Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(6): e0286903, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37310976

RESUMO

The angiotensin receptor neprilysin inhibitor LCZ696 affords superior cardioprotection and renoprotection compared with renin-angiotensin blockade monotherapy, but the underlying mechanisms remain elusive. Herein, we evaluated whether LCZ696 attenuates renal fibrosis by inhibiting ASK1/JNK/p38 mitogen-activated protein kinase (MAPK)-mediated apoptosis in a rat model of unilateral ureteral obstruction (UUO) and in vitro. Rats with UUO were treated daily for 7 days with LCZ696, valsartan, or the selective ATP competitive inhibitor of apoptosis signal-regulating kinase 1 (ASK1), GS-444217. The effects of LCZ696 on renal injury were examined by assessing the histopathology, oxidative stress, intracellular organelles, apoptotic cell death, and MAPK pathways. H2O2-exposed human kidney 2 (HK-2) cells were also examined. LCZ696 and valsartan treatment significantly attenuated renal fibrosis caused by UUO, and this was paralleled by downregulation of proinflammatory cytokines and decreased inflammatory cell influx. Intriguingly, LCZ696 had stronger effects on renal fibrosis and inflammation than valsartan. UUO-induced oxidative stress triggered mitochondrial destruction and endoplasmic reticulum stress, which resulted in apoptotic cell death; these effects were reversed by LCZ696. Both GS-444217 and LCZ696 hampered the expression of death-associated ASK1/JNK/p38 MAPKs. In H2O2-treated HK-2 cells, LCZ696 and GS-444217 increased cell viability but decreased the production of intracellular reactive oxygen species and MitoSOX and apoptotic cell death. Both agents also deactivated H2O2-stimulated activation of ASK1/JNK/p38 MAPKs. These findings suggest that LCZ696 protects against UUO-induced renal fibrosis by inhibiting ASK1/JNK/p38 MAPK-mediated apoptosis.


Assuntos
Nefropatias , Proteína Quinase 14 Ativada por Mitógeno , Obstrução Ureteral , Humanos , Animais , Ratos , Proteínas Quinases p38 Ativadas por Mitógeno , Neprilisina , Obstrução Ureteral/complicações , Obstrução Ureteral/tratamento farmacológico , Receptores de Angiotensina , Peróxido de Hidrogênio , MAP Quinase Quinase Quinase 5 , Valsartana/farmacologia , Anti-Hipertensivos , Antivirais , Apoptose
2.
Korean J Intern Med ; 36(6): 1437-1449, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34666433

RESUMO

BACKGROUND/AIMS: Cigarette smoking is an important modifiable risk factor in kidney disease progression. However, the underlying mechanisms for this are lacking. This study aimed to assess whether nicotine (NIC), a major toxic component of cigarette smoking, would exacerbates tacrolimus (TAC)-induced renal injury. METHODS: Sprague-Dawley rats were treated daily with NIC, TAC, or both drugs for 4 weeks. The influence of NIC on TAC-caused renal injury was examined via renal function, histopathology, oxidative stress, mitochondria, endoplasmic reticulum (ER) stress, and programmed cell death (apoptosis and autophagy). RESULTS: Both NIC and TAC significantly impaired renal function and histopathology, while combined NIC and TAC treatment aggravated these parameters beyond the effects of either alone. Increased oxidative stress, ER stress, mitochondrial dysfunction, proinf lammatory and profibrotic cytokine expressions, and programmed cell death from either NIC or TAC were also aggravated by the two combined. CONCLUSION: Our observations suggest that NIC exacerbates chronic TAC nephrotoxicity, implying that smoking cessation may be beneficial for transplant smokers taking TAC.


Assuntos
Nicotina , Tacrolimo , Animais , Apoptose , Rim/fisiologia , Nicotina/toxicidade , Ratos , Ratos Sprague-Dawley , Tacrolimo/toxicidade
3.
Acta Pharmacol Sin ; 42(1): 77-87, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32555441

RESUMO

Reducing immunosuppressant-related complications using conventional drugs is an efficient therapeutic strategy. L-carnitine (LC) has been shown to protect against various types of renal injury. In this study, we investigated the renoprotective effects of LC in a rat model of chronic tacrolimus (TAC) nephropathy. SD rats were injected with TAC (1.5 mg · kg-1 · d-1, sc) for 4 weeks. Renoprotective effects of LC were assessed in terms of renal function, histopathology, oxidative stress, expression of inflammatory and fibrotic cytokines, programmed cell death (pyroptosis, apoptosis, and autophagy), mitochondrial function, and PI3K/AKT/PTEN signaling. Chronic TAC nephropathy was characterized by severe renal dysfunction and typical histological features of chronic nephropathy. At a molecular level, TAC markedly increased the expression of inflammatory and fibrotic cytokines in the kidney, induced oxidative stress, and led to mitochondrial dysfunction and programmed cell death through activation of PI3K/AKT and inhibition of PTEN. Coadministration of LC (200 mg · kg-1 · d-1, ip) caused a prominent improvement in renal function and ameliorated histological changes of kidneys in TAC-treated rats. Furthermore, LC exerted anti-inflammatory and antioxidant effects, prevented mitochondrial dysfunction, and modulated the expression of a series of apoptosis- and autophagy-controlling genes to promote cell survival. Human kidney proximal tubular epithelial cells (HK-2 cells) were treated with TAC (50 µg/mL) in vitro, which induced production of intracellular reactive oxygen species and expression of an array of genes controlling programmed cell death (pyroptosis, apoptosis, and autophagy) through interfering with PI3K/AKT/PTEN signaling. The harmful responses of HK-2 cells to TAC were significantly attenuated by cotreatment with LC and the PI3K inhibitor LY294002 (25 µM). In conclusion, LC treatment protects against chronic TAC nephropathy through interfering the PI3K/AKT/PTEN signaling.


Assuntos
Anti-Inflamatórios/uso terapêutico , Apoptose/efeitos dos fármacos , Carnitina/uso terapêutico , Nefropatias/prevenção & controle , Substâncias Protetoras/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Animais , Anti-Inflamatórios/química , Autofagia/efeitos dos fármacos , Carnitina/química , Linhagem Celular , Cromonas/farmacologia , Humanos , Rim/efeitos dos fármacos , Rim/patologia , Nefropatias/induzido quimicamente , Nefropatias/patologia , Masculino , Mitocôndrias/efeitos dos fármacos , Morfolinas/farmacologia , Estresse Oxidativo/efeitos dos fármacos , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Substâncias Protetoras/química , Proteínas Proto-Oncogênicas c-akt/metabolismo , Piroptose/efeitos dos fármacos , Ratos Sprague-Dawley , Estereoisomerismo , Tacrolimo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA