expression levels and its relationship with NUDT21 in AML and MDS patients was performed using bioinformatics techniques and validated in patients. Using lentiviral packaging technology, NUDT21 knockdown and overexpression models were developed in AML and MDS cell lines. These models were validated using quantitative polymerase chain reaction (qPCR) and western blotting. The cell cycle, apoptosis, differentiation, and cytokines were examined by flow cytometry, CCK-8 analyzed proliferation, and the intracellular localization of NUDT21 and RUNX1 was examined by immunofluorescence. mRNA transcriptome sequencing was performed on THP-1, MUTZ-1, and Dapars analyzed SKM-1 cell lines and the sequencing data to observe the knockdown effect of NUDT21 on RUNX1. qPCR and western blot revealed a positive correlation between NUDT21 and RUNX1; both were located in the nucleus. Overexpression of NUDT21 reduced apoptosis, promoted cell proliferation, and possibly increased the invasive ability of cells. It also altered the APA site in the RUNX1 3'-UTRs region. NUDT21 regulates RUNX1 gene expression and promotes AML transformation in MDS through an APA mechanism.


Assuntos
Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Humanos , Apoptose , Proliferação de Células , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Leucemia Mieloide Aguda/genética , Síndromes Mielodisplásicas/genética
8.
Discov Oncol ; 14(1): 115, 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37382733

RESUMO

AIMS: To investigate the mechanism of exosomes' role in the transformation of MDS to AML. METHODS: Exosomes in culture supernatants of MDS and AML cell lines, were extracted by ultrafiltration and identified in three ways: morphology, size, and exosome protein surface markers. Exosomes from AML cell lines were then co-cultured with MDS cell lines and their impacts on MDS cell microenvironment, proliferation, differentiation, cell cycle, and apoptosis were analyzed by CCK-8 assay and flow cytometry. Furthermore, exosomes from MSC were extracted for further authentication. RESULTS: The transmission electron microscopy, nanoparticle tracking analysis, Western blotting, and flow cytometry methods all verify that ultrafiltration is a reliable method to extract exosomes in the culture medium. Exosomes from AML cell lines inhibit the proliferation of MDS cell lines, block cell cycle progression, and promote apoptosis and cell differentiation. It also leads to increased secretion of tumor necrosis factor-α (TNF-α) and reactive oxygen species (ROS) in MDS cell lines. In addition, MSC-derived exosomes were found to inhibit the proliferation of MDS cell lines, arrest cell cycle progression, promote apoptosis, and inhibit differentiation. CONCLUSION: Ultrafiltration is a proper methodology in extracting exosomes. The exosomes of AML origin and MSC origin may play a role in MDS leukemia transformation via targeting TNF-α/ROS-Caspase3 pathway.

9.
Prostate ; 83(1): 97-108, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36164668

RESUMO

BACKGROUND: The PI3K/AKT/mTOR signaling pathway is essential for initiation and progression of prostate cancer. However, there has been no a comprehensive comparison for the role of these signaling nodes in prostate tumor initiation and progression. METHODS: With genetically engineered animal models, we compared the impact of prostate-specific deletions of Pten, Tsc1, and Tsc2 and activation of Akt1 on tumor initiation and progression. Also, we assessed the expression and genetic alterations of PTEN, AKT1, TSC1, and TSC2 in human primary prostate cancers. RESULTS: For the genetically engineered mice, prostate conditional knockout (cKO) of Pten, Tsc1, and Tsc2 led to initiation and progression of mouse prostatic neoplasia hyperplasia (mPIN). Akt1 transgenic mice developed more aggressive mPINs than mice with Tsc1 or Tsc2 single-cKO, but the effect was more moderate than that for Pten single-cKO or Tsc1/Tsc2 double-cKO mice. Functional analyses showed that Pten single-cKO, AKT1 activation, and Tsc1/Tsc2 double-cKO induced cell proliferation more than Tsc1 or Tsc2 single-cKO, but only Pten single-cKO and AKT1 activation reduced epithelial adhesion. All cKO or AKT1 activation enhanced the phosphorylation of p-S6 (S235/236) but only Pten single-cKO and Tsc1/Tsc2 double-cKO enhanced the phosphorylation of p-AKT (S473) and p-4EBP1 (T37/46/70). In human prostate cancers, PTEN, but not AKT1, TSC1, or TSC2 had frequent genetic alterations. However, as key signaling nodes, AKT1, TSC1, and TSC2 may be responsible for PTEN loss-mediated tumor initiation and progression. CONCLUSION: Our results for genetically engineered mouse models suggest a differential role of the PI3K/AKT/mTOR signaling nodes in prostate cancer initiation and progression, but the underlying molecular mechanisms remain unaddressed.


Assuntos
Fosfatidilinositol 3-Quinases , Neoplasias da Próstata , Masculino , Humanos , Camundongos , Animais , Mutação , Transdução de Sinais , Neoplasias da Próstata/genética , Modelos Animais , Serina-Treonina Quinases TOR
10.
Acupunct Med ; 41(2): 96-109, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35585798

RESUMO

OBJECTIVES: Acupuncture has been found to be effective at relieving many inflammatory pain conditions, including rheumatoid arthritis (RA). We aimed to assess the anti-inflammatory potential of manual acupuncture (MA) treatment of RA using adjuvant-induced arthritic (AIA) rats and to explore the underlying mechanisms. METHODS: The anti-inflammatory and analgesic actions of MA at ST36 (Zusanli) in AIA rats were assessed using paw withdrawal latency and swelling, histological examination and cytokine detection by enzyme-linked immunoassay (ELISA). The cell-cell communication (CCC) network was analyzed with a multiplex immunoassay of 24 immune factors expressed in the inflamed joints, and the macrophage and Treg populations and associated cytokines regulated by MA were investigated using reverse-transcription quantitative polymerase chain reaction (RT-qPCR), ELISA and flow cytometry. RESULTS: MA markedly decreased heat hyperalgesia and paw swelling in AIA rats. MA-treated rats also exhibited decreased levels of pro-inflammatory cytokines (tumor necrosis factor (TNF)-α, interleukin (IL)-1ß) coupled with increased anti-inflammatory cytokines (IL-10, transforming growth factor (TGF)-ß1) in the ankle joints at protein and mRNA levels. CCC network analysis confirmed that macrophages are of critical importance and are potential therapeutic targets in RA. Repeated treatment with MA triggered a macrophage phenotypic switch in the paws, with fewer M1 macrophages. Prominent increases in the Treg cell population and TGF-ß1 in the popliteal lymph nodes demonstrated the immunomodulatory effects of MA. Furthermore, a selective TGF-ß1-receptor inhibitor, SB431542, attenuated the anti-inflammatory effects of MA and MA-induced suppression of the levels of M1-released cytokines. CONCLUSION: These findings provide novel evidence that the anti-inflammatory and analgesic effects of MA on RA act through phenotypic modulation involving the inhibition of M1 macrophage polarization and an increase in the Treg cell population, highlighting the potential therapeutic advantages of acupuncture in controlling pain and ameliorating inflammatory conditions.


Assuntos
Terapia por Acupuntura , Artrite Experimental , Artrite Reumatoide , Ratos , Animais , Linfócitos T Reguladores/metabolismo , Linfócitos T Reguladores/patologia , Fator de Crescimento Transformador beta1 , Citocinas , Artrite Reumatoide/tratamento farmacológico , Fator de Necrose Tumoral alfa , Macrófagos/metabolismo , Macrófagos/patologia , Dor/tratamento farmacológico , Anti-Inflamatórios/efeitos adversos , Artrite Experimental/tratamento farmacológico
11.
J Agric Food Chem ; 70(50): 15840-15847, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36448783

RESUMO

Control of Aspergillus flavus is beneficial for the agricultural economy and food safety. Stilbenes exhibit antifungal properties through an unknown mechanism. Here, six stilbenes isolated from Cajanus cajan were screened for anti-A. flavus activity. Among them, pinosylvin monomethyl ether (PME) showed the strongest anti-A. flavus activity and has a broad antifungal spectrum with negligible hemolysis within the concentration range measured. PME inhibited the spore germination of A. flavus and the accumulation of aflatoxin B1. Mechanistic studies showed that PME could bind the cell membrane phospholipids, resulting in increased permeability and decreased fluidity. Further metabolic analysis showed that PME caused the lysis of cell membranes and subsequent collapse of spores, which resulted in a cell wall autolysis-like phenotype. Structure-activity relationship analysis revealed the importance of maintaining amphiphilicity harmony by substituent groups for the antifungal activity of stilbenes. Together, natural stilbenes are promising antifungal lead compounds worthy of further exploration and research for potential application in the food, pharmaceutical, and agricultural industries.


Assuntos
Aspergillus flavus , Estilbenos , Aspergillus flavus/metabolismo , Éter/metabolismo , Antifúngicos/metabolismo , Estilbenos/farmacologia , Estilbenos/metabolismo , Etil-Éteres/metabolismo , Éteres
12.
Front Oncol ; 12: 864046, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35547876

RESUMO

Although chemotherapy is the first-line treatment strategy for a variety of tumors, its side effects have limited its efficacy. This review summarizes the progress on the use of acupoint stimulation to combat chemotherapy-associated side effects, including chemotherapy-induced peripheral neuropathy (CIPN), cognitive impairment (CICI), and gastrointestinal toxicity (GI), as well as myelosuppression and immunosuppression. It was found that acupoint stimulation attenuated CIPN and GI by modulating the 5-hydroxytryptamine system in dorsal root ganglia, the dorsal horn of the spinal cord, and the duodenum by reducing oxidative stress and neuroinflammation. Acupoint stimulation also alleviated GI by activating vagal activity in the nucleus tractus solitarius and promoting the secretion of gastrointestinal neuropeptide hormones. Acupoint stimulation restored both bone marrow hematopoiesis and immune function to combat cancer. In addition, the combination of acupoint stimulation and chemotherapy could inhibit tumor growth by promoting tumor cell apoptosis and the enrichment of chemotherapeutic agents in tumor tissue and by modulating the tumor immune microenvironment and normalizing the vasculature. Multiple evidence also indicates that neuroimmune regulation may be involved in the effects of acupoint stimulation. In conclusion, the evidence suggests that acupoint stimulation can alleviate the side effects of chemotherapy and can also assist chemotherapeutic agents in inhibiting tumor growth, which expands the clinical application of acupoint stimulation in cancer treatment. However, more high-quality clinical studies are needed to confirm the clinical value of acupoint stimulation.

13.
Nat Commun ; 13(1): 2792, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35589707

RESUMO

Human tubulin beta class IVa (TUBB4A) is a member of the ß-tubulin family. In most normal tissues, expression of TUBB4A is little to none, but it is highly expressed in human prostate cancer. Here we show that high expression levels of TUBB4A are associated with aggressive prostate cancers and poor patient survival, especially for African-American men. Additionally, in prostate cancer cells, TUBB4A knockout (KO) reduces cell growth and migration but induces DNA damage through increased γH2AX and 53BP1. Furthermore, during constricted cell migration, TUBB4A interacts with MYH9 to protect the nucleus, but either TUBB4A KO or MYH9 knockdown leads to severe DNA damage and reduces the NF-κB signaling response. Also, TUBB4A KO retards tumor growth and metastasis. Functional analysis reveals that TUBB4A/GSK3ß binds to the N-terminal of MYH9, and that TUBB4A KO reduces MYH9-mediated GSK3ß ubiquitination and degradation, leading to decreased activation of ß-catenin signaling and its relevant epithelial-mesenchymal transition. Likewise, prostate-specific deletion of Tubb4a reduces spontaneous tumor growth and metastasis via inhibition of NF-κB, cyclin D1, and c-MYC signaling activation. Our results suggest an oncogenic role of TUBB4A and provide a potentially actionable therapeutic target for prostate cancers with TUBB4A overexpression.


Assuntos
Neoplasias da Próstata , beta Catenina , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Transição Epitelial-Mesenquimal/genética , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Masculino , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , NF-kappa B/metabolismo , Neoplasias da Próstata/patologia , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Transdução de Sinais , Tubulina (Proteína)/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
14.
Oncogene ; 41(23): 3186-3196, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35501464

RESUMO

For human prostate cancer, the chromosome 8p21 locus, which contains NKX3.1 and the microRNA (miR)-3622 family (miR-3622a/b), is a frequently deleted region. Thus, miR-3622 is proposed as a suppressor for prostate cancer, but its role remains debatable. In the present study, we found that expression of miR-3622a was lower, whereas expression of miR-3622b-3p was higher in human prostate cancer tissues than in normal prostate tissues. miR-3622a-3p inhibited cell migration and invasion of human prostate cancer cells, whereas miR-3622b-3p facilitated cell proliferation, migration, and invasion. To address the opposing roles of miR-3622 family members in various human prostate cancer cell lines, we knocked out (KO) endogenous miR-3622, including both miR-3622a/b. Our results showed that miR-3622 KO reduced cell proliferation, migration, and invasion in vitro and tumor growth and metastasis in vivo. Functional analyses revealed that miR-3622 regulated the p53-downstream gene network, including AIFM2, c-MYC, and p21, to control apoptosis and the cell cycle. Furthermore, using CRISPR interference, miRNA/mRNA immunoprecipitation assays, and dual-luciferase assays, we established that AIFM2, a direct target of miR-3622b-3p, is responsible for miR-3622 KO-induced apoptosis. We identified an miR-3622-AIFM2 axis that contributes to oncogenic function during tumor progression. In addition, miR-3622 KO inhibited the epithelial-mesenchymal transition involved in prostate cancer metastasis via upregulation of vimentin. The results show that miR-3622b-3p is upregulated in human prostate cancers and has an oncogenic function in tumor progression and metastasis via repression of p53 signaling, especially through an miR-3622-AIFM2 axis. In contrast, for human prostate cancer, deletion of the miR-3622 locus at 8p21 reduced the oncogenic effects on tumor progression and metastasis.


Assuntos
MicroRNAs , Neoplasias da Próstata , Carcinogênese/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Cromossomos Humanos Par 8 , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Masculino , MicroRNAs/genética , MicroRNAs/metabolismo , Próstata/patologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
15.
Mol Cancer ; 21(1): 38, 2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35130925

RESUMO

BACKGROUND: Unlike autosomal tumor suppressors, X-linked tumor suppressors can be inactivated by a single hit due to X-chromosome inactivation (XCI). Here, we argue that targeted reactivation of the non-mutated allele from XCI offers a potential therapy for female breast cancers. METHODS: Towards this goal, we developed a dual CRISPR interference and activation (CRISPRi/a) approach for simultaneously silencing and reactivating multiple X-linked genes using two orthogonal, nuclease-deficient CRISPR/Cas9 (dCas9) proteins. RESULTS: Using Streptococcus pyogenes dCas9-KRAB for silencing XIST and Staphylococcus aureus dCas9-VPR for activating FOXP3, we achieved CRISPR activation of FOXP3 in various cell lines of human female breast cancers. In human breast cancer HCC202 cells, which express a synonymous heterozygous mutation in the coding region of FOXP3, simultaneous silencing of XIST from XCI led to enhanced and prolonged FOXP3 activation. Also, reactivation of endogenous FOXP3 in breast cancer cells by CRISPRi/a inhibited tumor growth in vitro and in vivo. We further optimized CRISPRa by fusing dCas9 to the demethylase TET1 and observed enhanced FOXP3 activation. Analysis of the conserved CpG-rich region of FOXP3 intron 1 confirmed that CRISPRi/a-mediated simultaneous FOXP3 activation and XIST silencing were accompanied by elevated H4 acetylation, including H4K5ac, H4K8ac, and H4K16ac, and H3K4me3 and lower DNA methylation. This indicates that CRISPRi/a targeting to XIST and FOXP3 loci alters their transcription and their nearby epigenetic modifications. CONCLUSIONS: The simultaneous activation and repression of the X-linked, endogenous FOXP3 and XIST from XCI offers a useful research tool and a potential therapeutic for female breast cancers.


Assuntos
Neoplasias da Mama , Genes Ligados ao Cromossomo X , Neoplasias da Mama/genética , Linhagem Celular , Metilação de DNA , Feminino , Fatores de Transcrição Forkhead/genética , Humanos , Oxigenases de Função Mista , Proteínas Proto-Oncogênicas
16.
J Clin Lab Anal ; 36(2): e24221, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34979042

RESUMO

OBJECTIVES: Platelet (PLT) recovery after chemotherapy is associated with the prognosis of patients with acute myeloid leukaemia (AML). This study aimed to explore the prognostic significance of early high PLT values in patients with de novo non-M3 AML who achieved first complete remission (CR). METHODS: A total of 206 patients with de novo non-M3 AML were analysed in this retrospective study. A receiver operating characteristic (ROC) curve was used to determine the optimal PLT cut-off. The overall survival (OS) and relapse-free survival (RFS) were assessed using Kaplan-Meier and Cox regression analyses. RESULTS: 312×109 /L was confined as the cut-off of the PLT count. The estimated 3-year OS of patients with high PLT was higher than that of their counterparts (72.3% vs. 34.6%, p = 0.001). In subgroup analysis, patients with high PLT had better OS in the favourable- and intermediate-risk (non-adverse-risk) AML (p = 0.001). The estimated 3-year RFS for the high and low PLT groups was 75.1% and 45.7% respectively (p = 0.078). Multivariate analyses revealed that high PLT count was an independent favourable variable for OS (HR = 0.264, p < 0.001) and RFS (HR = 0.375, p = 0.011) in the non-adverse-risk group. CONCLUSION: Our results showed that early high PLT count recovery at first CR in non-adverse-risk AML patients is a positive prognostic marker for survival outcomes.


Assuntos
Quimioterapia de Indução , Leucemia Mieloide/sangue , Contagem de Plaquetas , Adolescente , Adulto , Idoso , Criança , Feminino , Seguimentos , Humanos , Estimativa de Kaplan-Meier , Leucemia Mieloide/tratamento farmacológico , Leucemia Mieloide/mortalidade , Masculino , Pessoa de Meia-Idade , Prognóstico , Curva ROC , Indução de Remissão , Estudos Retrospectivos
17.
Int J Lab Hematol ; 44(2): 364-370, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34818692

RESUMO

INTRODUCTION: The colony-stimulating factor 3 receptor (CSF3R) controls the proliferation of myeloid progenitors and differentiation into neutrophils. However, the clinical features and prognostic significance of CSF3R mutations in primary acute myeloid leukemia (AML) patients are still unclear. METHODS: 158 newly diagnosed AML patients were retrospectively evaluated in our study. Amplicon-based next-generation sequencing (NGS) and multiplex-nested reverse-transcription polymerase chain reaction (RT-PCR) were used to investigate the 34 genes and 43 fusion genes associated with leukemia. In addition, clinical features, mutation incidence, and survival outcomes were compared between patients with CSF3R mutation and patients with wild-type CSF3R. RESULTS: In our study, CSF3R mutations were found in 7.6% (12/158) cases. The membrane-proximal amino acid substitution T618I (58.3%) was the most frequent mutation. CSF3R mutations were associated with higher WBC counts (P = .035). CEBPA mutation, TET2 mutation, and RUNX1-RUNX1T1 translocation were the most common co-mutations of CSF3R. The CSF3R gene was mutually exclusive with signal transduction genes (P = .029), while positively associated with TET2 mutations (P = .014). CSF3R mutations had no effect on CR1 (P = .935), R (P = .625) and OS (P = .1172). Patients with CSF3R mutations had a worse DFS (P = .0352) than those with wild-type CSF3R. Multivariate survival analysis showed that CSF3R mutation was an independent risk factor for DFS of primary AML patients (HR=2.048, 95%CI: 1.006-4.170, P = .048). CONCLUSION: AML patients with CSF3R mutations had unique clinical features and gene co-mutation spectrum. CSF3R mutation was an independent risk factor for DFS and could be a potential prognostic marker and therapeutic target for Chinese primary AML patients.


Assuntos
Leucemia Mieloide Aguda , China , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Mutação , Prognóstico , Receptores de Fator Estimulador de Colônias/genética , Estudos Retrospectivos
18.
Front Immunol ; 12: 714244, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34552585

RESUMO

Platinum-based chemotherapy is an effective treatment used in multiple tumor treatments, but produces severe side effects including neurotoxicity, anemia, and immunosuppression, which limits its anti-tumor efficacy and increases the risk of infections. Electroacupuncture (EA) is often used to ameliorate these side effects, but its mechanism is unknown. Here, we report that EA on ST36 and SP6 prevents cisplatin-induced neurotoxicity and immunosuppression. EA induces neuroprotection, prevents pain-related neurotoxicity, preserves bone marrow (BM) hematopoiesis, and peripheral levels of leukocytes. EA activates sympathetic BM terminals to release pituitary adenylate cyclase activating polypeptide (PACAP). PACAP-receptor PAC1-antagonists abrogate the effects of EA, whereas PAC1-agonists mimic EA, prevent neurotoxicity, immunosuppression, and preserve BM hematopoiesis during cisplatin chemotherapy. Our results indicate that PAC1-agonists may provide therapeutic advantages during chemotherapy to treat patients with advanced neurotoxicity or neuropathies limiting EA efficacy.


Assuntos
Cisplatino/uso terapêutico , Eletroacupuntura , Imunomodulação , Neuroimunomodulação , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Animais , Células da Medula Óssea/metabolismo , Neutropenia Febril Induzida por Quimioterapia , Cisplatino/farmacologia , Gerenciamento Clínico , Modelos Animais de Doenças , Eletroacupuntura/métodos , Hematopoese/genética , Hematopoese/imunologia , Humanos , Imunomodulação/genética , Leucopenia , Camundongos , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/terapia , Neuroimunomodulação/genética , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo
19.
Int J Lab Hematol ; 43(6): 1491-1500, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34374210

RESUMO

INTRODUCTION: GATA binding protein 2 (GATA2) gene, involved in progression of hematologic malignancies and various solid tumors, is a susceptibility gene for inherited acute myeloid leukemia (AML). However, the influence of its single-nucleotide polymorphisms (SNPs) on AML remains unknown. METHODS: We used allele-specific PCR to genotype GATA2 rs2335052 and rs78245253 in 159 newly diagnosed AML (non-M3) patients and 300 healthy volunteers, and all of participants came from China. And 34 common hematological tumor gene mutations in 159 AML patients were detected by next-generation sequencing. Kaplan-Meier survival analysis and Cox proportional hazard regression were used to analyze the association between the two SNPs and the prognosis of AML. RESULTS: We found GATA2 rs2335052 C/T genotype, rs2335052 T/T genotype and rs78245253 G/C genotype in 51.6%, 13.8% and 11.3% AML patients. Our results demonstrated that GATA2 rs2335052 and rs78245253 were associated with certain laboratory features in AML patients, which had no effect on the pathogeny, chemotherapy response and recurrence of patients. Nevertheless, Kaplan-Meier survival analysis showed that, compared with rs78245253 G/G genotype, rs78245253 G/C genotype was significantly related to a decrease in overall survival (OS) (P = .020). Additionally, multivariate cox regression analysis showed that GATA2 rs78245253 was an independent risk factor for OS of AML patients in China. CONCLUSION: GATA2 rs78245253 was an independent predictor for prognosis of AML patients in China and may be used as a potential indicator to predict the survival of AML patients in China. Further studies are needed to validate these findings and clarify the underlying mechanism.


Assuntos
Alelos , Fator de Transcrição GATA2/genética , Predisposição Genética para Doença , Leucemia Mieloide Aguda/genética , Polimorfismo de Nucleotídeo Único , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , China , Estudos de Associação Genética , Genótipo , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/mortalidade , Prognóstico , Resultado do Tratamento
20.
Front Neurosci ; 15: 695670, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34408622

RESUMO

Inflammatory pain is caused by peripheral tissue injury and inflammation. Inflammation leads to peripheral sensitization, which may further cause central sensitization, resulting in chronic pain and progressive functional disability. Neuroimmune crosstalk plays an essential role in the development and maintenance of inflammatory pain. Studies in recent years have shown that acupuncture can exert anti-inflammatory and analgesic effects by regulating peripheral (i.e., involving local acupoints and inflamed regions) and central neuroimmune interactions. At the local acupoints, acupuncture can activate the TRPV1 and TRPV2 channels of mast cells, thereby promoting degranulation and the release of histamine, adenosine, and other immune mediators, which interact with receptors on nerve endings and initiate neuroimmune regulation. At sites of inflammation, acupuncture enables the recruitment of immune cells, causing the release of opioid peptides, while also exerting direct analgesic effects via nerve endings. Furthermore, acupuncture promotes the balance of immune cells and regulates the release of inflammatory factors, thereby reducing the stimulation of nociceptive receptors in peripheral organs. Acupuncture also alleviates peripheral neurogenic inflammation by inhibiting the release of substance P (SP) and calcitonin gene-related peptide from the dorsal root ganglia. At the central nervous system level, acupuncture inhibits the crosstalk between glial cells and neurons by inhibiting the p38 MAPK, ERK, and JNK signaling pathways and regulating the release of inflammatory mediators. It also reduces the excitability of the pain pathway by reducing the release of excitatory neurotransmitters and promoting the release of inhibitory neurotransmitters from neurons and glial cells. In conclusion, the regulation of neuroimmune crosstalk at the peripheral and central levels mediates the anti-inflammatory and analgesic effects of acupuncture on inflammatory pain in an integrated manner. These findings provide novel insights enabling the clinical application of acupuncture in the treatment of inflammatory diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA