Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 5238, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898098

RESUMO

While sanguinarine has gained recognition for antimicrobial and antineoplastic activities, its complex conjugated structure and low abundance in plants impede broad applications. Here, we demonstrate the complete biosynthesis of sanguinarine and halogenated derivatives using highly engineered yeast strains. To overcome sanguinarine cytotoxicity, we establish a splicing intein-mediated temperature-responsive gene expression system (SIMTeGES), a simple strategy that decouples cell growth from product synthesis without sacrificing protein activity. To debottleneck sanguinarine biosynthesis, we identify two reticuline oxidases and facilitated functional expression of flavoproteins and cytochrome P450 enzymes via protein molecular engineering. After comprehensive metabolic engineering, we report the production of sanguinarine at a titer of 448.64 mg L-1. Additionally, our engineered strain enables the biosynthesis of fluorinated sanguinarine, showcasing the biotransformation of halogenated derivatives through more than 15 biocatalytic steps. This work serves as a blueprint for utilizing yeast as a scalable platform for biomanufacturing diverse benzylisoquinoline alkaloids and derivatives.


Assuntos
Benzofenantridinas , Isoquinolinas , Engenharia Metabólica , Saccharomyces cerevisiae , Temperatura , Isoquinolinas/metabolismo , Isoquinolinas/química , Benzofenantridinas/metabolismo , Benzofenantridinas/biossíntese , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Engenharia Metabólica/métodos , Halogenação , Sistema Enzimático do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/genética
2.
Biotechnol Bioeng ; 121(7): 2121-2132, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38629468

RESUMO

l-glutathione (GSH) is an important tripeptide compound with extensive applications in medicine, food additives, and cosmetics industries. In this work, an innovative whole-cell catalytic strategy was developed to enhance GSH production by combining metabolic engineering of GSH biosynthetic pathways with an adenosine-based adenosine triphosphate (ATP) regeneration system in Escherichia coli. Concretely, to enhance GSH production in E. coli, several genes associated with GSH and  l-cysteine degradation, as well as the branched metabolic flow, were deleted. Additionally, the GSH bifunctional synthase (GshFSA) and GSH ATP-binding cassette exporter (CydDC) were overexpressed. Moreover, an adenosine-based ATP regeneration system was first introduced into E. coli to enhance GSH biosynthesis without exogenous ATP additions. Through the optimization of whole-cell catalytic conditions, the engineered strain GSH17-FDC achieved an impressive GSH titer of 24.19 g/L only after 2 h reaction, with a nearly 100% (98.39%) conversion rate from the added  l-Cys. This work not only unveils a new platform for GSH production but also provides valuable insights for the production of other high-value metabolites that rely on ATP consumption.


Assuntos
Trifosfato de Adenosina , Adenosina , Escherichia coli , Glutationa , Engenharia Metabólica , Glutationa/metabolismo , Glutationa/biossíntese , Trifosfato de Adenosina/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Engenharia Metabólica/métodos , Adenosina/metabolismo , Adenosina/genética
3.
Biosens Bioelectron ; 222: 114957, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36463653

RESUMO

The accurate detection of microRNAs (miRNAs) is essential in the early diagnosis and treatment of cancers. Existing miRNA detection methods represented by nucleic acid amplification (NAA) techniques, such as qRT-PCR, suffer from the small size of miRNAs and lead to limited practicability. CRISPR Cas13a system, another valuable toolbox for nucleic acid detection, relies heavily on the behaviors of accompanying isothermal NAA techniques, which prompts similar deficiencies in miRNA detection. In this study, a dual nucleases-assisted cyclic amplification (DUNCAN) strategy has been established to replace NAA techniques for one-pot detection of miRNAs. The DUNCAN strategy contained an initial reaction based on CRISPR Cas13a for target recognition, and an accompanied cyclic reaction using DNA probes protected by polydopamine nanospheres (PDANSs) for signal amplification and result readout. Exemplified by miR-19b, which has been confirmed to be related to several tumors, the quantitative detection through the DUNCAN strategy was achieved in the dynamic range of 10-106 fM, with a calculated detection limit of 1.27 fM. Besides, the DUNCAN strategy presented well selectivity and anti-interference performance for accurate detection of miR-19b in complex miRNA mixtures, different cell lines and clinical samples compared with qRT-PCR. All these performances demonstrated the promising potential of the DUNCAN strategy in clinical miRNA detection and diagnosis.


Assuntos
Técnicas Biossensoriais , MicroRNAs , Nanosferas , MicroRNAs/genética , MicroRNAs/análise , Técnicas Biossensoriais/métodos , Indóis , Técnicas de Amplificação de Ácido Nucleico , Limite de Detecção
4.
Bioresour Bioprocess ; 10(1): 38, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38647946

RESUMO

ß-Elemene, an active ingredient found in medicinal plants like turmeric and zedoary, is a sesquiterpene compound with antitumor activity against various cancers. However, its current mode of production through plant extraction suffers from low efficiency and limited natural resources. Recently, there has been an increased interest in establishing microbial cell factories to produce germacrene A, which can be converted to ß-elemene by a one-step reaction in vitro. In this study, we constructed an engineered Pichia pastoris cell factory for producing germacrene A. We rerouted the fluxes towards germacrene A biosynthesis through the optimization of the linker sequences between germacrene A synthase (GAS) and farnesyl pyrophosphate synthase (ERG20), overexpression of important pathway genes (i.e., IDI1, tHMG1, and ACS), and multi-copy integration of related expression cassettes. In combination with medium optimization and bioprocess engineering, the final titer of germacrene A in a 1 L fermenter reached 1.9 g/L through fed-batch fermentation. This represents the first report on the production of germacrene A in P. pastoris and demonstrates its advantage in producing terpenoids and other value-added natural products.

5.
Biodes Res ; 2022: 0002, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37905202

RESUMO

Vinblastine has been used clinically as one of the most potent therapeutics for the treatment of several types of cancer. However, the traditional plant extraction method suffers from unreliable supply, low abundance, and extremely high cost. Here, we use synthetic biology approach to engineer Saccharomyces cerevisiae for de novo biosynthesis of vindoline and catharanthine, which can be coupled chemically or biologically to vinblastine. On the basis of a platform strain with sufficient supply of precursors and cofactors for biosynthesis, we reconstituted, debottlenecked, and optimized the biosynthetic pathways for the production of vindoline and catharanthine. The vindoline biosynthetic pathway represents one of the most complicated pathways ever reconstituted in microbial cell factories. Using shake flask fermentation, our engineered yeast strains were able to produce catharanthine and vindoline at a titer of 527.1 and 305.1 µg·liter-1, respectively, without accumulating detectable amount of pathway intermediates. This study establishes a representative example for the production of valuable plant natural products in yeast.

6.
Metab Eng ; 66: 319-327, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33713797

RESUMO

S-Adenosyl-L-methionine (SAM) is an important intracellular metabolite and widely used for treatment of various diseases. Although high level production of SAM had been achieved in yeast, novel metabolic engineering strategies are needed to further enhance SAM production for industrial applications. Here genome-scale engineering (GSE) was performed to identify new targets for SAM overproduction using the multi-functional genome-wide CRISPR (MAGIC) system, and the effects of these newly identified targets were further validated in industrial yeast strains. After 3 rounds of FACS screening and characterization, numerous novel targets for enhancing SAM production were identified. In addition, transcriptomic and metabolomic analyses were performed to investigate the molecular mechanisms for enhanced SAM accumulation. The best combination (upregulation of SNZ3, RFC4, and RPS18B) improved SAM productivity by 2.2-fold and 1.6-fold in laboratory and industrial yeast strains, respectively. Using GSE of laboratory yeast strains to guide industrial yeast strain engineering presents an effective approach to design microbial cell factories for industrial applications.


Assuntos
Engenharia Metabólica , Saccharomyces cerevisiae , Metionina , S-Adenosilmetionina , Saccharomyces cerevisiae/genética
7.
Chemosphere ; 273: 129496, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33524758

RESUMO

Vermiremediation on improvement of antimony (Sb) and cadmium (Cd) contaminated soil was less reported. In this study, earthworm Eisenia fetida was exposed into soil spiked with Sb and Cd and their mixture for 30 days, and then we measured multiple soil enzyme activities and bacteria communities via enzymatic reaction and high-throughput sequencing of 16 S rRNA genes. The results showed that Sb and Cd at high treatment levels inhibited the activities of urease, neutral phosphatase and protease significantly, but earthworm could promote the activities of urease and neutral phosphatase by 17.75%-121.91% and 1.46%-118.97%, respectively. However, earthworms inhibited catalase and had no effect on protease. The Geometric Mean Index suggested that earthworms led to a higher soil biochemistry function. According to a taxonomic analysis, bacterial community structure predominantly consisted of phylum Proteobacteria, Actinobacteria, Firmicutes, etc. and class Gammaproteobacteria, Actinobacteria, Alphaproteobacteria, etc.; furthermore, Pielou index and Shannon index (Alpha diversity in the habitat) indicated that bacteria diversity and evenness increased in the presence of earthworms. The heating map revealed that earthworms made genus Sphingomonas, Flavobacterium, etc. and species Sphingomonas jaspsi, Conexibacter, etc. dominate. Overall, earthworm is a suitable remediation species to improve the ecological function of heavy metal polluted soil. However, the specific mechanism and causal relationship of how earthworm to control enzyme activity and bacteria community remained to be explored.


Assuntos
Oligoquetos , Poluentes do Solo , Animais , Antimônio , Cádmio/análise , Cádmio/toxicidade , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade , Sphingomonas
8.
Biotechnol Bioeng ; 118(3): 1050-1065, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33205834

RESUMO

Cytochrome P450 enzymes (P450s) are a superfamily of heme-thiolate proteins widely existing in various organisms. Due to their key roles in secondary metabolism, degradation of xenobiotics, and carcinogenesis, there is a great demand to heterologously express and obtain a sufficient amount of active eukaryotic P450s. However, most eukaryotic P450s are endoplasmic reticulum-localized membrane proteins, which is the biggest challenge for functional expression to high levels. Furthermore, the functions of P450s require the cooperation of cytochrome P450 reductases for electron transfer. Great efforts have been devoted to the heterologous expression of eukaryotic P450s, and yeasts, particularly Saccharomyces cerevisiae are frequently considered as the first expression systems to be tested for this challenging purpose. This review discusses the strategies for improving the expression and activity of eukaryotic P450s in yeasts, followed by examples of P450s involved in biosynthetic pathway engineering.


Assuntos
Sistema Enzimático do Citocromo P-450 , Expressão Gênica , Saccharomyces cerevisiae , Animais , Sistema Enzimático do Citocromo P-450/biossíntese , Sistema Enzimático do Citocromo P-450/genética , Humanos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética
9.
Metab Eng ; 61: 406-415, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-31085296

RESUMO

Biotin (Vitamin H or B7) is one of the most important cofactors involved in central metabolism of pro- and eukaryotic cells. Currently, chemical synthesis is the only route for commercial production. This study reports efficient microbial production of biotin in Pseudomonas mutabilis via multi-level metabolic engineering strategies: Level 1, overexpressing rate-limiting enzyme encoding genes involved in biotin synthesis (i.e. promoter and ribosome binding site engineering); Level 2, deregulating biotin biosynthesis (i.e. deletion of the negative regulator and the biotin importer genes); Level 3, enhancing the supply of co-factors (i.e. S-adenosyl-L-methionine and [Fe-S] cluster) for biotin biosynthesis; Level 4, increasing the availability of the precursor pimelate thioester (i.e. introduction of the BioW-BioI pathway from Bacillus subtilis). The combination of these interventions resulted in the establishment of a biotin overproducing strain, with the secretion of biotin increased for more than 460-fold. In combination with bioprocess engineering efforts, biotin was produced at a final titer of 87.17 mg/L in a shake flask and 271.88 mg/L in a fed-batch fermenter with glycerol as the carbon source. This is the highest biotin titer ever reported so far using rationally engineered microbial cell factories.


Assuntos
Biotina , Engenharia Metabólica , Pseudomonas , Biotina/biossíntese , Biotina/genética , Pseudomonas/genética , Pseudomonas/metabolismo
10.
World J Microbiol Biotechnol ; 35(12): 185, 2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31728760

RESUMO

Glutathione (GSH) and S-adenosyl methionine (SAM) have been applied as liver-protective factors to prevent and treat many different liver damages and diseases. Due to their low stability and short half-life, oral administration of GSH or SAM might be replaced by continuous supplying through living lactic bacteria in yogurt. In this study, Lactococcus lactis was engineered via synthetic biology strategies to produce these two important molecules. The bi-functional GSH synthase gene (gshF) and SAM synthase gene (metK) were transformed into food-grade L. lactis together with an adhesion factor gene (cwaA). The highest accumulation of SAM (9.0 mg/L) and GSH (17.3 mg/L) was achieved after 17 h cultivation of the recombinant L. lactis. Meanwhile, the autoaggregation and hydrophobicity were also improved significantly, which suggested that this engineered L. lactis might have an increased colonization-prone ability in human GI. Our studies demonstrated one potential route to self-produce and deliver the liver-healthy factors within living probiotic bacteria.


Assuntos
Glutationa/metabolismo , Lactococcus lactis/metabolismo , Engenharia Metabólica/métodos , S-Adenosilmetionina/metabolismo , Adesinas Bacterianas/genética , Vias Biossintéticas , Fermentação , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos/genética , Humanos , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Lactococcus lactis/enzimologia , Lactococcus lactis/genética , Lactococcus lactis/crescimento & desenvolvimento , Metionina Adenosiltransferase/genética , Nisina/metabolismo , Probióticos
11.
Appl Microbiol Biotechnol ; 103(21-22): 8911-8922, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31583448

RESUMO

Corynebacterium glutamicum is a versatile workhorse for producing industrially important commodities. The design of an optimal strain often requires the manipulation of metabolic and regulatory genes to different levels, such as overexpression, downregulation, and deletion. Unfortunately, few tools to achieve multiple functions simultaneously have been reported. Here, a dual-functional clustered regularly interspaced short palindromic repeats (CRISPR) (RE-CRISPR) system that combined genome editing and transcriptional repression was designed using a catalytically active Cas12a (a.k.a. Cpf1) in C. glutamicum. Firstly, gene deletion was achieved using Cas12a under a constitutive promoter. Then, via engineering of the guide RNA sequences, transcriptional repression was successfully achieved using a catalytically active Cas12a with crRNAs containing 15 or 16 bp spacer sequences, whose gene repression efficiency was comparable to that of the canonical system (deactivated Cas12a with full-length crRNAs). Finally, RE-CRISPR was developed to achieve genome editing and transcriptional repression simultaneously by transforming a single crRNA plasmid and Cas12a plasmid. The application of RE-CRISPR was demonstrated to increase the production of cysteine and serine for ~ 3.7-fold and 2.5-fold, respectively, in a single step. This study expands the application of CRISPR/Cas12a-based genome engineering and provides a powerful synthetic biology tool for multiplex metabolic engineering of C. glutamicum.


Assuntos
Proteínas de Bactérias/genética , Proteínas Associadas a CRISPR/genética , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Cisteína/biossíntese , Endodesoxirribonucleases/genética , Edição de Genes/métodos , Engenharia Metabólica/métodos , Serina/biossíntese , Proteínas de Bactérias/metabolismo , Reatores Biológicos/microbiologia , Proteínas Associadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , Endodesoxirribonucleases/metabolismo , Deleção de Genes , Genoma Bacteriano/genética , Redes e Vias Metabólicas/genética , RNA Guia de Cinetoplastídeos/genética
12.
Biotechnol Bioeng ; 116(12): 3312-3323, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31478186

RESUMO

S-Adenosyl-l-methionine (SAM) is an important small molecule compound widely used in treating various diseases. Although l-methionine is generally used, the low-cost dl-methionine is more suitable as the substrate for industrial production of SAM. However, d-methionine is inefficient for SAM formation due to the substrate-specificity of SAM synthetase. In order to increase the utilization efficiency of dl-methionine, intracellular conversion of d-methionine to l-methionine was investigated in the type strain Saccharomyces cerevisiae BY4741 and an industrial strain S. cerevisiae HDL. Firstly, via disruption of HPA3 encoding d-amino acid-N-acetyltransferase, d-methionine was accumulated in vivo and no N-acetyl-d-methionine production was observed. Further, codon-optimized d-amino acid oxidase (DAAO) gene from Trigonopsis variabilis (Genbank MK280686) and l-phenylalanine dehydrogenase gene (l-PheDH) from Rhodococcus jostii (Genbank MK280687) were introduced to convert d-methionine to l-methionine, SAM concentration and content was increased by 110% and 72.1% in BY4741 (plasmid borne) and increased by 38.2% and 34.1% in HDL (genome integrated), by feeding 0.5 g/L d-methionine. Using the recently developed CRISPR tools, the DAAO and l-PheDH expression cassettes were integrated into the HPA3 and SAH1 loci while SAM2 expression was integrated into the SPE2 and GLC3 loci of HDL, and the resultant strain HDL-R2 accumulated 289% and 192% more SAM concentration and content, respectively, by feeding 0.5 g/L dl-methionine. Further, in a 10 L fed-batch fermentation process, 10.3 g/L SAM were accumulated with the SAM content of 242 mg/g dry cell weight by feeding 16 g/L dl-methionine. The strategies used here provided a promising approach to enhance SAM production using low-cost dl-methionine.


Assuntos
Reatores Biológicos , Engenharia Metabólica , Metionina/metabolismo , Microrganismos Geneticamente Modificados , S-Adenosilmetionina/metabolismo , Saccharomyces cerevisiae , Microrganismos Geneticamente Modificados/genética , Microrganismos Geneticamente Modificados/crescimento & desenvolvimento , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento
13.
J Ind Microbiol Biotechnol ; 46(12): 1685-1695, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31420796

RESUMO

Glutathione is a bioactive tripeptide composed of glycine, L-cysteine, and L-glutamate, and has been widely used in pharmaceutical, food, and healthy products. The current metabolic studies of glutathione were mainly focused on the native producing strains with precursor amino acid supplementation. In the present work, Corynebacterium glutamicum, a workhorse for industrial production of a series of amino acids, was engineered to produce glutathione. First, the introduction of glutathione synthetase gene gshF from Streptococcus agalactiae fulfilled the ability of glutathione production in C. glutamicum and revealed that L-cysteine was the limiting factor. Then, considering the inherent capability of L-glutamate synthesis and the availability of external addition of low-cost glycine, L-cysteine biosynthesis was enhanced using a varieties of pathway engineering methods, such as disrupting the degradation pathways of L-cysteine and L-serine, and removing the repressor responsible for sulfur metabolism. Finally, the simultaneously introduction of gshF and enhancement of cysteine formation enabled C. glutamicum strain to produce glutathione greatly. Without external addition of L-cysteine and L-glutamate, 756 mg/L glutathione was produced. This is first time to demonstrate the potential of the glutathione non-producing strain C. glutamicum for glutathione production and provide a novel strategy to construct glutathione-producing strains.


Assuntos
Corynebacterium glutamicum/metabolismo , Glutationa/biossíntese , Corynebacterium glutamicum/genética , Cisteína/metabolismo , Ácido Glutâmico/metabolismo , Glicina/metabolismo , Engenharia Metabólica/métodos , Redes e Vias Metabólicas , Serina/metabolismo
14.
Metab Eng ; 48: 279-287, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29933064

RESUMO

Cellular metabolic networks should be carefully balanced using metabolic engineering to produce the desired products at the industrial scale. As the precursor for the biosynthesis of the neurotransmitter serotonin, 5-hydroxytryptophan (5-HTP) is effective in treating a variety of diseases, such as depression, fibromyalgia, obesity, and cerebellar ataxia. Due to the lack of an efficient synthetic method, commercial production of 5-HTP is only achieved by extracting from the seeds of Griffonia Smplicifolia. This study reports efficient microbial production of 5-HTP via metabolically engineered Escherichia coli. Firstly, human tryptophan hydroxylase I (TPH1) gene was functionally expressed. For endogenous supply of the cofactor tetrahydrobiopterin (BH4), human BH4 biosynthesis and regeneration pathway was reconstituted. Whole-cell bioconversion resulted in high-level production of 5-HTP (~1.2 g/L) from 2 g/L L-tryptophan in shake flasks. Further metabolic engineering efforts were employed to achieve 5-HTP biosynthesis from simple carbon sources. The whole biosynthetic pathway was divided into three functional modules, L-tryptophan module, the hydroxylation module, and the BH4 module. By reducing the copy number of L-tryptophan module, replacing TPH1 with a more stable mutant form, and promoter regulation of the BH4 module, 5-HTP was produced at a final titer of 1.3 g/L in the shake flask and 5.1 g/L in a fed-batch fermenter with glycerol as the carbon source, both of which were the highest ever reported for microbial production of 5-HTP.


Assuntos
5-Hidroxitriptofano , Biopterinas/análogos & derivados , Escherichia coli , Engenharia Metabólica , Triptofano Hidroxilase , 5-Hidroxitriptofano/biossíntese , 5-Hidroxitriptofano/genética , Biopterinas/biossíntese , Biopterinas/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Triptofano Hidroxilase/biossíntese , Triptofano Hidroxilase/genética
15.
Appl Microbiol Biotechnol ; 101(12): 4915-4922, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28374050

RESUMO

The effects of pH control strategy and fermentative operation modes on the biosynthesis of pyrroloquinoline quinine (PQQ) were investigated systematically with Methylobacillus sp. CCTCC M2016079 in the present work. Firstly, the shake-flask cultivations and benchtop fermentations at various pH values ranging from 5.3 to 7.8 were studied. Following a kinetic analysis of specific cell growth rate (µ x ) and specific PQQ formation rate (µ p ), the discrepancy in optimal pH values between cell growth and PQQ biosynthesis was observed, which stimulated us to develop a novel two-stage pH control strategy. During this pH-shifted process, the pH in the broth was controlled at 6.8 to promote the cell growth for the first 48 h and then shifted to 5.8 to enhance the PQQ synthesis until the end of fermentation. By applying this pH-shifted control strategy, the maximum PQQ production was improved to 158.61 mg/L in the benchtop fermenter, about 44.9% higher than that under the most suitable constant pH fermentation. Further fed-batch study showed that PQQ production could be improved from 183.38 to 272.21 mg/L by feeding of methanol at the rate of 11.5 mL/h in this two-stage pH process. Meanwhile, the productivity was also increased from 2.02 to 2.84 mg/L/h. In order to support cell growth during the shifted pH stage, the combined feeding of methanol and yeast extract was carried out, which brought about the highest concentration (353.28 mg/L) and productivity (3.27 mg/L/h) of PQQ. This work has revealed the potential of our developed simple and economical strategy for the large-scale production of PQQ.


Assuntos
Técnicas de Cultura Celular por Lotes/métodos , Methylobacillus/crescimento & desenvolvimento , Methylobacillus/metabolismo , Cofator PQQ/biossíntese , Técnicas de Cultura Celular por Lotes/economia , Biomassa , Meios de Cultura/química , Fermentação , Glucose/metabolismo , Concentração de Íons de Hidrogênio , Cinética
16.
J Biotechnol ; 236: 64-70, 2016 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-27510807

RESUMO

S-Adenosyl-l-methionine (SAM) is an important metabolite having prominent roles in treating various diseases. In order to improve the production of SAM, the regulation of three metabolic pathways involved in SAM biosynthesis were investigated in an industrial yeast strain ZJU001. GLC3 encoded glycogen-branching enzyme (GBE), SPE2 encoded SAM decarboxylase, as well as ERG4 and ERG6 encoded key enzymes in ergosterol biosynthesis, were knocked out in ZJU001 accordingly. The results indicated that blocking of either glycogen pathway or SAM decarboxylation pathway could improve the SAM accumulation significantly in ZJU001, while single disruption of either ERG4 or ERG6 gene had no obvious effect on SAM production. Moreover, the double mutant ZJU001-GS with deletion of both GLC3 and SPE2 genes was also constructed, which showed further improvement of SAM accumulation. Finally, SAM2 was overexpressed in ZJU001-GS to give the best SAM-producing recombinant strain ZJU001-GS-SAM2, in which 12.47g/L SAM was produced by following our developed pseudo-exponential fed-batch cultivation strategy, about 81.0% increase comparing to its parent strain ZJU001. The present work laid a solid base for large-scale SAM production with the industrial Saccharomyces cerevisiae strain.


Assuntos
Engenharia Metabólica/métodos , S-Adenosilmetionina/metabolismo , Saccharomyces cerevisiae/metabolismo , Fermentação , Microbiologia Industrial , Saccharomyces cerevisiae/genética
17.
Appl Microbiol Biotechnol ; 100(24): 10321-10330, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27464830

RESUMO

A novel and efficient screening method for pyrroloquinoline quinone (PQQ) high-yielding methylotrophic strains was developed by using glucose dehydrogenase apoenzyme (GDHA) which depended on PQQ as the cofactor. Using this high-throughput method, PQQ high-yielding strains were rapidly screened out from thousands of methylotrophic colonies at a time. The comprehensive phylogenetic analysis revealed that the highest PQQ-producing strain zju323 (CCTCC M 2016079) could be assigned to a novel species in the genus Methylobacillus of the Betaproteobacteria. After systematic optimization of different medium components and cultivation conditions, about 33.4 mg/L of PQQ was obtained after 48 h of cultivation with Methylobacillus sp. zju323 at the shake flask scale. Further cultivations of Methylobacillus sp. zju323 were carried out to investigate the biosynthesis of PQQ in 10-L bench-top fermenters. In the batch operation, the PQQ accumulation reached 78 mg/L in the broth after 53 h of cultivation. By adopting methanol feeding strategy, the highest PQQ concentration was improved up to 162.2 mg/L after 75 h of cultivation. This work developed a high-throughput strategy of screening PQQ-producing strains from soil samples and also demonstrated one potential bioprocess for large-scale PQQ production with the isolated PQQ strain.


Assuntos
Programas de Rastreamento/métodos , Methylobacillus/crescimento & desenvolvimento , Methylobacillus/metabolismo , Cofator PQQ/metabolismo , Meios de Cultura/química , Fermentação , Glucose Desidrogenase/metabolismo , Methylobacillus/classificação , Methylobacillus/genética , Técnicas Microbiológicas/métodos , Filogenia
18.
Appl Biochem Biotechnol ; 178(6): 1263-72, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26728652

RESUMO

S-Adenosyl-L-methionine (SAM) plays important roles in trans-methylation, trans-sulfuration, and polyamine synthesis in all living cells, and it is also an effective cure for liver disease, depressive syndromes, and osteoarthritis. The increased demands of SAM in pharmaceuticals industry have aroused lots of attempts to improve its production. In this study, a multiple-copy integrative plasmid pYMIKP-SAM2 was introduced into the chromosome of wild-type Saccharomyces cerevisiae strain ZJU001 to construct the recombined strain R1-ZJU001. Further studies showed that the recombinant yeast exhibited higher enzymatic activity of methionine adenosyltransferase and improved its SAM biosynthesis. With a three-phase fed-batch strategy in 15-liter bench-top fermentor, 8.81 g/L SAM was achieved after 52 h cultivation of R1-ZJU001, about 27.1 % increase over its parent strain ZJU001, whereas the SAM content was also improved from 64.6 mg/g DCW to 91.0 mg/g DCW. Our results shall provide insights into the metabolic engineering of SAM pathway in yeast for improved productivity of SAM and subsequent industrial applications.


Assuntos
Genoma Fúngico , Metionina Adenosiltransferase/genética , S-Adenosilmetionina/metabolismo , Saccharomyces cerevisiae/genética , Cromossomos Fúngicos , Fermentação
19.
Prep Biochem Biotechnol ; 46(5): 461-6, 2016 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-26444437

RESUMO

19,20-Epoxy-cytochalasin Q (B5A) is a cytochalasin with a wide range of biological activities, which can be produced by Xylaria sp. sof11, a strain isolated from the seafloor of the northern South China Sea. Since the low titer of B5A has greatly limited its further studies, we have systematically conducted the fermentative optimization for B5A production in this article. The effects of major medium components, including the carbon and organic nitrogen sources, as well as of the concentration of sea salt, were respectively investigated through single-factor experiments. As a result, sucrose and fish meal were determined to be the key factors affecting the production of B5A. Then three important variables, sucrose, fish meal, and filling volume, were screened out by the Plackett-Burman (PB) design. The optimal level of these variables was further confirmed by response surface analysis. The final formulated medium was set as 35.2 g/L sucrose and 18.0 g/L fish meal, with filling volume of 34.6 mL, which could afford 440.3 mg/L production of B5A, approximately 4.4-fold higher than that in the original medium. The significantly improved productivity of B5A will facilitate the subsequent mechanistic and clinical studies of B5A.


Assuntos
Citocalasinas/metabolismo , Sordariales/metabolismo , Cromatografia Líquida de Alta Pressão
20.
J Biol Chem ; 286(24): 21287-94, 2011 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-21454624

RESUMO

The radical S-adenosylmethionine (AdoMet) enzyme superfamily is remarkable at catalyzing chemically diverse and complex reactions. We have previously shown that NosL, which is involved in forming the indole side ring of the thiopeptide nosiheptide, is a radical AdoMet enzyme that processes L-Trp to afford 3-methyl-2-indolic acid (MIA) via an unusual fragmentation-recombination mechanism. We now report the expansion of the MIA synthase family by characterization of NocL, which is involved in nocathiacin I biosynthesis. EPR and UV-visible absorbance spectroscopic analyses demonstrated the interaction between L-Trp and the [4Fe-4S] cluster of NocL, leading to the assumption of nonspecific interaction of [4Fe-4S] cluster with other nucleophiles via the unique Fe site. This notion is supported by the finding of the heterogeneity in the [4Fe-4S] cluster of NocL in the absence of AdoMet, which was revealed by the EPR study at very low temperature. Furthermore, a free radical was observed by EPR during the catalysis, which is in good agreement with the hypothesis of a glycyl radical intermediate. Combined with the mutational analysis, these studies provide new insights into the function of the [4Fe-4S] cluster of radical AdoMet enzymes as well as the mechanism of the radical-mediated complex carbon chain rearrangement catalyzed by MIA synthase.


Assuntos
Proteínas Ferro-Enxofre/química , Peptídeos/química , S-Adenosilmetionina/química , Sequência de Aminoácidos , Catálise , Análise Mutacional de DNA , Espectroscopia de Ressonância de Spin Eletrônica , Escherichia coli/metabolismo , Radicais Livres , Peptídeos e Proteínas de Sinalização Intercelular , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , Espectrofotometria Ultravioleta , Triptofano/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA