Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Circ Res ; 135(6): 685-700, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39105287

RESUMO

BACKGROUND: Monocytes are a critical innate immune system cell type that serves homeostatic and immunoregulatory functions. They have been identified historically by the cell surface expression of CD14 and CD16. However, recent single-cell studies have revealed that they are much more heterogeneous than previously realized. METHODS: We utilized cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) and single-cell RNA sequencing to describe the comprehensive transcriptional and phenotypic landscape of 437 126 monocytes. RESULTS: This high-dimensional multimodal approach identified vast phenotypic diversity and functionally distinct subsets, including IFN-responsive, MHCIIhi (major histocompatibility complex class II), monocyte-platelet aggregates, as well as nonclassical, and several subpopulations of classical monocytes. Using flow cytometry, we validated the existence of MHCII+CD275+ MHCIIhi, CD42b+ monocyte-platelet aggregates, CD16+CD99- nonclassical monocytes, and CD99+ classical monocytes. Each subpopulation exhibited unique characteristics, developmental trajectories, transcriptional regulation, and tissue distribution. In addition, alterations associated with cardiovascular disease risk factors, including race, smoking, and hyperlipidemia were identified. Moreover, the effect of hyperlipidemia was recapitulated in mouse models of elevated cholesterol. CONCLUSIONS: This integrative and cross-species comparative analysis provides a new perspective on the comparison of alterations in monocytes in pathological conditions and offers insights into monocyte-driven mechanisms in cardiovascular disease and the potential for monocyte subpopulation targeted therapies.


Assuntos
Doenças Cardiovasculares , Monócitos , Análise de Célula Única , Monócitos/metabolismo , Monócitos/imunologia , Animais , Análise de Célula Única/métodos , Doenças Cardiovasculares/imunologia , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/metabolismo , Humanos , Camundongos , Masculino , Camundongos Endogâmicos C57BL , Feminino , Transcriptoma , Fatores de Risco de Doenças Cardíacas , Pessoa de Meia-Idade , Perfilação da Expressão Gênica/métodos
2.
Talanta ; 279: 126639, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39094531

RESUMO

In this paper, an ultra-small-sized CuOx/GDYO nanozyme in situ grown on ITO glass was rationally synthesized from mixed precursors of graphdiyne oxide (GDYO) and copper based infinite coordination polymer (Cu-ICP, consisting of Cu ions and two organic ligands 3,5-di-tert-butylcatechol and 1,4-bis(imidazole-1-ylmethyl)benzene) via mild and simple electrochemical strategy. On one hand, the preferential electro-reduction of Cu-ICP enabled the formation of ultra-small CuOx with Cu(I) as the main component and avoided the loss of oxygen-containing functional groups and defects on the surface of GDYO; on the other hand, GDYO can also serve as electroless reductive species to facilitate the electrochemical deposition of CuOx and turn itself to a higher oxidation state with more exposed functional groups and defects. This one-stone-two-birds electrochemical strategy empowered CuOx/GDYO nanozyme with superior peroxidase-mimicking activity and robust anchoring stability on ITO glass, thus enabled further exploration of the portable device with availability for point-of-use applications. Based on the organophosphorus pesticides (OPs) blocked acetylcholinesterase (AChE) activity, the competitive redox reaction was regulated to initiate the chromogenic reaction of 3,3',5,5'-tetramethylbenzidine (TMB) catalyzed by CuOx/GDYO peroxidase-like nanozyme, which laid out a foundation for the detection of OPs (with chlorpyrifos as an example). With a detection of limit low to 0.57 nM, the OPs residues during agricultural production can be directly monitored by the portable device we developed.


Assuntos
Colorimetria , Cobre , Técnicas Eletroquímicas , Praguicidas , Colorimetria/métodos , Cobre/química , Praguicidas/análise , Praguicidas/química , Técnicas Eletroquímicas/métodos , Grafite/química , Limite de Detecção , Peroxidase/metabolismo , Peroxidase/química , Nanoestruturas/química , Acetilcolinesterase/metabolismo , Acetilcolinesterase/química , Organofosfatos/química , Organofosfatos/análise , Benzidinas/química
3.
Circulation ; 149(24): 1885-1898, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38686559

RESUMO

BACKGROUND: Atherosclerosis, a leading cause of cardiovascular disease, involves the pathological activation of various cell types, including immunocytes (eg, macrophages and T cells), smooth muscle cells (SMCs), and endothelial cells. Accumulating evidence suggests that transition of SMCs to other cell types, known as phenotypic switching, plays a central role in atherosclerosis development and complications. However, the characteristics of SMC-derived cells and the underlying mechanisms of SMC transition in disease pathogenesis remain poorly understood. Our objective is to characterize tumor cell-like behaviors of SMC-derived cells in atherosclerosis, with the ultimate goal of developing interventions targeting SMC transition for the prevention and treatment of atherosclerosis. METHODS: We used SMC lineage tracing mice and human tissues and applied a range of methods, including molecular, cellular, histological, computational, human genetics, and pharmacological approaches, to investigate the features of SMC-derived cells in atherosclerosis. RESULTS: SMC-derived cells in mouse and human atherosclerosis exhibit multiple tumor cell-like characteristics, including genomic instability, evasion of senescence, hyperproliferation, resistance to cell death, invasiveness, and activation of comprehensive cancer-associated gene regulatory networks. Specific expression of the oncogenic mutant KrasG12D in SMCs accelerates phenotypic switching and exacerbates atherosclerosis. Furthermore, we provide proof of concept that niraparib, an anticancer drug targeting DNA damage repair, attenuates atherosclerosis progression and induces regression of lesions in advanced disease in mouse models. CONCLUSIONS: Our findings demonstrate that atherosclerosis is an SMC-driven tumor-like disease, advancing our understanding of its pathogenesis and opening prospects for innovative precision molecular strategies aimed at preventing and treating atherosclerotic cardiovascular disease.


Assuntos
Aterosclerose , Miócitos de Músculo Liso , Animais , Aterosclerose/patologia , Aterosclerose/metabolismo , Humanos , Miócitos de Músculo Liso/patologia , Miócitos de Músculo Liso/metabolismo , Camundongos , Músculo Liso Vascular/patologia , Músculo Liso Vascular/metabolismo
4.
bioRxiv ; 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36945644

RESUMO

Atherosclerosis, the leading cause of cardiovascular disease, is a chronic inflammatory disease involving pathological activation of multiple cell types, such as immunocytes (e.g., macrophage, T cells), smooth muscle cells (SMCs), and endothelial cells. Multiple lines of evidence have suggested that SMC "phenotypic switching" plays a central role in atherosclerosis development and complications. Yet, SMC roles and mechanisms underlying the disease pathogenesis are poorly understood. Here, employing SMC lineage tracing mice, comprehensive molecular, cellular, histological, and computational profiling, coupled to genetic and pharmacological studies, we reveal that atherosclerosis, in terms of SMC behaviors, share extensive commonalities with tumors. SMC-derived cells in the disease show multiple characteristics of tumor cell biology, including genomic instability, replicative immortality, malignant proliferation, resistance to cell death, invasiveness, and activation of comprehensive cancer-associated gene regulatory networks. SMC-specific expression of oncogenic KrasG12D accelerates SMC phenotypic switching and exacerbates atherosclerosis. Moreover, we present a proof of concept showing that niraparib, an anti-cancer drug targeting DNA damage repair, attenuates atherosclerosis progression and induces regression of lesions in advanced disease in mouse models. Our work provides systematic evidence that atherosclerosis is a tumor-like disease, deepening the understanding of its pathogenesis and opening prospects for novel precision molecular strategies to prevent and treat atherosclerotic cardiovascular disease.

5.
Arterioscler Thromb Vasc Biol ; 43(2): 286-299, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36546321

RESUMO

BACKGROUND: Long noncoding RNAs (lncRNAs) have emerged as novel regulators of macrophage biology and inflammatory cardiovascular diseases. However, studies focused on lncRNAs in human macrophage subtypes, particularly human lncRNAs that are not conserved in rodents, are limited. METHODS: Through RNA-sequencing of human monocyte-derived macrophages, we identified suppressor of inflammatory macrophage apoptosis lncRNA (SIMALR). Lipopolysaccharide/IFNγ (interferon γ) stimulated human macrophages were treated with SIMALR antisense oligonucleotides and subjected to RNA-sequencing to investigate the function of SIMALR. Western blots, luciferase assay, and RNA immunoprecipitation were performed to validate function and potential mechanism of SIMALR. RNAscope was performed to identify SIMALR expression in human carotid atherosclerotic plaques. RESULTS: RNA-sequencing of human monocyte-derived macrophages identified SIMALR, a human macrophage-specific long intergenic noncoding RNA that is highly induced in lipopolysaccharide/IFNγ-stimulated macrophages. SIMALR knockdown in lipopolysaccharide/IFNγ stimulated THP1 human macrophages induced apoptosis of inflammatory macrophages, as shown by increased protein expression of cleaved PARP (poly[ADP-ribose] polymerase), caspase 9, caspase 3, and Annexin V+. RNA-sequencing of control versus SIMALR knockdown in lipopolysaccharide/IFNγ-stimulated macrophages showed Netrin-1 (NTN1) to be significantly decreased upon SIMALR knockdown. We confirmed that NTN1 knockdown in lipopolysaccharide/IFNγ-stimulated macrophages induced apoptosis. The SIMALR knockdown-induced apoptotic phenotype was rescued by adding recombinant NTN1. NTN1 promoter-luciferase reporter activity was increased in HEK293T (human embryonic kidney 293) cells treated with lentiviral overexpression of SIMALR. NTN1 promoter activity is known to require HIF1α (hypoxia-inducible factor 1 subunit alpha), and our studies suggest that SIMALR may interact with HIF1α to regulate NTN1 transcription, thereby regulating macrophages apoptosis. SIMALR was found to be expressed in macrophages in human carotid atherosclerotic plaques of symptomatic patients. CONCLUSIONS: SIMALR is a nonconserved, human macrophage lncRNA expressed in atherosclerosis that suppresses macrophage apoptosis. SIMALR partners with HIF1α (hypoxia-inducible factor 1 subunit alpha) to regulate NTN1, which is a known macrophage survival factor. This work illustrates the importance of interrogating the functions of human lncRNAs and exploring their translational and therapeutic potential in human atherosclerosis.


Assuntos
Aterosclerose , Placa Aterosclerótica , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/metabolismo , Placa Aterosclerótica/metabolismo , Lipopolissacarídeos , Netrina-1 , Células HEK293 , Macrófagos/metabolismo , Aterosclerose/metabolismo , Apoptose , Fator 1 Induzível por Hipóxia
6.
Nat Commun ; 13(1): 7929, 2022 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-36566259

RESUMO

Phagocytic clearance of dying cells, termed efferocytosis, is essential for maintaining tissue homeostasis, yet our understanding of efferocytosis regulation remains incomplete. Here we perform a FACS-based, genome-wide CRISPR knockout screen in primary mouse macrophages to search for novel regulators of efferocytosis. The results show that Wdfy3 knockout in macrophages specifically impairs uptake, but not binding, of apoptotic cells due to defective actin disassembly. Additionally, WDFY3 interacts with GABARAP, thus facilitating LC3 lipidation and subsequent lysosomal acidification to permit the degradation of apoptotic cell components. Mechanistically, while the C-terminus of WDFY3 is sufficient to rescue the impaired degradation induced by Wdfy3 knockout, full-length WDFY3 is required to reconstitute the uptake of apoptotic cells. Finally, WDFY3 is also required for efficient efferocytosis in vivo in mice and in vitro in primary human macrophages. This work thus expands our knowledge of the mechanisms of macrophage efferocytosis, as well as supports genome-wide CRISPR screen as a platform for interrogating complex functional phenotypes in primary macrophages.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas Relacionadas à Autofagia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Macrófagos , Fagocitose , Animais , Humanos , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Apoptose/genética , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Células Cultivadas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Fagocitose/genética
7.
Nature ; 592(7853): 296-301, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33731931

RESUMO

Clonal haematopoiesis, which is highly prevalent in older individuals, arises from somatic mutations that endow a proliferative advantage to haematopoietic cells. Clonal haematopoiesis increases the risk of myocardial infarction and stroke independently of traditional risk factors1. Among the common genetic variants that give rise to clonal haematopoiesis, the JAK2V617F (JAK2VF) mutation, which increases JAK-STAT signalling, occurs at a younger age and imparts the strongest risk of premature coronary heart disease1,2. Here we show increased proliferation of macrophages and prominent formation of necrotic cores in atherosclerotic lesions in mice that express Jak2VF selectively in macrophages, and in chimeric mice that model clonal haematopoiesis. Deletion of the essential inflammasome components caspase 1 and 11, or of the pyroptosis executioner gasdermin D, reversed these adverse changes. Jak2VF lesions showed increased expression of AIM2, oxidative DNA damage and DNA replication stress, and Aim2 deficiency reduced atherosclerosis. Single-cell RNA sequencing analysis of Jak2VF lesions revealed a landscape that was enriched for inflammatory myeloid cells, which were suppressed by deletion of Gsdmd. Inhibition of the inflammasome product interleukin-1ß reduced macrophage proliferation and necrotic formation while increasing the thickness of fibrous caps, indicating that it stabilized plaques. Our findings suggest that increased proliferation and glycolytic metabolism in Jak2VF macrophages lead to DNA replication stress and activation of the AIM2 inflammasome, thereby aggravating atherosclerosis. Precise application of therapies that target interleukin-1ß or specific inflammasomes according to clonal haematopoiesis status could substantially reduce cardiovascular risk.


Assuntos
Aterosclerose/patologia , Hematopoiese Clonal , Proteínas de Ligação a DNA/metabolismo , Inflamassomos/metabolismo , Animais , Anticorpos/imunologia , Anticorpos/uso terapêutico , Aterosclerose/tratamento farmacológico , Aterosclerose/imunologia , Medula Óssea/metabolismo , Caspase 1/metabolismo , Caspases Iniciadoras/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Inflamação/metabolismo , Inflamação/patologia , Proteína Antagonista do Receptor de Interleucina 1/farmacologia , Proteína Antagonista do Receptor de Interleucina 1/uso terapêutico , Interleucina-1beta/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas de Ligação a Fosfato/metabolismo , Piroptose , RNA-Seq , Análise de Célula Única
8.
J Clin Invest ; 131(8)2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33630758

RESUMO

Efferocytosis, the process through which apoptotic cells (ACs) are cleared through actin-mediated engulfment by macrophages, prevents secondary necrosis, suppresses inflammation, and promotes resolution. Impaired efferocytosis drives the formation of clinically dangerous necrotic atherosclerotic plaques, the underlying etiology of coronary artery disease (CAD). An intron of the gene encoding PHACTR1 contains rs9349379 (A>G), a common variant associated with CAD. As PHACTR1 is an actin-binding protein, we reasoned that if the rs9349379 risk allele G causes lower PHACTR1 expression in macrophages, it might link the risk allele to CAD via impaired efferocytosis. We show here that rs9349379-G/G was associated with lower levels of PHACTR1 and impaired efferocytosis in human monocyte-derived macrophages and human atherosclerotic lesional macrophages compared with rs9349379-A/A. Silencing PHACTR1 in human and mouse macrophages compromised AC engulfment, and Western diet-fed Ldlr-/- mice in which hematopoietic Phactr1 was genetically targeted showed impaired lesional efferocytosis, increased plaque necrosis, and thinner fibrous caps - all signs of vulnerable plaques in humans. Mechanistically, PHACTR1 prevented dephosphorylation of myosin light chain (MLC), which was necessary for AC engulfment. In summary, rs9349379-G lowered PHACTR1, which, by lowering phospho-MLC, compromised efferocytosis. Thus, rs9349379-G may contribute to CAD risk, at least in part, by impairing atherosclerotic lesional macrophage efferocytosis.


Assuntos
Apoptose , Doença da Artéria Coronariana , Macrófagos , Proteínas dos Microfilamentos/deficiência , Placa Aterosclerótica , Polimorfismo Genético , Animais , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/metabolismo , Doença da Artéria Coronariana/patologia , Humanos , Células Jurkat , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Camundongos Knockout , Proteínas dos Microfilamentos/metabolismo , Cadeias Leves de Miosina/genética , Cadeias Leves de Miosina/metabolismo , Fosforilação/genética , Placa Aterosclerótica/genética , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia
9.
Circulation ; 142(21): 2060-2075, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-32962412

RESUMO

BACKGROUND: Smooth muscle cells (SMCs) play significant roles in atherosclerosis via phenotypic switching, a pathological process in which SMC dedifferentiation, migration, and transdifferentiation into other cell types. Yet how SMCs contribute to the pathophysiology of atherosclerosis remains elusive. METHODS: To reveal the trajectories of SMC transdifferentiation during atherosclerosis and to identify molecular targets for disease therapy, we combined SMC fate mapping and single-cell RNA sequencing of both mouse and human atherosclerotic plaques. We also performed cell biology experiments on isolated SMC-derived cells, conducted integrative human genomics, and used pharmacological studies targeting SMC-derived cells both in vivo and in vitro. RESULTS: We found that SMCs transitioned to an intermediate cell state during atherosclerosis, which was also found in human atherosclerotic plaques of carotid and coronary arteries. SMC-derived intermediate cells, termed "SEM" cells (stem cell, endothelial cell, monocyte), were multipotent and could differentiate into macrophage-like and fibrochondrocyte-like cells, as well as return toward the SMC phenotype. Retinoic acid (RA) signaling was identified as a regulator of SMC to SEM cell transition, and RA signaling was dysregulated in symptomatic human atherosclerosis. Human genomics revealed enrichment of genome-wide association study signals for coronary artery disease in RA signaling target gene loci and correlation between coronary artery disease risk alleles and repressed expression of these genes. Activation of RA signaling by all-trans RA, an anticancer drug for acute promyelocytic leukemia, blocked SMC transition to SEM cells, reduced atherosclerotic burden, and promoted fibrous cap stability. CONCLUSIONS: Integration of cell-specific fate mapping, single-cell genomics, and human genetics adds novel insights into the complexity of SMC biology and reveals regulatory pathways for therapeutic targeting of SMC transitions in atherosclerotic cardiovascular disease.


Assuntos
Aterosclerose/genética , Aterosclerose/patologia , Diferenciação Celular/fisiologia , Genômica/métodos , Miócitos de Músculo Liso/patologia , Fenótipo , Animais , Aterosclerose/terapia , Desdiferenciação Celular/fisiologia , Movimento Celular/fisiologia , Transdiferenciação Celular/fisiologia , Células Cultivadas , Feminino , Terapia Genética/tendências , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Miócitos de Músculo Liso/fisiologia , Análise de Sequência de RNA/métodos
10.
PLoS Genet ; 16(5): e1008786, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32392242

RESUMO

Allele-specific expression (ASE) analysis, which quantifies the relative expression of two alleles in a diploid individual, is a powerful tool for identifying cis-regulated gene expression variations that underlie phenotypic differences among individuals. Existing methods for gene-level ASE detection analyze one individual at a time, therefore failing to account for shared information across individuals. Failure to accommodate such shared information not only reduces power, but also makes it difficult to interpret results across individuals. However, when only RNA sequencing (RNA-seq) data are available, ASE detection across individuals is challenging because the data often include individuals that are either heterozygous or homozygous for the unobserved cis-regulatory SNP, leading to sample heterogeneity as only those heterozygous individuals are informative for ASE, whereas those homozygous individuals have balanced expression. To simultaneously model multi-individual information and account for such heterogeneity, we developed ASEP, a mixture model with subject-specific random effect to account for multi-SNP correlations within the same gene. ASEP only requires RNA-seq data, and is able to detect gene-level ASE under one condition and differential ASE between two conditions (e.g., pre- versus post-treatment). Extensive simulations demonstrated the convincing performance of ASEP under a wide range of scenarios. We applied ASEP to a human kidney RNA-seq dataset, identified ASE genes and validated our results with two published eQTL studies. We further applied ASEP to a human macrophage RNA-seq dataset, identified genes showing evidence of differential ASE between M0 and M1 macrophages, and confirmed our findings by results from cardiometabolic trait-relevant genome-wide association studies. To the best of our knowledge, ASEP is the first method for gene-level ASE detection at the population level that only requires the use of RNA-seq data. With the growing adoption of RNA-seq, we believe ASEP will be well-suited for various ASE studies for human diseases.


Assuntos
Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Locos de Características Quantitativas , Análise de Sequência de RNA/métodos , Alelos , Feminino , Regulação da Expressão Gênica , Genética Populacional , Humanos , Rim/química , Macrófagos/química , Modelos Genéticos , Software
11.
Curr Protoc Stem Cell Biol ; 48(1): e74, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30537374

RESUMO

Macrophages play important roles in many diseases. We describe a protocol and the associated resources for the differentiation of human induced pluripotent stem cell-derived macrophages (IPSDM) and their applications in understanding human macrophage physiology and relevant diseases. The protocol uses an embryoid body-based approach with a combination of serum-free condition for hematopoiesis specification, followed by adherent culture with serum and M-CSF for myeloid expansion and macrophage maturation. The protocol produced an almost pure culture of CD45+ /CD18+ macrophages yielding up to 2 × 107 cells per 6-well plate of iPSCs within 24 days, demonstrating high efficiency, purity, and scalability. The IPSDM and monocyte-derived macrophages (HMDM) cultured in the same medium were compared at morphological, functional and transcriptomic levels by RNA-sequencing. IPSDM and HMDM showed broadly similar profiles of coding transcriptome, alternative splicing events, and long noncoding RNAs, with advantages and successful applications in disease modeling using patients-derived and CRISPR-edited iPSC lines. © 2018 by John Wiley & Sons, Inc.


Assuntos
Técnicas de Cultura de Células , Células-Tronco Pluripotentes Induzidas/citologia , Macrófagos/citologia , Diferenciação Celular , Células Cultivadas , Corpos Embrioides/citologia , Hematopoese , Humanos , Fator Estimulador de Colônias de Macrófagos/química
12.
Sci Transl Med ; 10(446)2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29925637

RESUMO

Long intergenic noncoding RNAs (lincRNAs) have emerged as important modulators of cellular functions. Most lincRNAs are not conserved among mammals, raising the fundamental question of whether nonconserved adipose-expressed lincRNAs are functional. To address this, we performed deep RNA sequencing of gluteal subcutaneous adipose tissue from 25 healthy humans. We identified 1001 putative lincRNAs expressed in all samples through de novo reconstruction of noncoding transcriptomes and integration with existing lincRNA annotations. One hundred twenty lincRNAs had adipose-enriched expression, and 54 of these exhibited peroxisome proliferator-activated receptor γ (PPARγ) or CCAAT/enhancer binding protein α (C/EBPα) binding at their loci. Most of these adipose-enriched lincRNAs (~85%) were not conserved in mice, yet on average, they showed degrees of expression and binding of PPARγ and C/EBPα similar to those displayed by conserved lincRNAs. Most adipose lincRNAs differentially expressed (n = 53) in patients after bariatric surgery were nonconserved. The most abundant adipose-enriched lincRNA in our subcutaneous adipose data set, linc-ADAL, was nonconserved, up-regulated in adipose depots of obese individuals, and markedly induced during in vitro human adipocyte differentiation. We demonstrated that linc-ADAL interacts with heterogeneous nuclear ribonucleoprotein U (hnRNPU) and insulin-like growth factor 2 mRNA binding protein 2 (IGF2BP2) at distinct subcellular locations to regulate adipocyte differentiation and lipogenesis.


Assuntos
Adipócitos/metabolismo , Tecido Adiposo/metabolismo , RNA Longo não Codificante/metabolismo , Adipócitos/citologia , Diferenciação Celular , Núcleo Celular/metabolismo , Regulação da Expressão Gênica , Ribonucleoproteínas Nucleares Heterogêneas Grupo U/metabolismo , Humanos , Lipídeos/biossíntese , Lipogênese , PPAR gama/metabolismo , RNA Longo não Codificante/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Transcrição Gênica
13.
J Am Heart Assoc ; 6(11)2017 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-29133519

RESUMO

BACKGROUND: Sustained and dysfunctional macrophage activation promotes inflammatory cardiometabolic disorders, but the role of long intergenic noncoding RNA (lincRNA) in human macrophage activation and cardiometabolic disorders is poorly defined. Through transcriptomics, bioinformatics, and selective functional studies, we sought to elucidate the lincRNA landscape of human macrophages. METHODS AND RESULTS: We used deep RNA sequencing to assemble the lincRNA transcriptome of human monocyte-derived macrophages at rest and following stimulation with lipopolysaccharide and IFN-γ (interferon γ) for M1 activation and IL-4 (interleukin 4) for M2 activation. Through de novo assembly, we identified 2766 macrophage lincRNAs, including 861 that were previously unannotated. The majority (≈85%) was nonsyntenic or was syntenic but not annotated as expressed in mouse. Many macrophage lincRNAs demonstrated tissue-enriched transcription patterns (21.5%) and enhancer-like chromatin signatures (60.9%). Macrophage activation, particularly to the M1 phenotype, markedly altered the lincRNA expression profiles, revealing 96 lincRNAs differentially expressed, suggesting potential roles in regulating macrophage inflammatory functions. A subset of lincRNAs overlapped genomewide association study loci for cardiometabolic disorders. MacORIS (macrophage-enriched obesity-associated lincRNA serving as a repressor of IFN-γ signaling), a macrophage-enriched lincRNA not expressed in mouse macrophages, harbors variants associated with central obesity. Knockdown of MacORIS, which is located in the cytoplasm, enhanced IFN-γ-induced JAK2 (Janus kinase 2) and STAT1 (signal transducer and activator of transcription 1) phosphorylation in THP-1 macrophages, suggesting a potential role as a repressor of IFN-γ signaling. Induced pluripotent stem cell-derived macrophages recapitulated the lincRNA transcriptome of human monocyte-derived macrophages and provided a high-fidelity model with which to study lincRNAs in human macrophage biology, particularly those not conserved in mouse. CONCLUSIONS: High-resolution transcriptomics identified lincRNAs that form part of the coordinated response during macrophage activation, including specific macrophage lincRNAs associated with human cardiometabolic disorders that modulate macrophage inflammatory functions.


Assuntos
Doenças Cardiovasculares/genética , Regulação da Expressão Gênica , Ativação de Macrófagos/genética , Macrófagos/metabolismo , Síndrome Metabólica/genética , RNA Longo não Codificante/genética , RNA/genética , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , Células Cultivadas , Estudo de Associação Genômica Ampla , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Macrófagos/patologia , Síndrome Metabólica/metabolismo , Síndrome Metabólica/patologia , RNA Longo não Codificante/biossíntese , Reação em Cadeia da Polimerase Via Transcriptase Reversa
14.
Arterioscler Thromb Vasc Biol ; 37(11): 2156-2160, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28882870

RESUMO

OBJECTIVE: To gain mechanistic insights into the role of LIPA (lipase A), the gene encoding LAL (lysosomal acid lipase) protein, in human macrophages. APPROACH AND RESULTS: We used CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated protein 9) technology to knock out LIPA in human induced pluripotent stem cells and then differentiate to macrophage (human-induced pluripotent stem cells-derived macrophage [IPSDM]) to explore the human macrophage LIPA loss-of-function phenotypes. LIPA was abundantly expressed in monocyte-derived macrophages and was markedly induced on IPSDM differentiation to comparable levels as in human monocyte-derived macrophage. IPSDM with knockout of LIPA (LIPA-/-) had barely detectable LAL enzymatic activity. Control and LIPA-/- IPSDM were loaded with [3H]-cholesteryl oleate-labeled AcLDL (acetylated low-density lipoprotein) followed by efflux to apolipoprotein A-I. Efflux of liberated [3H]-cholesterol to apolipoprotein A-I was abolished in LIPA-/- IPSDM, indicating deficiency in LAL-mediated lysosomal cholesteryl ester hydrolysis. In cells loaded with [3H]-cholesterol-labeled AcLDL, [3H]-cholesterol efflux was, however, not different between control and LIPA-/- IPSDM. ABCA1 (ATP-binding cassette, subfamily A, member 1) expression was upregulated by AcLDL loading but to a similar extent between control and LIPA-/- IPSDM. In nonlipid loaded state, LIPA-/- IPSDM had high levels of cholesteryl ester mass compared with minute amounts in control IPSDM. Yet, with AcLDL loading, overall cholesteryl ester mass was increased to similar levels in both control and LIPA-/- IPSDM. LIPA-/- did not impact lysosomal apolipoprotein-B degradation or expression of IL1B, IL6, and CCL5. CONCLUSIONS: LIPA-/- IPSDM reveals macrophage-specific hallmarks of LIPA deficiency. CRISPR/Cas9 and IPSDM provide important tools to study human macrophage biology and more broadly for future studies of disease-associated LIPA genetic variation in human macrophages.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes/métodos , Células-Tronco Pluripotentes Induzidas/enzimologia , Lisossomos/enzimologia , Macrófagos/enzimologia , Esterol Esterase/metabolismo , Transportador 1 de Cassete de Ligação de ATP/genética , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Apolipoproteína A-I/metabolismo , Apolipoproteína B-100/metabolismo , Diferenciação Celular , Quimiocina CCL5/genética , Quimiocina CCL5/metabolismo , Ésteres do Colesterol/metabolismo , Regulação Enzimológica da Expressão Gênica , Técnicas de Silenciamento de Genes , Genótipo , Células HEK293 , Células Hep G2 , Humanos , Hidrólise , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Lipoproteínas LDL/metabolismo , Fenótipo , Proteólise , Esterol Esterase/genética , Fatores de Tempo , Transfecção
15.
PLoS One ; 12(1): e0169614, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28125622

RESUMO

Calgranulin genes (S100A8, S100A9 and S100A12) play key immune response roles in inflammatory disorders, including cardiovascular disease. Long-chain omega-3 polyunsaturated fatty acids (LC n-3 PUFA) may have systemic and adipose tissue-specific anti-inflammatory and cardio-protective action. Interactions between calgranulins and the unsaturated fatty acid arachidonic acid (AA) have been reported, yet little is known about the relationship between calgranulins and the LC n-3 PUFA eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). We explored tissue-specific action of calgranulins in the setting of evoked endotoxemia and n-3 PUFA supplementation. Expression of calgranulins in adipose tissue in vivo was assessed by RNA sequencing (RNASeq) before and after n-3 PUFA supplementation and evoked endotoxemia in the fenofibrate and omega-3 fatty acid modulation of endotoxemia (FFAME) Study. Subjects received n-3 PUFA (n = 8; 3600mg/day EPA/DHA) or matched placebo (n = 6) for 6-8 weeks, before completing an endotoxin challenge (LPS 0.6 ng/kg). Calgranulin genes were up-regulated post-LPS, with greater increase in n-3 PUFA (S100A8 15-fold, p = 0.003; S100A9 7-fold, p = 0.003; S100A12 28-fold, p = 0.01) compared to placebo (S100A8 2-fold, p = 0.01; S100A9 1.4-fold, p = 0.4; S100A12 5-fold, p = 0.06). In an independent evoked endotoxemia study, calgranulin gene expression correlated with the systemic inflammatory response. Through in vivo and in vitro interrogation we highlight differential responses in adipocytes and mononuclear cells during inflammation, with n-3 PUFA leading to increased calgranulin expression in adipose, but decreased expression in circulating cells. In conclusion, we present a novel relationship between n-3 PUFA anti-inflammatory action in vivo and cell-specific modulation of calgranulin expression during innate immune activation.


Assuntos
Antioxidantes/administração & dosagem , Calgranulina A/genética , Calgranulina B/genética , Ácidos Docosa-Hexaenoicos/administração & dosagem , Ácido Eicosapentaenoico/administração & dosagem , Endotoxemia/prevenção & controle , Proteína S100A12/genética , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Adulto , Nádegas , Calgranulina A/metabolismo , Calgranulina B/metabolismo , Estudos de Casos e Controles , Endotoxemia/induzido quimicamente , Endotoxemia/genética , Endotoxemia/patologia , Feminino , Regulação da Expressão Gênica , Voluntários Saudáveis , Humanos , Lipopolissacarídeos/farmacologia , Masculino , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Monócitos/patologia , Proteína S100A12/metabolismo , Transdução de Sinais
16.
Arterioscler Thromb Vasc Biol ; 36(7): 1434-47, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27230130

RESUMO

OBJECTIVE: Human macrophages can shift phenotype across the inflammatory M1 and reparative M2 spectrum in response to environmental challenges, but the mechanisms promoting inflammatory and cardiometabolic disease-associated M1 phenotypes remain incompletely understood. Alternative splicing (AS) is emerging as an important regulator of cellular function, yet its role in macrophage activation is largely unknown. We investigated the extent to which AS occurs in M1 activation within the cardiometabolic disease context and validated a functional genomic cell model for studying human macrophage-related AS events. APPROACH AND RESULTS: From deep RNA-sequencing of resting, M1, and M2 primary human monocyte-derived macrophages, we found 3860 differentially expressed genes in M1 activation and detected 233 M1-induced AS events; the majority of AS events were cell- and M1-specific with enrichment for pathways relevant to macrophage inflammation. Using genetic variant data for 10 cardiometabolic traits, we identified 28 trait-associated variants within the genomic loci of 21 alternatively spliced genes and 15 variants within 7 differentially expressed regulatory splicing factors in M1 activation. Knockdown of 1 such splicing factor, CELF1, in primary human macrophages led to increased inflammatory response to M1 stimulation, demonstrating CELF1's potential modulation of the M1 phenotype. Finally, we demonstrated that an induced pluripotent stem cell-derived macrophage system recapitulates M1-associated AS events and provides a high-fidelity macrophage AS model. CONCLUSIONS: AS plays a role in defining macrophage phenotype in a cell- and stimulus-specific fashion. Alternatively spliced genes and splicing factors with trait-associated variants may reveal novel pathways and targets in cardiometabolic diseases.


Assuntos
Processamento Alternativo , Diferenciação Celular , Perfilação da Expressão Gênica , Células-Tronco Pluripotentes Induzidas/metabolismo , Inflamação/genética , Ativação de Macrófagos/genética , Macrófagos/metabolismo , Transcriptoma , Proteínas CELF1/genética , Proteínas CELF1/metabolismo , Células Cultivadas , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Estudo de Associação Genômica Ampla , Humanos , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Mapeamento de Interação de Proteínas , Interferência de RNA , Transdução de Sinais , Transfecção
17.
Am J Physiol Renal Physiol ; 309(11): F901-13, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26400545

RESUMO

Long noncoding RNAs (lncRNAs) are emerging as key species-specific regulators of cellular and disease processes. To identify potential lncRNAs relevant to acute and chronic renal epithelial injury, we performed unbiased whole transcriptome profiling of human proximal tubular epithelial cells (PTECs) in hypoxic and inflammatory conditions. RNA sequencing revealed that the protein-coding and noncoding transcriptomic landscape differed between hypoxia-stimulated and cytokine-stimulated human PTECs. Hypoxia- and inflammation-modulated lncRNAs were prioritized for focused followup according to their degree of induction by these stress stimuli, their expression in human kidney tissue, and whether exposure of human PTECs to plasma of critically ill sepsis patients with acute kidney injury modulated their expression. For three lncRNAs (MIR210HG, linc-ATP13A4-8, and linc-KIAA1737-2) that fulfilled our criteria, we validated their expression patterns, examined their loci for conservation and synteny, and defined their associated epigenetic marks. The lncRNA landscape characterized here provides insights into novel transcriptomic variations in the renal epithelial cell response to hypoxic and inflammatory stress.


Assuntos
Injúria Renal Aguda/metabolismo , Células Epiteliais/metabolismo , Hipóxia/metabolismo , Inflamação/metabolismo , Túbulos Renais Proximais/metabolismo , RNA Longo não Codificante/metabolismo , Injúria Renal Aguda/sangue , Injúria Renal Aguda/genética , Injúria Renal Aguda/patologia , Hipóxia Celular , Linhagem Celular , Citocinas/farmacologia , Epigênese Genética , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Marcadores Genéticos , Humanos , Hipóxia/genética , Hipóxia/patologia , Inflamação/genética , Inflamação/patologia , Mediadores da Inflamação/farmacologia , Túbulos Renais Proximais/efeitos dos fármacos , Túbulos Renais Proximais/patologia , RNA Longo não Codificante/genética , Reprodutibilidade dos Testes , Sepse/genética , Sepse/metabolismo , Sepse/patologia , Fatores de Tempo
18.
Proc Natl Acad Sci U S A ; 112(23): 7231-6, 2015 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-25995365

RESUMO

The response to an innate immune challenge is conditioned by the time of day, but the molecular basis for this remains unclear. In myeloid cells, there is a temporal regulation to induction by lipopolysaccharide (LPS) of the proinflammatory microRNA miR-155 that correlates inversely with levels of BMAL1. BMAL1 in the myeloid lineage inhibits activation of NF-κB and miR-155 induction and protects mice from LPS-induced sepsis. Bmal1 has two miR-155-binding sites in its 3'-UTR, and, in response to LPS, miR-155 binds to these two target sites, leading to suppression of Bmal1 mRNA and protein in mice and humans. miR-155 deletion perturbs circadian function, gives rise to a shorter circadian day, and ablates the circadian effect on cytokine responses to LPS. Thus, the molecular clock controls miR-155 induction that can repress BMAL1 directly. This leads to an innate immune response that is variably responsive to challenges across the circadian day.


Assuntos
Fatores de Transcrição ARNTL/fisiologia , Ritmo Circadiano , Imunidade Inata , Macrófagos/imunologia , MicroRNAs/fisiologia , Regiões 3' não Traduzidas , Fatores de Transcrição ARNTL/genética , Tecido Adiposo/metabolismo , Animais , Citocinas/biossíntese , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , NF-kappa B/metabolismo
19.
Circ Res ; 117(1): 17-28, 2015 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-25904599

RESUMO

RATIONALE: An efficient and reproducible source of genotype-specific human macrophages is essential for study of human macrophage biology and related diseases. OBJECTIVE: To perform integrated functional and transcriptome analyses of human induced pluripotent stem cell-derived macrophages (IPSDMs) and their isogenic human peripheral blood mononuclear cell-derived macrophage (HMDM) counterparts and assess the application of IPSDM in modeling macrophage polarization and Mendelian disease. METHODS AND RESULTS: We developed an efficient protocol for differentiation of IPSDM, which expressed macrophage-specific markers and took up modified lipoproteins in a similar manner to HMDM. Like HMDM, IPSDM revealed reduction in phagocytosis, increase in cholesterol efflux capacity and characteristic secretion of inflammatory cytokines in response to M1 (lipopolysaccharide+interferon-γ) activation. RNA-Seq revealed that nonpolarized (M0) as well as M1 or M2 (interleukin-4) polarized IPSDM shared transcriptomic profiles with their isogenic HMDM counterparts while also revealing novel markers of macrophage polarization. Relative to IPSDM and HMDM of control individuals, patterns of defective cholesterol efflux to apolipoprotein A-I and high-density lipoprotein-3 were qualitatively and quantitatively similar in IPSDM and HMDM of patients with Tangier disease, an autosomal recessive disorder because of mutations in ATP-binding cassette transporter AI. Tangier disease-IPSDM also revealed novel defects of enhanced proinflammatory response to lipopolysaccharide stimulus. CONCLUSIONS: Our protocol-derived IPSDM are comparable with HMDM at phenotypic, functional, and transcriptomic levels. Tangier disease-IPSDM recapitulated hallmark features observed in HMDM and revealed novel inflammatory phenotypes. IPSDMs provide a powerful tool for study of macrophage-specific function in human genetic disorders as well as molecular studies of human macrophage activation and polarization.


Assuntos
Técnicas de Cultura de Células , Células-Tronco Pluripotentes Induzidas/citologia , Macrófagos/metabolismo , Doença de Tangier/patologia , Transcriptoma , Transportador 1 de Cassete de Ligação de ATP/deficiência , Transportador 1 de Cassete de Ligação de ATP/genética , Transportador 1 de Cassete de Ligação de ATP/fisiologia , Adulto , Idoso , Animais , Antígenos de Diferenciação/análise , Sequência de Bases , Diferenciação Celular , Células Cultivadas , Colesterol/metabolismo , Corpos Embrioides/citologia , Feminino , Genótipo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Inflamação , Interferon gama/farmacologia , Lipopolissacarídeos/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Fagocitose , Fenótipo , RNA Mensageiro/genética , Alinhamento de Sequência , Homologia de Sequência do Ácido Nucleico , Doença de Tangier/genética , Doença de Tangier/metabolismo , Adulto Jovem
20.
J Bioinform Comput Biol ; 8 Suppl 1: 111-25, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21155023

RESUMO

MLH1 and MSH2 mutations underlie 90% of hereditary nonpolyposis colorectal cancer (HNPCC) mutations. The International Society of Gastrointestinal Hereditary Tumors (InSiGHT) has established an international database of mutations associated with HNPCC. Based on the InSiGHT database and the original references that reported the mutations, we analyzed the distributions of MLH1 and MSH2 mutations in yellow race and white race respectively and compared them subsequently. We found: (1) the distributions of mutation individuals in exon 1, 17 and 19 of MLH1 gene and in exon 2 of MSH2 gene showed significant differences between the two race groups (p < 0.05); (2) the distributions of mutation types in exon 2, 7 and 18 of MLH1 and exon 10 and 16 of MSH2 showed significant differences (p < 0.05); and (3) three mutations (c.649C > T, c.1625A > T and c.1721T > C) in MLH1 and five mutations (c.23C > T, c.187dupG, c.505A > G, c.1168C > T and c.2211-6T > C) in MSH2 have much higher frequency in yellow race than those in white race. Furthermore, three mutations (c.1453G > C, c.1742C > T and c.1758dupC) in MLH1 and two mutations (c.1255C > A and c.1886A > G) in MSH2 were only found in yellow race, which implies that specific mutations in yellow race need more attention when screening mutations in these two genes.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Povo Asiático/genética , Proteína 2 Homóloga a MutS/genética , Mutação , Proteínas Nucleares/genética , População Branca/genética , Neoplasias Colorretais Hereditárias sem Polipose/genética , Biologia Computacional , Bases de Dados Genéticas/estatística & dados numéricos , Frequência do Gene , Humanos , Proteína 1 Homóloga a MutL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA