Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 465: 133385, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38160558

RESUMO

Volatile organic compounds (VOCs) are considered as important precursors of ozone in the air, while the contribution of VOCs from pesticide application (PVOCs) to ozone production is unknown. Utilizing data from the Ministry of Agriculture and Rural Affairs of the People's Republic of China and ChinaCropPhen1km, this paper developed PVOC emission inventories with a resolution of 1 km for the main crops (rice, maize, and wheat) from 2012 to 2019 in China. The results revealed that pesticide application is an important VOC emission source in China. Specially, the PVOC emissions from the major grain-producing regions in June accounted for approximately 30% of the annual total PVOC emissions in the local regions. The simulation with the Weather Research and Forecasting Community Multiscale Air Quality model (WRF-CMAQ) indicated that the PVOC emissions increased the mean maximum daily 8-hour average (MDA8) ozone concentration across China by 2.5 ppb in June 2019. During the same period, PVOCs in the parts of North China Plain contributed 10% of the ozone formation. Under the comprehensive emission reduction scenario, it is anticipated that by 2025, the joint implementation of measures including reducing pesticide application, improving pesticide utilization efficiency and promoting solvent substitution will decrease PVOC emissions by 60% compared with 2019, thereby mitigating ozone pollution.

2.
Chemosphere ; 341: 140032, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37659508

RESUMO

CuFeS2 is regarded as a promising catalyst for heterogeneous activation to remove organic contaminants in wastewater. However, effects of solvents in regulating material synthesis and catalytic activity are still not clear. Herein, we reported the role of water, ethanol, ethylene glycol (EG), glycerol, and polyethylene glycol 200 on the synthesis of CuFeS2 micro-flowers and their performance in activating persulfate (PS) to remove imidacloprid (IMI) pesticide. The results showed that the solvent had an effect on the morphology, crystallinity, yields, specific surface areas and unpaired electrons of CuFeS2 micro-flowers. The degradation experiments revealed the efficient catalytic activity of EG-mediated CuFeS2 for heterogeneous PS activation. SO4•- and •OH were identified in EG-CuFeS2/PS system and •OH (90.4%) was the dominant reactive species. Meanwhile, stable 20% of η[PMSO2] (the molar ratio of PMSO2 generation to PMSO consumption) was achieved and demonstrated that Fe(IV) was also involved in the degradation process. Moreover, S2- promoted the cycling of Fe3+/Fe2+ and Cu2+/Cu+, enhancing the synergistic activation and reusability of the catalyst. Density functional theory (DFT) calculations verified that PS was adsorbed by Fe atom and electron transfer occurred on the catalyst surface. Three possible degradation pathways of IMI were proposed by analysis of the degradation intermediates and their toxicities were evaluated by ECOSAR. This study not only provides a theoretical foundation for catalyst design, but also promotes the industrial application of bimetallic sulfide Fenton-like catalysts for water management.


Assuntos
Etilenoglicol , Poluentes Químicos da Água , Oxirredução , Nitrocompostos , Sulfetos , Água , Glicóis , Poluentes Químicos da Água/análise
3.
Environ Sci Pollut Res Int ; 30(13): 36979-36992, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36564682

RESUMO

Odor pollution caused by brownfield site has attracted increasing attention. However, to date, fewer suitable materials can be used to control the emission of odor pollutant from brownfield site during remediation. This study prepared a kind of combined hydrogel solution based on sodium alginate and carboxymethyl cellulose sodium (CHS-SC) and tested the possibility of its membrane in controlling the emission of three odor pollutants (trichloroethylene, dimethyl disulfide, and p-xylene) from polluted soil. Our results showed that CHS-SC membrane could effectively control the emission of three odor pollutants from polluted soil. Comparatively, CHS-SC membrane had higher control rates for three odor pollutants at high ambient temperature (32 °C), short storage time of CHS-SC (5 days, 25 °C), and low odor pollutant concentration (2 ml/kg soil) than at low ambient temperature (2 °C), long storage time of CHS-SC (10 d, 25 °C), and high odor pollutant concentration (4 ml/kg soil), respectively. CHS-SC membrane was degraded by 79.23% after 150 days in soil and slightly changed soil bacterial community, indicating that it had good biodegradability and environmental friendliness. In addition, CHS-SC cost was the lowest among the products with similar function. This study shows that CHS-SC is effective in short-timely controlling the emission of odor pollutants from brownfield site.


Assuntos
Poluentes Ambientais , Poluentes do Solo , Odorantes/análise , Hidrogéis , Poluição Ambiental/análise , Poluentes do Solo/análise , Solo
4.
Allergol Immunopathol (Madr) ; 50(6): 84-92, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36335450

RESUMO

BACKGROUND: Inflammatory bowel disease (IBD) is a common chronic intestinal disease. Protopine isolated from different plants has been investigated to understand its special functions on varied diseases. However, the regulatory effects of protopine on the progression of IBD remain unclear. Our study is aimed to explore the effects of protopine on the progression of IBD and its underlying regulatory mechanism of action. METHODS: The cell viability was assessed through MTT colorimetric assay. The protein expressions of genes were examined by Western blot analysis. The cell apoptosis and reactive oxygen species level were measured using flow cytometry. The levels of inflammation and oxidative stress-related proteins were tested through enzyme-linked-immunosorbent serologic assay. The intracellular Ca2+ concentration and mitochondrial membrane potential were measured through immunofluorescence assay. RESULTS: First, different concentrations of lipopolysaccharide (LPS) were treated with NCM460 cells to establish IBD cell model, and 5-µg/mL LPS was chosen for followed experiments. In this study, we discovered that protopine relieved the LPS-induced inhibited intestinal epithelial cell viability and enhanced cell apoptosis. Moreover, protopine attenuated LPS-stimulated inflammation activation and oxidative stress. Further experiments illustrated that the increased intracellular Ca2+ concentration and decreased mitochondrial membrane potential stimulated by LPS were reversed by protopine treatment. Finally, through Western blot analysis, it was demonstrated that protopine retarded the activated NLR family pyrin domain containing 3 (NLRP3) and nuclear factor kappa B (NF-κB) signaling pathways mediated by LPS. CONCLUSION: Protopine alleviated LPS-triggered intestinal epithelial cell injury by inhibiting NLRP3 and NF-κB signaling pathways to reduce inflammation and oxidative stress. This discovery may provide a useful drug for treating IBD.


Assuntos
Doenças Inflamatórias Intestinais , NF-kappa B , Humanos , NF-kappa B/metabolismo , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Transdução de Sinais , Inflamação/tratamento farmacológico , Estresse Oxidativo , Células Epiteliais/metabolismo , Doenças Inflamatórias Intestinais/tratamento farmacológico
5.
Environ Monit Assess ; 194(10): 737, 2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36068415

RESUMO

Solvents, components of pesticide emulsifiable concentrates (ECs), emit quantities of volatile organic compounds (VOCs) into the atmosphere. In the air, their active involvement in oxidative chemical reactions with oxidants exposed to ultraviolet solar radiation can result in the formation of ozone. The quantitative assessment of VOC emissions from agricultural pesticide applications remains hampered by many factors, especially the volatility coefficient of solvents in pesticides. Therefore, this study identified solvents in 20 widely used pesticide products in China. The volatility coefficients of the solvents were investigated based on a spraying test to evaluate VOC emissions from agricultural pesticide applications and their ozone formation potential (OFP). The results suggest that VOC emissions from agricultural pesticide applications amount to 0.60 Mt in 2017, with insecticides, fungicides, and herbicides contributing 0.39 Mt, 0.12 Mt, and 0.09 Mt of VOCs, respectively. Since VOC emission and maximum incremental reactivity (MIR) led to an OFP value (2.1 g ozone/g product) for insecticides, a primary consideration should be to decrease use of solvents with high volatility coefficients and large MIR values in insecticide products. This work could provide valuable insights regarding response options to reduce VOC emissions and ozone formation.


Assuntos
Poluentes Atmosféricos , Inseticidas , Ozônio , Praguicidas , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , China , Monitoramento Ambiental/métodos , Ozônio/análise , Solventes , Emissões de Veículos/análise , Compostos Orgânicos Voláteis/análise
6.
Chemosphere ; 307(Pt 3): 136033, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35981621

RESUMO

Inoculation with arbuscular mycorrhizal (AM) fungi can accelerate the phytoremediation process by increasing plant biomass and improving soil physicochemical and biological characteristics. However, a quantitative, data-based conclusion is yet to be derived on the roles of AM fungi in remediating soils polluted by polycyclic aromatic hydrocarbons (PAHs), and the impact factors are unclear. To address these issues, we performed a meta-analysis of 45 articles to estimate the effects of AM inoculation on the phytoremediation of soils polluted by PAHs and to examine the influence of experimental conditions on these effects. Our results showed that AM inoculation significantly decreased the residual soil PAHs concentration at all PAHs levels, and the largest effect of AM treatment was 48.5% compared to the non-mycorrhizal treatment. This should be attributed to increased plant growth and PAHs uptake, and soil biological activity in the rhizosphere induced by AM symbionts. Compared to the non-mycorrhizal treatment, the largest AM effects on the total plant biomass, root PAHs concentration, shoot PAHs concentration, soil bacterial biomass, soil catalase activity, and soil polyphenol oxidase activity were 51.7%, 565%, 53.1%, 141%, 100% and 51.9%, respectively. Although these effects on the above mentioned parameters varied with AM fungi (genus, species, and inoculation mode), soil PAHs (source, concentration, and type), plant type (dicots and monocots), and experimental conditions (experimental duration, soil sterilization and additional factors), few negative AM effects were observed. This study confirmed the feasibility of using AM fungi to enhance the phytoremediation of PAHs-contaminated soil.


Assuntos
Micorrizas , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Biodegradação Ambiental , Catalase , Catecol Oxidase , Raízes de Plantas/química , Plantas/microbiologia , Hidrocarbonetos Policíclicos Aromáticos/análise , Solo , Microbiologia do Solo , Poluentes do Solo/análise
7.
J Hazard Mater ; 192(1): 314-8, 2011 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21641719

RESUMO

Formaldehyde is a major indoor air pollutant. Formaldehyde removal from indoor air conduces to decrease the health risk for urban inhabitants. In this study, a dynamic chamber technique was employed to investigate formaldehyde removal by potted spider plant (Chlorphytum comosum), aloe (Aloe vera) and golden pothos (Epipremnum aureum) with potted soils. The results showed that the potted plant-soil systems could remove formaldehyde from air in a long time. The spider plant-soil system had the highest formaldehyde removal capacity compared with others. Higher metabolisms in plants and microorganisms in daytime may give a reasonable explanation for higher formaldehyde removal capacities for plant-soil systems in daytime. The order of formaldehyde removal capacity for the three plant species agreed well with the sequence of formaldehyde dehydrogenase activities from plant leaves. Formaldehyde removal by plant may be diffusion-limited rather than reaction-limited since the detached formaldehyde dehydrogenase activities from the leaves of the three plant species were higher than in vivo metabolic capacities. Formaldehyde in air can be largely absorbed and metabolized by the microorganisms in the potted soils indicating that further elevating formaldehyde removal capacity for plant-soil system will be realized by increasing exposed surface of potted soil.


Assuntos
Formaldeído/isolamento & purificação , Plantas/química , Solo/química , Aldeído Oxirredutases/metabolismo , Plantas/enzimologia
8.
Bull Environ Contam Toxicol ; 85(1): 28-31, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20396866

RESUMO

A biodegradation system was used for the treatment of formaldehyde-polluted air. Air pressure dropped 12 mm water in the trickling biofilter during the experiment of about 4 months. In the range 20-300 mg m(-3) influent formaldehyde, this biodegradation system obtained 4.0-40.0 mg h(-1) degradation capacity, with 100%-66.7% degradation efficiency. The amount of formaldehyde degraded by the trickling biofilter was more than that by the activated sludge bioreactor below 200 mg m(-3) influent gaseous formaldehyde while the amount by the trickling biofilter was less than that by the activated sludge bioreactor over 200 mg m(-3) influent gaseous formaldehyde.


Assuntos
Poluentes Atmosféricos/isolamento & purificação , Poluentes Atmosféricos/metabolismo , Ar/análise , Reatores Biológicos , Filtração/instrumentação , Formaldeído/isolamento & purificação , Formaldeído/metabolismo , Ar/normas , Poluentes Atmosféricos/química , Biodegradação Ambiental , Gases/metabolismo , Esgotos/análise , Esgotos/química , Fatores de Tempo , Volatilização
9.
Bioresour Technol ; 101(18): 6930-4, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20399642

RESUMO

The kinetic process of formaldehyde biodegradation in a biofilter packed with a mixture of compost, vermiculite powder and ceramic particles was investigated in this study. The results showed that more than 60% of formaldehyde was removed by the first 5 cm high biofilter bed at 406 Lh(-1) flowrate within the range of 5-207 mgm(-3) inlet concentrations. A macrokinetic model was applied to describe the kinetic process of formaldehyde biodegradation and the experimentally determined elimination capacity for the biofilter agreed well with the model predicted values. The data on the effect of spider plant (Chlorophytum comosum L.) on formaldehyde removal indicated that formaldehyde biofiltration might be stimulated by spider plant since formaldehyde was assimilated by spider plant roots and microbial formaldehyde degradation was enhanced by the root exudates.


Assuntos
Formaldeído/química , Formaldeído/isolamento & purificação , Liliaceae/química , Modelos Químicos , Ultrafiltração/métodos , Biodegradação Ambiental , Simulação por Computador
10.
J Environ Sci (China) ; 18(1): 162-9, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-20050567

RESUMO

Combining improved injector, gas line and valve-driving modules, a GC equipped with FID and ECD, could simultaneously measure CH4, CO2 and N2O in an air sample within 4 min. Test results showed that the system has high sensitivity, resolution and precision; the linear response range of the system meets the requirement of in situ flux measurements. Thus, the system is suitable for monitoring fluxes of main greenhouse gases in terrestrial ecosystem since it is easy to use, efficacious, stable and reliable to collect data.


Assuntos
Dióxido de Carbono/análise , Cromatografia Gasosa/métodos , Metano/análise , Óxidos de Nitrogênio/análise , Calibragem , Cromatografia Gasosa/normas , Limite de Detecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA